Электронная библиотека » Гвидо Тонелли » » онлайн чтение - страница 3


  • Текст добавлен: 16 ноября 2022, 08:20


Автор книги: Гвидо Тонелли


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Большой взрыв

Интуиция Леметра, подтвержденная измерениями Хаббла, заложила основу для нового понимания мира. В своей оригинальной статье, написанной по-французски, священник-астроном зашел так далеко, что даже предположил существование прямой пропорциональности между расстояниями и скоростью разбегания астрономических объектов. Если его идея о расширяющейся Вселенной оказывалась верна, то более далекие галактики должны были удаляться от нас с большей скоростью, а следовательно, у них должно быть больше и красное смещение. Именно в этом заключался результат, полученный Хабблом, по мере того как шаг за шагом пополнялся каталог его наблюдений. Но интуиция Леметра долго игнорировалась, так как бельгийский журнал, опубликовавший его статью, был не очень известен. По этой причине установленную пропорциональность до самого недавнего времени называли просто законом Хаббла. Лишь благодаря терпеливой работе историков науки вклад бельгийского ученого был наконец признан. На восстановление справедливости потребовалось почти сто лет, и сегодня соотношение, позволившее установить динамическую природу Вселенной, называется законом Хаббла – Леметра[6]6
  Специально для этого случая (лат.).


[Закрыть]
.

В начале 1930-х годов было проведено много новых наблюдений, и даже Эйнштейну пришлось наконец отказаться от своего изначального скепсиса. Легенда гласит, что, нехотя признав правоту бельгийского священника и американского астронома, великий ученый корил себя за неспособность по1 Переименовать “закон Хаббла” в “закон Хаббла – Леметра” было предложено в августе 2018 года на ХХХ Генеральной ассамблее Международного астрономического союза (МАС). Для принятия решения было организовано электронное голосование среди всех членов МАС – более 11 тысяч человек.

За переименование проголосовало 78 % астрономов. – Прим. науч. ред.

нять это сразу: “Космологическая постоянная стала самой большой ошибкой моей жизни”.

Если принять определенное начальное состояние и последующее быстрое расширение, то никакой надобности в космологической постоянной, вводимой ad hoc[7]7
  Big Crunch (англ.). В русскоязычной литературе нет устоявшегося термина. Используются различные варианты: Большой хруст, Большое сжатие, Большой хлопок…


[Закрыть]
, не возникает, и она на много десятилетий пропала из фундаментальных уравнений космологии. Но есть и некоторая ирония, заключающаяся в том, что со временем ситуация перевернулась снова: в конце ХХ века с открытием темной энергии этот член уравнения, так огорчивший своего автора, пришлось вернуть на место.

Первым предположил, что расширение может в действительности идти с ускорением, все тот же Леметр, оставивший на этот случай космологическую константу Эйнштейна в уравнениях, хотя и с очень маленьким значением. Леметр описывал рождение Вселенной как процесс, разворачивавшийся между десятью и двадцатью миллиардами лет назад из начального состояния, которое он называл первичным атомом. Его гипотеза сближала самые передовые научные теории того времени с многочисленными мифологическими историями, выводившими начала всего из космического яйца, и, прежде всего, она восстанавливала связь микрокосма и макрокосма, оказавшуюся исключительно продуктивной в последующие десятилетия.

С момента своего появления новая теория встретила множество сложностей. Общественное мнение было в то время занято совсем другим: последствия Великой депрессии 1929 года, возникновение в Европе фашизма и нацизма, появление все более тревожных признаков ускоряющегося приближения следующего мирового конфликта. Но и в научной среде скепсис в отношении новой космологической теории был очень силен. Немало авторитетных ученых отказывались принимать саму идею начала пространства-времени, идею рождения Вселенной. Дело получалось дьявольски похожим и на библейскую Книгу Бытия, и на предания о творении, содержащиеся во многих других религиях. И словно этого было недостаточно, в качестве главного защитника новой теории выступал ученый-священник, мало того – римокатолик.

Представление о вечной Вселенной, стационарном состоянии, не сотворенном и неизменном, которое первым поддержал Аристотель, продолжало привлекать многих ученых. Одним из самых известных среди них был Фред Хойл, британский астроном, считавший теорию Леметра просто отвратительной и остававшийся приверженцем своих идей вплоть до своей смерти в 2001 году. Именно он в 1949 году в передаче Би-би-си приклеил уничижительный, на его взгляд, ярлык “теория Большого взрыва”. По иронии судьбы образ колоссального взрывообразного расширения, который, по мысли Хойла, должен был выставить всю эту космологическую теорию в смешном виде, помог в итоге внедрить ее в коллективное сознание, чрезвычайно способствуя ее успеху.

Оплотом наиболее стойких противников этой теории долго оставалась советская наука. На протяжении нескольких десятилетий ученые СССР клеймили теорию Большого взрыва как лженаучную и идеалистическую, как протаскивание в науку идеи творения, как слишком близкую к тому, что описывается религией, чтобы не вызывать подозрений. Для них не имело никакого значения, что сам Леметр неуклонно и последовательно разделял вопросы науки и вопросы веры до такой степени, что с ужасом отреагировал на слова Пия XII, когда тот в 1951 году не удержался перед соблазном упомянуть Большой взрыв, описываемый учеными, как момент библейского сотворения мира. Это было попыткой папы поспособствовать распространению идеи научного подтверждения креационизма и через это – укреплению рациональных оснований веры, но именно эту идею Леметр решительно отвергал.

Своим окончательным успехом теория Большого взрыва и на этот раз обязана результатам экспериментов. Среди теоретических выводов, сделанных на основании новой космологической теории в 1950-е годы, было предсказание фонового излучения, пронизывающего всю Вселенную и остающегося с того самого момента, когда фотоны окончательно отделились от остальной материи, чтобы с тех пор непрерывно флуктуировать вокруг нас. Это очень слабые электромагнитные волны, невероятно растянутые за миллиарды лет расширения пространства-времени и очень низкоэнергетические: они нагревают межзвездные пустоты до температуры всего в несколько градусов по шкале Кельвина.

Знаменитое открытие этого излучения двумя американскими астрономами Арно Пензиасом и Робертом Уилсоном (Вильсоном) в 1964 году было практически случайным. Пензиас и Уилсон неделя за неделей пытались наладить радиоантенну, которую хотели использовать для астрономических наблюдений в микроволновом диапазоне, но им никак не удавалось избавиться от странной помехи, идущей, казалось, из любой точки небосвода. Сначала они подумали, что помеха приходит от расположенной в окрестности лаборатории радиостанции, потом стали думать о разнообразных электромагнитных возмущениях, возникающих в результате хозяйственной деятельности вокруг Нью-Йорка, под конец они начали грешить на пару голубей, которые устроили себе гнездо прямо в антенне и то и дело наносили на часть устройства специфический диэлектрик белого цвета (проще говоря, помет), но потом все-таки сдались и опубликовали свои результаты в виде короткого письма. Открытие космического микроволнового фонового излучения, приходящего со всех направлений, и наблюдение, что у Вселенной температура на уровне нескольких кельвинов, или около –270° по шкале Цельсия, обозначили окончательную победу новой теории. Пензиас и Уилсон зарегистрировали эхо Большого взрыва, родоначальника всех последующих катастроф, первичного события, доказательства, что начало всему было положено 13,8 миллиарда лет назад.

Вселенная, родившаяся из пустоты

В действительности даже в годы его наибольшей популярности, когда термин окончательно вошел в обыденный лексикон и о Большом взрыве начали говорить в телепередачах и писать в детских комиксах, сомнения в среде ученых оставались.

Хотя все более точные измерения микроволнового фона давали все более надежные подтверждения, никак не удавалось разрешить один ключевой вопрос. В самом деле, традиционная теория Большого взрыва рождала грандиозную проблему: если Вселенная родилась из точки, где была сконцентрирована колоссальная масса и энергия, то есть из системы исключительно плотной и горячей, которая стала потом быстро расширяться и охлаждаться, то что за физическое явление могло послужить причиной возникновения столь необычного состояния? До некоторой степени это тот же самый вопрос, на который в своей шуточной манере намекает Итало Кальвино в коротком рассказе “Все в одной точке” из цикла “Космикомических историй”: “Каждая точка каждого из нас совпадала с каждой точкой всех прочих, потому что ведь мы все находились в одной-единственной точке”. Подобное предположение привело намного раньше Хорхе Луиса Борхеса к его великолепному “Алефу”. Заглавием рассказа служит первая буква древнееврейского алфавита, обозначающая также первичную цифру, содержащую в себе все числа, а сам рассказ повествует о маленькой загадочной сфере, в которой можно увидеть всю Вселенную целиком.

Итак, под оболочкой надежно установленной теории родился грандиозный вопрос: какой механизм мог привести к условиям столь необычным, что одна безразмерная точка обрела бесконечную массу и бесконечную кривизну, то есть к тому, что физики называют сингулярностью?

Простое и внутренне элегантное решение может оказаться совсем под рукой. Те же самые уравнения, которые описывают расширение, сдерживаемое гравитационными силами, можно использовать для описания и противоположного процесса – неостановимого сжатия, необоримо приводящего к Большому сжатию[8]8
  В тексте дан дословный перевод с итальянского. Полностью цитируемый автором фрагмент в стихотворном переводе А. В. Лебедева с древнегреческого звучит так: “Ныне скажу я, а ты восприми мое слово, услышав, / Что на пути изысканья единственно мыслить возможно. / Первый гласит, что «есть» и «не быть никак невозможно»: / Это – путь Убежденья (которое Истине спутник). / Путь второй – что «не есть» и «не быть должно неизбежно»: / Эта тропа, говорю я тебе, совершенно безвестна, / Ибо то, чего нет, нельзя ни познать (не удастся), / Ни изъяснить…” (цит. по: Фрагменты ранних греческих философов. Ч. 1. М.: Наука, 1989. С. 295–296).


[Закрыть]
, вселенской имплозии.

При определенных условиях расширение Вселенной может замедляться гравитационными силами и даже вообще прекратиться, сменившись последующей фазой сжатия. В этом случае медленно, но неуклонно росла бы плотность галактик внутри скоплений, а поэтому во всех уголках Вселенной увеличивались бы и плотность материи, и средняя температура. А потом все бы закончилось тем, что образовалось бы невероятно плотное скопление черных дыр, излучения и ионизованных атомов, которым не оставалось бы ничего другого, кроме как катастрофически коллапсировать в область пространства все меньшего размера – в конце концов до состояния точки. И вот вам, пожалуйста, – сингулярность, которая даст начало новому Большому взрыву, а из него родится новая вселенная – еще одно звено в бесконечной цепи сжатий и расширений. Сжим-разжим гигантской фисгармонии, складывающей свои мелодии из тактов продолжительностью в десятки миллиардов лет.

Предположение об участии нашей Вселенной в таком жизненном цикле, включающем рождение, смерть, возрождение, без конца и без начала, очень напоминает некоторые общие положения многих восточных философских систем. Сама Вселенная входит в круг Сансары, колеса бытия, куда пойманы все живые существа, обреченные на бесконечную серию перерождений. Решение симметричное и элегантное, обладающее тем преимуществом, что с легкостью разрешает проблему очевидного нарушения закона сохранения энергии: а иначе кто бы собрал в сингулярности всю энергию Вселенной?

Этот вариант развития событий оставался открытым на протяжении нескольких десятилетий, но потом такие рассуждения утратили основания из-за новых успехов астрономов и астрофизиков, когда им удалось провести более точные измерения скорости разлета галактик и космического микроволнового фонового излучения. Новые результаты дали начало новой космологии – уже как точной науке.

Со временем стало понятно, что звезды рассказывают нам о себе, пользуясь языком значительно более богатым и понятным, чем мы могли себе представить. Довольно скоро рядом с мощными оптическими телескопами встали гигантские параболические антенны, направленные в самые глубокие области космоса; как гигантские уши, они пытались услышать радиосигналы, приходящие от неизвестных звезд, испущенные далекими галактиками. Возникла радиоастрономия. Так было открыто целое семейство новых загадочных объектов, источников радиосигналов, и эти объекты получили экзотические названия вроде квазаров и пульсаров.

Потребовались еще десятилетия исследований, чтобы понять, что за этими новыми объектами и некоторыми характерными для них явлениями скрываются новые агрегатные состояния вещества: гравитационные силы, царящие внутри самых массивных космических тел, размалывают вещество до мельчайших компонентов, из-за чего возникают чудовищные плотности внутри нейтронных звезд и черных дыр.

Тот факт, что Вселенная наполнена фотонами самой разной длины волны – от десятков метров (радиоволны) до размеров субатомных частиц (высокоэнергетические гамма-всплески), подтолкнул ученых строить еще более изощренные приборы, как базирующиеся на Земле, так и орбитальные, с тем чтобы они могли регистрировать весь спектр электромагнитных излучений. В итоге была создана самая точная карта бесчисленных космических объектов, излучающих электромагнитные волны на самых разных частотах. Впечатляющий объем собранных данных позволил изучать Вселенную как единую физическую систему, которую можно исследовать, чтобы дать ответ на типичные в подобных случаях вопросы: какова ее полная энергия? каковы ее полный импульс, угловой момент и электрический заряд?

Мало-помалу накапливались все более точные данные, уменьшались погрешности измерений, и картина, которая из всего этого складывалась, обнаруживала просто удивительные детали. Эти данные говорили нам, что расширение никогда не прекратится, ничто не указывало на возможную смену направления к Большому сжатию. Средняя плотность Вселенной недостаточна для того, чтобы превзойти критическое значение и обеспечить доминирование сил гравитации. Приходится, следовательно, отказаться от идеи циклической Вселенной и вернуться к проблеме начальной сингулярности.

Но тут совершенно неожиданно обнаружилось еще одно решение, даже более элегантное, чем предыдущее: Вселенная постоянно пребывает в состоянии, чрезвычайно близком к условиям полной однородности и изотропности. Невероятная однородность космического микроволнового фонового излучения говорит, что у Вселенной нет сколько-нибудь заметной кривизны, а угловое распределение этого излучения предполагает, что в пространстве действуют законы евклидовой геометрии: световые лучи при пересечении какой-либо космической области не подвергаются возмущению со стороны энергии или массы и распространяются вдоль прямой линии. Это то самое, что называется плоской Вселенной – ее кривизна нулевая. А поскольку распределение массы и энергии во Вселенной тесно связано с кривизной пространства и его геометрией, как следует из законов, установленных общей теорией относительности, то это прямо приводит к поразительному выводу, что Вселенная, плоская, как наша, должна обладать нулевой полной энергией.

Другими словами, положительная энергия тяготеющих масс и отрицательная энергия создаваемых ими во Вселенной гравитационных полей должны в точности компенсировать друг друга. Если бы кто-то взялся подсчитать всю мировую энергию, он должен был бы сначала пересчитать в энергетических единицах массу всех звезд нашей Галактики и умножить результат на сотни миллиардов – число всех галактик, потом ему бы понадобилось добавить темную энергию и энергию темной материи, о которой мы еще поговорим дальше, и наконец, ему бы пришлось перевести в энергетические единицы массу всех форм межгалактического вещества и всего пронизывающего Вселенную излучения: межгалактического газа, фотонов, нейтрино и космических лучей, а также всего прочего вплоть до гравитационных волн. В результате этого расчета он бы получил колоссальное положительное число.

А теперь, запасшись терпением, мы должны рассмотреть вклад в энергию всех гравитационных полей, то есть отрицательный вклад. Гравитационное притяжение между двумя телами, будь то Солнце и Земля или две далекие галактики, образует связанную систему, то есть оба этих тела оказываются в яме отрицательной потенциальной энергии; чтобы выбраться из ямы, им нужно где-то взять положительную энергию – обычно это кинетическая энергия, то есть одному из тел надо разогнаться до скорости убегания, которая теоретически позволит ему удалиться на бесконечное расстояние, освободившись от притяжения своего партнера. Именно это и происходит, когда мы хотим отправить исследовательский зонд к границам Солнечной системы.

Поскольку гравитация действует на любую имеющуюся во Вселенной форму материи, если только она обладает массой или энергией, то отрицательное значение, вклад в которое дает всякая связанная система, тоже оказывается гигантским по абсолютной величине.

Теперь нам предстоит найти разность двух чудовищно больших чисел, и результат поразителен – около нуля. В итоге полная энергия Вселенной та же, что у пустоты.

Такое не может быть чистым совпадением. Вдобавок нечто подобное справедливо и в отношении полного электрического заряда Вселенной, ее импульса и углового момента. Все эти величины можно считать строго равными нулю. Итак, подведем итог: у Вселенной энергия – нуль, количество движения – нуль, угловой момент – нуль, электрический заряд – нуль; все эти характеристики делают ее состояние чрезвычайно похожим на вакуумное. Тут ученые сдаются: “Выглядит как утка, ходит как утка, машет крыльями как утка – будем считать ее уткой”.

Итак, наиболее точные и полные наблюдательные данные самым непротиворечивым образом указывают нам на то, что тайна происхождения Вселенной решается благодаря очень простой гипотезе, которая к тому же позволяет сразу ответить на вопрос, подрывавший, казалось, всю теорию Большого взрыва. Во Вселенной, где полная энергия равна нулю, не требуется никакого специального процесса, чтобы обеспечить в начальной сингулярности концентрацию огромных масс или энергий, потому что энергия этой точки равна нулю и система, в которую она развивается и которую мы называем Вселенной, также обладает нулевой энергией. Алан Гут, физик и космолог, одним из первых ставший развивать эту теорию, назвал ее редким примером огромного куска бесплатного сыра, полученного из квантового вакуума.

Гипотеза, что вся Вселенная возникла из пустоты, или, лучше сказать, что она по-прежнему остается вакуумным состоянием, подвергнувшимся некой метаморфозе, остается самой убедительной в современной космологии и в то же время наилучшим образом поддержанной совокупностью собранных на сегодня наблюдательных данных.

Вакуум или ничто?

Но что такое вакуум? Для многих вакуум – это ничто. Нет ничего ошибочнее. Ничто – это философская концепция, абстракция, прямая противоположность бытию, что, как никто другой, точно сформулировал Парменид: “Что есть, существует и не может не быть, ничто нет и не может существовать”[9]9
  Испанский танец, вероятно, афро-американского происхождения, ставший в эпоху барокко обязательной частью танцевальных сюит. Здесь имеется в виду его медленная разновидность: медленный грациозный танец, включавший в себя шествие пар вперед и назад и их проход меж двух рядов остальных участников.


[Закрыть]
.

Пустота-ничто возвращает нас к мысли об обычных, то и дело возникающих страхах древних, символизируемых падением в бездонный колодец; пустота синонимична утрате смысла: пустая душа, пустые разговоры. Ассоциация концепции вакуума с ничто рождается из неизбежного в западноевропейской культуре созвучия между теорией рождения Вселенной из вакуума и иудео-христианского учения о творении мира ex nihilo – из ничего. В действительности, как мы скоро увидим, речь о концепциях почти противоположных: вакуум как физическая система и ничто в некоторых отношениях несовместимы.

У концепции вакуума много точек пересечения с “цифрой” – это слово происходит от латинского zephirum, впервые вошедшего в употребление на Западе в 1202 году. В своих сочинениях великий итальянский математик Леонардо Пизанский по прозвищу Фибоначчи так перевел на латынь арабское sifr, то есть “ноль” или “пустота”[10]10
  Автор в оригинальном тексте использует два разных итальянских слова zero (производное от латинского zephirum) и nulla (производное от латинского nihil). В русском языке это слабое различие также присутствует, но его передают значительно более похожие слова – “ноль” (когда речь скорее о знаке) и “нуль” (когда речь скорее об отсутствии наблюдаемого). Это различие последовательно поддерживается на протяжении всего данного раздела книги.


[Закрыть]
, которые в этом латинском эквиваленте стали перекликаться с древнегреческим мифом о Зефире (Ζέφυρος), легком ветерке, предвещавшем наступление весны.

В арабском языке сохранялось исходное, заимствованное у индийцев значение слова – “ноль”, только те называли его шунья (Śūnya), что значит “пустой”. Тот же корень в слове Шуньята (Śūnyatā), обозначающем учение о пустоте, фундаментальную доктрину тибетского буддизма, согласно которой все материальные тела лишены в действительности подлинного и независимого существования.

Индийцы же ввели в оборот и понятие о цифре-ноле. В первый раз оно появляется в трактате, написанном на санскрите в 458 году нашей эры и озаглавленном Локавибхага (Lokavibhaga), что дословно переводится как “Части Вселенной”: поразительно, но это был трактат по космологии и в нем с самого начала рождение Вселенной связывалось с пустотой[11]11
  В Индии было множество нумерационных систем, и в них ноль имел большое количество разных наименований. Утверждение, что впервые это понятие появилось в джайнском космологическом тексте Локавибхага, не поддерживается большинством историков математики. – Прим. науч. ред.


[Закрыть]
.

Впрочем, это перестает удивлять, если познакомиться с ролью, которую отводят пустоте индийская космология и мифы о творении. Шива – это бог-творец Вселенной, но он же и ее разрушитель. Когда он танцует, сотрясается Земля – и вся Вселенная воспламеняется и рушится от ударов божественного ритма. Все разъединяется, чтобы собраться в бинду (bindu), метафизическую точку за пределами пространства и времени, цветную эмблему которой носят на своем лбу многие индийские женщины-индуистки. Но потом и эта точка медленно растворяется, и все рассеивается в космической пустоте. Цикл повторяется, когда Шива решает создать новую Вселенную и начинает новый танец. И снова божественный ритм сопровождается все более мощными толчками пустоты, пока наконец спазматическое раздувание не даст начало новой Вселенной и она не займет свое место в бесконечной цепи творений и разрушений.

Знакомство индийцев с идеей пустоты позволяет лучше понять, почему именно они первыми приписали нолю свойства числа со всеми присущими числу правилами и, воодушевленные позиционной системой записи, обеспечили ему вечную славу.

Совсем другое дело греки, для которых и ноль, и бесконечность – ужасны, это понятия, отвергаемые логикой, угрожающие установленному порядку. Идеал совершенства – бытие Парменида, оно представлено сферой, всегда тождественной себе во времени и пространстве и, главное, ограниченной. Конечность для греков синонимична совершенству, а сама идея ноля эквивалентна проклятию. Как может ничто быть чем-то? Не случайно ноль намекает на примордиальный хаос: это число, которое, умножаясь на любое другое число, вместо того чтобы увеличивать, уничтожает его и утаскивает за собой в бездну. Не лучше обстоит дело и с делением на ноль: в этом случае также результат оказывается абсурдным, бесконечным, равномерно растущей неограниченной величиной. Как пустота, так и бесконечность – и то и другое тесно связано с нолем – одинаково ужасны для греков. Эти концепции, которые вредят логике и возмущают ум философов, считались недостойными и опасными: они могли сеять панику и провоцировать социальные беспорядки.

По этой причине западноевропейская культура построила своего рода табу вокруг идеи ноля, распространившееся со временем и на идею пустоты. От этого предрассудка, все еще оказывающего свое влияние на наше мышление, нам нужно освободиться, чтобы понять механизм того, как из пустоты рождается Вселенная.

Но вакуум, о котором говорим мы, – это не концепция философов, это особая материальная система, не содержащая вещества и не обладающая энергией. Это состояние с нулевой энергией, но это такая же физическая система, как и любая другая, ее можно исследовать, измерять, описывать.

Много лет физики проводят над этой системой бесчисленные эксперименты. Они используют самое изощренное экспериментальное оборудование, чтобы изучать ее странные свойства и благодаря этому понять детали того, как вакуумное состояние влияет на характерные параметры элементарных частиц. Некоторые прямо-таки мечтают открыть в вакууме новые физические явления, которые, будучи освоены, позволят создавать новые технологии.

Как и для любой другой физической системы, для вакуума справедлив принцип неопределенности, определяющий поведение системы на микроскопическом уровне. Энергия и собственное время для любой системы, даже находящейся в вакуумном состоянии, не могут быть одновременно измерены с произвольной точностью: произведение неопределенностей каждого из них не может быть меньше некоторого минимального значения. Когда мы говорим, что у вакуума нулевая энергия, то подразумеваем, что, произведя достаточно большое число измерений, мы получим нулевое среднее значение, однако каждое одиночное измерение дает некоторое флуктуирующее, то положительное, то отрицательное, значение, отличное от нуля, и все они распределяются по некой статистической кривой вокруг среднего нулевого значения. Принцип неопределенности гласит, что чем короче временной интервал измерения, тем большие флуктуации энергии обнаружатся при ее измерении.

В сущности, эта особенность указывает просто-напросто на неизбежные возмущения системы во время измерения, однако есть в ней и кое-что более глубокое, связанное с поведением материи на микроскопическом уровне. Система в вакуумном состоянии обладает энергией, строго равной нулю: она должна наблюдаться при измерениях, достаточно протяженных во времени, теоретически – бесконечных, но при измерениях более коротких система должна флуктуировать, как и любая другая, проходя через все свои возможные состояния, включая те, очень маловероятные, когда ее энергия сильно отличается от нулевого значения. Одним словом, неопределенность предполагает образование в вакууме на короткое время микроскопических сгустков энергии, очень быстро распадающихся. Чем меньше энергия такого аномального сгустка, тем дольше он может сохраняться.

Так что если мы представляем себе поведение вакуума на микроскопическом уровне, то нам вовсе не надо думать о чем-то скучном, статичном, всегда остающимся тождественным себе. Тончайшая ткань вакуума представляет собой кипение мириад микроскопических флуктуаций. Те из них, энергия которых оказывается высокой, тут же распадаются, а те, у которых энергия нулевая, могут существовать вечно.

Дело усложняется, если рассматривается присутствие вещества и антивещества. Квантовые флуктуации вакуума могут принимать форму спонтанно рождающихся пар частица/античастица. Стало быть, вакуум можно рассматривать как неисчерпаемый кладезь вещества и антивещества. Неопределенностью, даваемой соответствующим принципом, можно воспользоваться для того, чтобы извлечь из вакуума один электрон – если его быстро вернуть на место, то никто и не заметит. Достаточно действовать побыстрее, и дело сделано! Но только одолжить у вакуума придется целую пару – электрон и позитрон. Тут приходится проявлять осторожность, так как закон сохранения заряда строже, чем закон сохранения энергии, и не допускает исключений. Я не могу вытащить один только электрон, так как он изменит состояние всего вакуума, сделав его положительно заряженным. Я должен одновременно вытащить оттуда и позитрон, положительно заряженный электрон, чтобы сохранить ненарушенной всю систему в целом. Одним словом, достаточно одалживать у вакуума равные количества вещества и антивещества, и вакуум не воспротивится. Останется только проблема с суммарной энергией пары частица/античастица: чем меньше их масса, тем большим временем на свободе они располагают. Перемена заканчивается, принцип неопределенности звонит в колокольчик, оба “школьника” должны дисциплинированно вернуться в класс.

У этой механики нет статуса какого-то абстрактного постулата – это обычный материальный процесс, который можно каждый день наблюдать в любом ускорителе элементарных частиц. Встряхните энергично вакуум встречными пучками, и он откликнется новыми частицами, с тем большими массами, чем больше энергия пучков. Так из вакуума в больших количествах извлекаются частицы для самых разных целей: от радиоактивных изотопов для диагностических нужд радиационной медицины до бозона Хиггса в Большом адронном коллайдере.

Вакуум – это нечто живое, динамическая и неустанно меняющаяся субстанция, набухающая потенциями, беременеющая противоположностями. Это не ничто – напротив, это система, лопающаяся от переполняющих ее вещества и антивещества. В определенном смысле она сходна с нолем, как о нем думали индийские математики. Ноль далек от того, чтобы быть не-числом, – он вмещает в себя всю совокупность положительных и отрицательных чисел, организованных симметричными парами, одинаковых по модулю и противоположных по знаку, в сумме дающих нуль. Аналогию можно продолжить, включив в нее молчание, понимаемое как суперпозиция всех возможных звуков, когда они попарно уничтожают друг друга, оказавшись в противофазах, или тьму, рождающуюся из интерференции световых волн.

Предположение, что все происходит из квантовой флуктуации вакуума, возникло естественным образом, едва только выяснилось, что в нашей Вселенной отрицательная энергия гравитационного поля в точности компенсирует положительную энергию тяготеющих масс. Вселенная с такими свойствами может родиться из простой флуктуации и, как говорят нам законы квантовой механики, может остаться с нами навсегда. Вселенная с нулевой полной энергией представляет нам особый вариант традиционной теории Большого взрыва – когда начальная сингулярность оказывается избыточной.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации