Электронная библиотека » Карл Циммер » » онлайн чтение - страница 5


  • Текст добавлен: 21 сентября 2014, 14:45


Автор книги: Карл Циммер


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Жизнь на автопилоте

На землю опустились оранжевые зимние сумерки. За окном виднеется паутина голых кленовых ветвей. Поток фотонов струится через окно и попадает на фоторецепторы, выстилающие сетчатку моих глаз. Фоторецепторы вырабатывают электрические сигналы, которыми они сначала обмениваются между собой, а затем посылают по волокнам оптических нервов в затылочную часть мозга. Сигналы проходят сквозь мозг по сети из миллиардов нейронов, связанных между собой триллионами отростков. В мозгу формируется изображение. Я встаю из-за стола, чтобы включить свет. В первый момент заоконный мир погружается для меня в темноту, но через мгновение мои глаза приспосабливаются к новым условиям. Я снова вижу раскачивающиеся деревья с голыми сучьями.

Мне приходится напоминать себе, насколько это замечательно – то, что я по-прежнему их вижу. Мгновением раньше мое зрение было тончайшим образом настроено на восприятие мира в сумерках. Если бы после включения света в настройках моего зрения ничего не изменилось, я бы практически ослеп. К счастью, мои глаза и мозг умеют настраиваться и на полуденное солнце, и на слабый свет молодого месяца. Если свет усиливается, моя нервная система быстро сужает зрачки, чтобы в глаз проникало меньше света. Когда свет пропадает, мои зрачки расширяются, а нейроны сетчатки усиливают контраст между светлым и темным в поле моего зрения. Инженер назвал бы человеческое зрение робастным – устойчивым к изменению внешних условий. Иными словами, оно надежно работает в нашем нестабильном мире.

Человеческое тело устойчиво во многих отношениях. Человеческий мозг нуждается в постоянной подпитке глюкозой, но мы не теряем сознания, если случайно пропустим обед. Чтобы сохранить нужную концентрацию сахара, тело прибегает к резервным запасам глюкозы. Из небольшого скопления клеток, непрерывно обменивающихся целыми водопадами сигналов, координирующих деление, развивается зародыш. На эти сигналы воздействуют разнообразные помехи, но все же из большинства зародышей получаются совершенно здоровые младенцы. Раз за разом жизнь умудряется избежать катастрофических неудач и не сбиться с курса.

До недавнего времени у ученых не было достоверных свидетельств о том, почему жизнь обладает такой устойчивостью. Чтобы определить источник устойчивости, необходимо изучить живые системы на глубочайшем уровне подробнейшим образом, сжиться с ними – примерно так же, наверное, как конструктор сживается с создаваемой им системой автопилотирования, используя ее схему для проведения экспериментов. Однако принципиальные схемы живых существ по большей части по-прежнему остаются для нас тайной за семью печатями. E. coli – одно из немногих исключений.

В борьбе за выживание E. coli постоянно сталкивается с серьезнейшими угрозами. Положите в солнечный день чашку Петри на подоконник, и вы поставите обитающих в ней бактерий на грань катастрофы. Жара оказывает на белки E. coli губительное действие. Чтобы работать правильно, каждому белку необходимо все время сохранять характерную только для него скрученную форму, по сложности напоминающую оригами. Перегретый белок разворачивается и становится похожим на спутанный клубок – он денатурируется. Такой белок уже не способен выполнять работу, от которой зависит выживание E. coli.

И все же кишечная палочка не умирает от повышения температуры на несколько градусов. Когда температура поднимается, бактерия начинает синтезировать так называемые белки теплового шока. Они выполняют двойную защитную функцию. Некоторые обхватывают начавшие денатурироваться белки E. coli и возвращают им надлежащую форму. Остальные распознают белки, пострадавшие от жары настолько, что их уже невозможно привести в порядок, и разрезают на части, пригодные для строительства новых белков.

Белки теплового шока вполне способны спасти хозяйке жизнь, но E. coli не в состоянии держать «под рукой» запас таких белков на случай будущих неприятностей. Надо сказать, что эти белки – одни из самых крупных в ее арсенале, а чтобы пережить тепловой удар, могут потребоваться десятки тысяч таких молекул. Производить их про запас – все равно что заставить двор своего дома пожарными машинами на случай, если дом вдруг загорится. С другой стороны, если пожарная машина нужна, то нужна она быстро. E. coli, затратив слишком много времени на производство белков теплового шока, может погибнуть, не дождавшись помощи.

Эта особенность привлекла внимание инженера Калифорнийского технологического института Джона Дойла и его коллег. В прошлом Дойл занимался теорией создания систем управления для самолетов и космических кораблей многоразового использования. Однако оказалось, что в клетке E. coli скрыты конструкторские решения, ничуть не уступающие тем механизмам, в создании которых ему довелось принимать участие. Вместе с коллегами Дойл начал изучать белки теплового шока и то, как бактерия с их помощью выживает.

Исследователи выяснили, что E. coli контролирует запас белков теплового шока с помощью механизма отрицательной обратной связи. С точки зрения инженера, обратная связь возникает тогда, когда выход какой-то схемы начинает влиять на ее же вход. Так, термостат поддерживает температуру в доме примерно на одном уровне при помощи одной из простейших форм обратной связи. Термостат измеряет температуру в доме и, если она оказывается слишком низкой, включает обогреватель. Если температура слишком высокая, он выключает обогреватель.

E. coli защищается от высокой температуры примерно так же. Ключевой белок ее «термостата» называется сигма-32, который регулирует, какие именно гены будет считывать РНК-полимераза. Даже при невысокой температуре бактерия постоянно считывает ген, отвечающий за синтез сигма-32, и синтезирует его РНК-копии. Но при нормальной температуре молекулы РНК сигма-32 находятся в свернутом состоянии, и E. coli не может использовать их для синтеза белка. Поэтому при нормальной температуре в бактериальной клетке много РНК сигма-32, но совсем нет соответствующего белка.

Однако, когда температура окружающей среды повышается, РНК сигма-32 разворачивается. Теперь рибосомы могут прочитать эти молекулы и синтезировать по ним белок сигма-32, и E. coli за короткое время производит огромное количество этого белка. Молекулы сигма-32 быстро находят молекулы РНК-полимеразы и направляют их к генам, отвечающим за производство белков теплового шока. Таким образом, на синтез десятков тысяч молекул белка теплового шока уходит всего несколько минут.

Столь стремительный ответ может спасти E. coli от перегрева, но в нем же скрыт и большой риск. Внезапный и бесконтрольный синтез белка сигма-32 опасен – даже хорошей вещи может быть слишком много. Ведь описанным способом бактерия наверняка произведет намного больше белков теплового шока, чем нужно. Но мы знаем, что этих молекул в клетке E. coli появляется ровно столько, сколько необходимо для данной температуры: больше, если температура высокая, и меньше, если не очень. Такое тонкое регулирование осуществляется при помощи целой системы петель обратных связей.

Белки теплового шока не просто защищают E. coli от перегрева, но и контролируют количество сигма-32. Одни из них хватают молекулы сигма-32 и прячут «в карман»; другие режут их на части. Когда температура поднимается, в первые несколько мгновений белки теплового шока слишком заняты, чтобы нападать на сигма-32, – ведь необходимо помочь множеству других молекул, подвергшихся губительному воздействию высокой температуры. Но как только им удается взять ситуацию под контроль, свободные белки теплового шока (а их становится все больше) переносят свое внимание на сигма-32. А по мере снижения числа молекул сигма-32 падает и производство новых белков теплового шока.

Этот механизм обратной связи не позволяет E. coli синтезировать слишком много белков теплового шока. Кроме того, она достаточно точно регулирует уровень этих белков. Если температура окружающей среды лишь слегка повысилась, но E. coli еще не умирает от жары, то белки теплового шока быстро снижают уровень сигма-32. Но если температура продолжает повышаться, то их внимание поглощено помощью развернувшимся молекулам и уровень сигма-32 – а значит, и производство белков теплового шока – остается высоким. Когда же окружающая среда остывает до комфортной температуры, «термостат» E. coli практически полностью прекращает производство белков теплового шока.

Устойчивость системы саморегуляции E. coli объясняется наличием в ее управляющих схемах встроенной системы петель обратных связей. Для инженера такая конструкция совершенно естественна. Автопилот в «Боинге-777» использует примерно такие же обратные связи, чтобы удерживать самолет на нужной высоте при любых порывах ветра и нисходящих течениях. Устойчивость и бактерии, и самолета обеспечивает не всезнающее сознание, а сама управляющая схема.

Общая картина

Объедините гены в группы, и они смогут сделать намного больше, чем сделали бы по отдельности. Объедините группы в единую систему – и получите живой организм.

В 1940-е гг. Эдвард Тейтем и другие ученые получили первые сведения о том, для чего предназначены некоторые гены E. coli. К 2007 г. исследователи имели более или менее полное представление о том, чем занимаются примерно 85 % ее генов, что превратило обычную кишечную палочку в золотой стандарт расшифрованности генома. Сегодня по генам E. coli, ее оперонам и метаболическим путям созданы и работают онлайновые базы данных. Загадки, конечно, остаются. Так, у E. coli обнаружен 41 фермент, для которых ученым еще только предстоит найти кодирующие их гены. Тем не менее постепенно вырисовывается примерный портрет E. coli. Пока это максимум того, что удалось сделать биологам в плане полной расшифровки устройства живого организма.

Ученые под руководством Бернарда Палссона, профессора биоинженерии из Калифорнийского университета в Сан-Диего, попытались построить модель метаболизма клетки E. coli. По состоянию на 2007 г. они ввели в компьютер данные о 1260 генах и 2077 реакциях. На базе этой информации компьютер может вычислить, сколько углерода проходит по метаболическим путям E. coli в зависимости от характера поглощаемой ею пищи. Модель Палссона умеет делать то, что делают все хорошие модели, – предсказывать реальность. В частности, она очень неплохо предсказывает, как быстро E. coli будет расти на глюкозе и сколько углекислого газа она при этом выделит. Если Палссон условно отключит бактерии кислород, модель перенаправит углерод на другую, не связанную с кислородом метаболическую траекторию (точно так, как это делает E. coli). Если Палссон исключит из схемы один из белков, модель реорганизует свой метаболизм так же, как это делает реальная мутантная E. coli, у которой отсутствует этот белок. Модель надежно предсказывает поведение E. coli в тысячах самых разных ситуаций; она показывает, что E. coli действительно всегда выбирает наилучший путь и настраивает свой метаболизм так, чтобы размножаться как можно быстрее.

Каким образом обмен веществ E. coli остается таким гибким, если в него входят сотни химических реакций? Почему бактерия, имея перед собой тысячи возможных метаболических путей, всегда выбирает несколько самых лучших? Почему вся эта система попросту не рушится? Оказывается, устойчивости системы способствует сама форма сети, география ее лабиринтов.

Когда ученые изобразили на бумаге метаболический маршрут атома углерода в клетке E. coli, получилась фигура, напоминающая галстук-бабочку. Одно его «крыло» образуют химические реакции поступления в клетку и расщепления пищи. Они следуют одна за другой по простым маршрутам, которые можно изобразить веером стрелок, сходящихся в центре «галстука», на «узле». Здесь траектории становятся гораздо более сложными. Продукт, полученный в результате какой-то реакции, может быть вовлечен во множество других реакций в зависимости от текущих условий. Именно на «узле» – там, где скрещиваются маршруты – E. coli создает строительные кирпичики для всех своих молекул. Затем эти кирпичики поступают в другое «крыло», образуя веер расходящихся траекторий, на каждой из которых производится свой тип молекул: на одной – молекула мембраны, на другой – кусочек РНК, на третьей – какой-то белок. Расходящиеся траектории второго «крыла» никогда не пересекаются. Молекула, начавшая движение к тому, чтобы войти в белок, уже не станет частью молекулы ДНК.

Надо сказать, что архитектурное решение в виде «бабочки» с инженерной точки зрения имеет для E. coli глубокий смысл. Рукотворные сети – например, телефонные или электрические – нередко тоже прокладывают по схеме «бабочки». Такая архитектура позволяет сетям работать эффективно и устойчиво. В Интернете, к примеру, входящий веер составляют сигналы всевозможных программ: браузеров, почтовых программ и многих других, причем каждая из них обрабатывает информацию по-своему. Чтобы все эти данные попали в Интернет, их следует преобразовать в коды, соответствующие интернет-протоколам. Потоки данных движутся от персональных компьютеров к серверам, а затем на небольшую группу роутеров, установленных в Лос-Анджелесе, Нью-Йорке и других крупных городах. Роутеры, подобно узлу галстука-бабочки E. coli, прочно связаны между собой. После этого сигналы через веер расходящихся маршрутов направляются к другому персональному компьютеру, где стандартный поток данных будет преобразован в картинку, текстовый документ или другую конкретную форму.

И для работы Интернета, и для E. coli самое главное – центральный узел. Именно он позволяет той и другой сети работать даже при отказе каких-то частей. Мутация, исключившая из арсенала бактерии одну из метаболических реакций, не убьет E. coli, потому что в «узле» есть и другие траектории, на которые она сможет перевести углерод. Интернет способен продолжать передачу данных даже после того, как откажет один из серверов, так же потому, что сообщения можно направить по другой траектории.

Помимо всего прочего в обеих системах архитектура в виде «бабочки» помогает сберечь энергию. Если бы E. coli функционировала иначе, ей пришлось бы создавать особую цепочку ферментов для производства любой молекулы. Для каждого из этих ферментов потребовался бы собственный ген. Вместо этого у E. coli все входящие траектории сбрасывают свои продукты в одну и ту же сеть в центральном узле. Точно так же Интернету нет необходимости связывать компьютеры напрямую или использовать специальные коды для каждого типа файлов. В обоих случаях такая организация работы возможна только потому, что сеть подчиняется определенным правилам. В Интернете каждое сообщение обязательно переводится на общий язык. И в E. coli энергия всегда передается одним и тем же способом – с помощью АТФ.

Изобретатели Интернета не думали, что создают подобную сеть. Они всего лишь пытались сбалансировать затраты и скорости при объединении серверов. Но, сами того не подозревая, они создали модель E. coli, которая к настоящему моменту охватила всю Землю.

Да здравствуют различия

У каждого из нас свои вкусы. Я, к примеру, не понимаю, почему некоторые любят улиток. Я не могу точно сказать, почему они мне не нравятся, но вполне могу выдвинуть несколько предположений. Может быть, у меня на языке есть особые клетки, в которых от вкуса улитки возникает спазм ужаса. А может, какая-то нейронная сеть в моем мозгу связывает вкус улиток с каким-то давним, но очень неприятным воспоминанием. Или, может быть, у меня просто не было возможности полюбить улиток, потому что я вырос на пицце, гамбургерах и арахисовом масле. Ясно одно: этот гастрономический путь для меня закрыт.

Я не знаю наверняка, справедливо ли хоть одно из этих предположений. Я не могу совершить путешествие во времени, переиграть свою жизнь с момента зачатия и посмотреть, как бы обернулось дело, если бы на завтрак в детском саду нас кормили съедобными улитками. Я не могу клонировать себя в сотне экземпляров и расселить своих искусственных близнецов по приемным семьям во Франции. Я просто ненавижу улиток.

Моя нелюбовь к улиткам – всего лишь небольшая иллюстрация к серьезному утверждению: жизнь полна различий. Мы, люди, отличаемся друг от друга бесчисленными особенностями. Мы скромны или самоуверенны, бледны или веснушчаты; мы можем быть водителями или парикмахерами, буддистами или пресвитерианами. Кто-то из нас живет до ста лет, а у кого-то третья стадия рака. Наши отпечатки пальцев строго индивидуальны.

Ученые лишь приблизительно представляют, как возникают эти различия. Человек – не просто результат выполнения программы, записанной с помощью ДНК. Пока зародыш развивается в матке, на его гены влияют поступающие из организма матери сигналы. Окружающая среда и после рождения продолжает непредсказуемым образом воздействовать на гены человека. То, какие именно гены активируются и будут работать, зависит от множества вещей: от пищи, которую мы едим, от воздуха, которым дышим, от травм, от радостей и скуки, пережитых в детстве. Мало того, что различия между нами трудно объяснить; они – законный повод для гордости. Человек может стать великим бейсболистом, как Бейб Рут, или композитором, как Фредерик Шопен, актрисой, как Мэй Уэст, или ученым, как Мария Кюри. Все они – продукт сложности вида, каждый представитель которого несет в себе 18 000 генов, способных управлять производством 100 000 белков, дающих начало удивительным живым существам. Мы уникальны по своей способности воспринимать окружающий мир и формировать свою жизнь с помощью слов, ритуалов и образов. Безусловно, наше представление о E. coli окрашено нашей гордостью.

Конечно, кишечная палочка не умеет читать и не учится в школе, у нее есть только то, что дала мать-природа. Колония, развившаяся из одного-единственного организма, представляет собой всего лишь миллиард генетически идентичных родичей, и поведение каждого из них определяется одними и теми же генетическими схемами. E. coli состоит из одной-единственной клетки; у нее нет тела, построенного из триллиона клеток, развитие которого продолжается не один год. У E. coli не бывает детства, которое она проводила бы на занятиях в частной школе или за поиском объедков на городской свалке. Ей не приходится думать о том, любит ли она улиток на обед. E. coli — всего лишь мешочек с молекулами, изготовленный по стандартному рецепту. Если две бактерии генетически идентичны, то и жизнь они проживут совершенно одинаковую.

Может быть, все это звучит правдоподобно, но на самом деле сказанное далеко от истины. В реальности колония генетически идентичных E. coli — это множество отдельных индивидуальностей. В одинаковых условиях они будут вести себя по-разному. Можно сказать, что у этих бактерий есть собственные отпечатки пальцев.

К примеру, если понаблюдать за двумя плывущими бок о бок генетически идентичными кишечными палочками, то можно уловить момент, когда одна из них сдастся, тогда как вторая будет и дальше крутить своими жгутиками. Чтобы оценить их выносливость, ученый из Калифорнийского университета в Беркли Дэниел Кошланд поместил несколько генетически идентичных E. coli в каплю воды под покровное стекло, где они плавали, вращая своими жгутиками. В качестве стимула Кошланд предложил им капельку аспартата – аминокислоты, ради которой эти бактерии готовы плыть за тридевять земель. Здесь они были заперты под стеклом и могли только кружить на месте. Кошланд обнаружил, что некоторые клоны, пытаясь добраться до аспартата, кружили по капле вдвое дольше других.

E. coli умеет демонстрировать свою индивидуальность и другими способами. Так, в колонии генетически идентичных клонов одни бактерии образуют на поверхности клетки нитевидные выросты-фимбрии, а другие нет. В стремительно растущей колонии всегда найдется несколько бактерий, которые вдруг прекратят размножение и войдут в состояние анабиоза. Часть бактерий в колонии E. coli может расщеплять лактозу, а другие – нет.

Разное отношение отдельных микроорганизмов к лактозе впервые было выявлено в 1957 г., когда два биолога из Чикагского университета, Аарон Новик и Милтон Уэйнер, решили проверить, как отдельные особи E. coli реагируют на присутствие лактозы. Они добавили в питательную среду вещество с лактозоподобными молекулами, способными, как и лактоза, запустить в организме бактерии производство бета-галактозидазы. При низких концентрациях этого вещества лишь крошечная часть колонии отозвалась на его присутствие производством фермента, а большая часть микроорганизмов никак на него не отреагировала.

Новик и Уэйнер увеличили концентрацию имитатора лактозы. Те бактерии, которые сразу начали его расщеплять, продолжали производить фермент; остальные по-прежнему не реагировали. Их поведение изменилось только после того, как концентрация имитатора преодолела определенное пороговое значение. Внезапно те микроорганизмы, которые раньше не реагировали на присутствие «лактозы», начали вырабатывать бета-галактозидазу с той же скоростью, с какой это делали любители этого сахара.

Получалось, что бактерии, несмотря на генетическую идентичность, почему-то ведут себя двумя принципиально разными способами. Новик и Уэйнер отделили любителей «лактозы» от тех бактерий, которые не желали ее утилизировать, и поместили их в свежие чашки Петри, где они смогли положить начало новым колониям. Их потомки вели себя точно так же. Любители производили на свет новых любителей, а потомки тех, кто не мог расщеплять лактозу, тоже не были способны это делать. Новик и Уэйнер обнаружили наследование признаков, не связанное с наследственностью!

Можно многое узнать о E. coli, если рассматривать ее как устройство, следующее фундаментальным принципам инженерного искусства. Это верно, но до определенного предела. Два «Боинга-777», находящиеся в одинаково хорошем техническом состоянии, должны вести себя абсолютно одинаково, но если бы они были похожи на E. coli, то в тот момент, когда один из них повернул бы налево, второй вполне мог бы повернуть направо.

Разница между E. coli и самолетом заключается в материале, из которого они сделаны. Если начинку самолета составляют провода и транзисторы, то внутри у E. coli — гибкие, подвижные и непредсказуемые молекулы. И работают они не равномерно, а «приступами». Электроны по схеме движутся равномерным потоком, а молекулы E. coli теснятся, толкаются и блуждают где попало. Когда какой-нибудь ген активируется, это не значит, что соответствующий белок теперь будет производиться равномерно во все возрастающих количествах. Ферменты не всегда вовремя появляются там, где они нужны. Отдельная E. coli иногда вдруг резко увеличивает производство тех или иных белков. Если у нее включается lac-оперон, он может за первый же час выдать шесть молекул фермента бета-галактозидазы, а может и ни одного.

Именно благодаря неравномерности синтеза белков колония генетически идентичных E. coli становится группой индивидуальностей. Майкл Еловиц, ученый из Калифорнийского технологического института, сумел продемонстрировать это при помощи остроумного эксперимента. Вместе с коллегами он добавил к lac-оперону дополнительный ген, отвечающий за производство светящегося белка. Когда экспериментаторы заставляли бактерию включить этот оперон, она начинала производить такой белок. Вот только бактерия при этом не светилась – она мерцала. Каждый раз, когда синтез флуоресцентных белков ускорялся, происходила вспышка света. Одни вспышки были сильными и продолжительными, другие – совсем слабыми. А когда Еловиц сфотографировал всю колонию разом, то оказалось, что бактерии светятся не одновременно. На любом снимке присутствовали и темные, и ярко светящиеся бактерии.

Подобная неравномерность может привести к индивидуальным различиям между генетически идентичными бактериями. Оказывается, именно благодаря им некоторые особи E. coli с готовностью расщепляют лактозу, а другие не способны этого делать. Если бы мы могли заглянуть внутрь бактерии, которая не может расщеплять лактозу, то обнаружили бы репрессор, плотно обхвативший lac-оперон. Когда лактозе удается пройти сквозь мембрану бактерии, она изменяет форму молекулы репрессора, и тот отсоединяется от оператора. Как только lac-оперон высвобождается, РНК-полимеразы E. coli очень быстро приступают к работе. Они производят РНК-копию генов оперона, а рибосома синтезирует на ее матрице белки, в том числе и бета-галактозидазу.

При этом следует учитывать, что каждая E. coli, как правило, имеет лишь несколько молекул репрессора. Любой из них требуется всего несколько минут, чтобы найти lac-оперон и прекратить производство бета-галактозидазы. За короткие мгновения свободы оперон синтезирует лишь крохотное количество этого фермента, да и те немногие молекулы, которые все же успевают появиться, вскоре разрушаются специальными белками. Добавление небольшого количества лактозы не меняет положения вещей. Внутрь микроорганизма попадает слишком мало лактозы, чтобы надолго удержать репрессоры от подавления lac-оперона. Бактерия, как и прежде, не расщепляет лактозу.

Однако, если содержание лактозы в растворе продолжает повышаться, поведение E. coli внезапно изменяется и она начинает проявлять к ней активный интерес. Существует пороговая концентрация, за которой этот микроорганизм приступает к производству больших количеств бета-галактозидазы. Секрет такого превращения таится в одном из генов lac-оперона. Одновременно с бета-галактозидазой E. coli синтезирует еще один белок – пермеазу; этот белок встраивается в мембрану микроорганизма и переносит внутрь клетки молекулы лактозы. Когда lac-оперон бактерии, не желающей расщеплять лактозу, ненадолго включается, он производит и некоторое количество молекул пермеазы, которые начинают транспортировать лактозу внутрь микроорганизма. Дополнительные молекулы лактозы связывают большее количество молекул репрессора; lac-оперон включается и работает более длительное время, пока репрессор вновь его не заблокирует. Он произведет больше белков – и бета-галактозидазы для расщепления лактозы, и пермеазы для переноса лактозы внутрь. Возникает положительная обратная связь: чем больше становится пермеазы, тем больше внутрь клетки транспортируется лактозы, которая увеличивает количество пермеазы, которая, в свою очередь, транспортирует больше лактозы. Эта обратная связь переводит E. coli в новое состояние, в котором она производит бета-галактозидазу и расщепляет лактозу со всей доступной ей скоростью[12]12
  Включение этих процессов на полную мощность возможно только при условии отсутствия глюкозы. – Прим. ред.


[Закрыть]
.

Теперь E. coli трудно будет заставить вернуться к прежнему существованию. Если концентрация лактозы снизится, пермеазная система тем не менее будет активно переносить ее внутрь бактериальной клетки. E. coli сможет обеспечить себя достаточным количеством лактозы, чтобы удерживать репрессоры от блокирования оперона, так что производство бета-галактозидазы и пермеазы будет продолжаться. И только когда концентрация лактозы упадет ниже критического уровня, репрессоры вновь возьмут верх. Они заблокируют лактозный оперон, и синтез выключится.

Такой переключатель, работающий с задержкой по времени, поможет нам разобраться в странных результатах экспериментов Новика и Уэйнера. Разная реакция на лактозу у двух генетически одинаковых E. coli может объясняться разной историей этих бактерий. Не расщепляющая лактозу бактерия сопротивляется включению, тогда как вошедшая во вкус сопротивляется выключению. И оба типа бактерий способны передавать свое состояние последующим поколениям. При этом передачи разных генов не происходит. Просто одни бактерии передают потомкам много встроенных в мембрану молекул пермеазы и много плавающих внутри клетки молекул лактозы. Другие не передают ни того, ни другого.

А если к подобному переключателю добавить неравномерное производство белков, то это и будет рецепт индивидуальности E. coli. Когда колония E. coli получает немного лактозы, то у некоторых бактерий сразу же возникает гигантский всплеск производства белков, кодируемых генами лактозного оперона. Бактерии преодолевают порог, начинают расщеплять лактозу и остаются в таком состоянии, даже если ее концентрация падает. Другие E. coli в ответ на появление лактозы не производят никаких белков и по-прежнему не могут утилизировать лактозу. Так генетически идентичные клоны обретают индивидуальность в результате случайных событий.

В создании индивидуальности E. coli участвует также дополнительный механизм передачи наследственной информации. К части бактериальной ДНК присоединяются так называемые метильные группы[13]13
  Метильная группа – соединение одного атома углерода с тремя атомами водорода (CH3). – Прим. ред.


[Закрыть]
. ДНК как бы покрывается этими молекулами, состоящими из атомов водорода и углерода, – метилируется[14]14
  Метилирование ДНК – присоединение метильной группы к цитозину – модификация молекулы ДНК без изменения нуклеотидной последовательности. – Прим. ред.


[Закрыть]
. Метильные группы изменяют реакцию генов E. coli на внешние сигналы. Они способны заблокировать тот или иной ген, не повредив его, на все время жизни бактерии. При делении E. coli передает схему расположения метильных групп своим потомкам. Известно, однако, что при определенных условиях микроорганизм способен очистить свою ДНК от метильных групп и заменить их новыми в других местах; почему так происходит, ученые пока не знают.

Некоторые факторы, оказывающие влияние на E. coli, влияют и на человека. Наша ДНК тоже содержит метильные группы, и на протяжении жизни их расположение может меняться. Изменения могут быть чисто случайными, а могут определяться действием питательных веществ или токсинов. Так, даже если гены у однояйцевых близнецов изготовлены под копирку, то расположение метильных групп у них различается уже к моменту рождения и с годами разница лишь усиливается. Изменение схемы расположения метильных групп на хромосомах может сделать человека предрасположенным к раку и другим заболеваниям в большей или меньшей степени. Возможно, именно этим объясняется тот факт, что продолжительность жизни однояйцевых близнецов нередко сильно различается. Эти близнецы вовсе не одинаковы.

Кстати говоря, различное расположение метильных групп является одной из причин того, что клоны людей и животных не могут быть идеальными копиями оригинала. В 2002 г. техасские ученые сообщили о получении из генов трехцветной кошки по кличке Рейнбоу первого клонированного котенка-самочки, которую они назвали Сиси (точнее, Cc – условное обозначение поля «Копия» в электронной почте, где указываются дополнительные адреса). Однако Сиси оказалась совершенно не похожа на Рейнбоу. Если Рейнбоу отличалась белым окрасом с коричневыми, бежевыми и рыжими пятнами, то Сиси была белой в серую полоску. Рейнбоу робка, Сиси общительна. Рейнбоу склонна к полноте, Сиси худа и активна. Возможно, что эти различия объясняются иной схемой метилирования. И всплески производства тех или иных белков у них происходят по-разному. Сами молекулы, из которых они состоят, делают их не похожими друг на друга.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации