Электронная библиотека » Карло Ровелли » » онлайн чтение - страница 1


  • Текст добавлен: 25 января 2018, 19:00


Автор книги: Карло Ровелли


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 4 страниц) [доступный отрывок для чтения: 1 страниц]

Шрифт:
- 100% +

Карло Ровелли
Семь этюдов по физике

Carlo Rovelli

Sette brevi lezioni di fisica

ADELPHI EDIZIONI


© 2014 Adelphi Edizioni S. P. A. Milano

© А. Якименко, перевод на русский язык 2017

© ООО «Издательство АСТ», 2017

Издательство CORPUS

К читателям «Библиотеки Сбербанка»

Дорогие читатели!


Перед вами книга итальянского физика-теоретика Карло Ровелли, одного из основоположников теории петлевой квантовой гравитации. Эта теория нацелена на «связывание» квантовой физики с общей теорией относительности (опирающихся на разные наборы принципов), что в случае успеха позволит ученым построить «теорию всего», закрыв большую часть белых пятен в современной физике.

В «Семи этюдах по физике» изложены основные концепции теории относительности, квантовой механики, физики элементарных частиц, космологии, каждую из которых в научной среде принято рассматривать независимо друг от друга. Тем не менее в данной книге Карло Ровелли демонстрирует, что все: от удивительного и живущего по своим непонятным законам квантового мира до Вселенной с ее невообразимыми масштабами – может иметь одну и ту же природу и может жить по одним и тем же законам. Более того, автор показывает, что эти теории в большей степени не противоречат друг другу, а являются общим взглядом на наш мир под разными углами, что и составляет целостную картину бытия.

Разработка и описание подобных теорий требуют колоссальных знаний не только по физике, но и по многим разделам других наук, необходимых для построения соответствующих моделей, что делает работу и ориентирование в этой области уделом очень ограниченного круга лиц. Однако отличительной чертой автора является способность говорить о сложных вещах на простом и понятном языке, поэтому данная книга будет полезна всем читателям без исключения, независимо от уровня их образования и научной подготовки.

Ввиду своего объема и научно-популярной ориентированности книга «Семь этюдов по физике» не сможет ответить на все вопросы, возникающие во время ее прочтения. Однако она позволит взглянуть на наш мир с другой, непривычной точки зрения, открывая перед читателем невообразимую красоту и необъятность окружающей нас природы.

Руслан Юнусов,
генеральный директор
Российского квантового центра

Предисловие

Эти короткие этюды написаны для тех, кто почти или совсем ничего не знает о современной науке. Вместе они дают общее представление о самых потрясающих открытиях великой революции, произошедшей в физике в XX веке, и о вопросах и загадках, вскрытых этой революцией. Ведь наука показывает нам, как лучше понять мир, но еще и обнажает всю глубину того, что до сих пор не познано.

Первый этюд посвящен общей теории относительности Альберта Эйнштейна, «самой красивой из существующих физических теорий». Второй – квантовой механике, скрывающей наиболее трудные проблемы современной физики. Третий посвящен космосу: архитектуре Вселенной, которую мы населяем; четвертый – ее элементарным частицам. В пятом этюде речь идет о квантовой гравитации: о попытках свести в единую теорию главнейшие открытия XX столетия. Шестой этюд – о вероятности и о теплоте черных дыр. Последняя глава книги возвращает нас к самим себе, поднимая вопрос, как можно размышлять о нашем существовании в том странном мире, какой описывает физика.

Эти этюды – расширенная версия серии статей, опубликованных автором в воскресном приложении итальянской газеты Il Sole 24 Ore. Я хочу в особенности поблагодарить Армандо Массаренти за то, что он открыл для науки страницы воскресной газеты, посвященные культуре, тем самым позволив осветить значение этой ее неотъемлемой и жизненно важной части.

Этюд первый
Самая красивая из теорий

В юности Альберт Эйнштейн прожил больше полугода довольно бесцельно. Нельзя добиться успеха, не «теряя» времени, – к сожалению, родители подростков часто склонны об этом забывать. Он был в Павии, где воссоединился со своей семьей после того, как бросил обучение в Германии, не вытерпев строгостей тамошней гимназии. Это был конец XIX века, а в Италии – начало промышленной революции. Его отец, инженер, поставлял электроприборы для первых электростанций на Паданской равнине. Альберт читал Канта и посещал отдельные лекции в местном университете – для собственного удовольствия, без зачисления и необходимости думать об экзаменах. Вот так становятся серьезными учеными.

Затем Эйнштейн поступил в политехнический институт в Цюрихе и погрузился в изучение физики. Несколько лет спустя, в 1905 году, он послал три статьи в самый престижный научный журнал того времени – Annalen der Physik. Каждая из них заслуживает Нобелевской премии. Первая показывает, что атомы на самом деле существуют. Вторая закладывает фундамент для квантовой механики, речь о которой пойдет в следующей главе. Третья представляет его первую теорию относительности (сегодня известную как «специальная теория относительности»), теорию, объясняющую, что время течет не одинаково для всех: два идентичных близнеца обнаруживают, что перестали быть одного возраста, если один из них перемещался с большой скоростью.

Эйнштейн в одночасье стал знаменитым ученым и получил предложения о работе из множества университетов. Но кое-что не давало ему покоя: несмотря на мгновенное признание, его теория относительности не увязывалась с тем, что мы знаем о тяготении, то есть с тем, как падают предметы. Он начал осознавать это, когда писал статью, обобщающую его теорию, и задумался, не нуждается ли закон «всемирного тяготения», как его сформулировал сам отец физики, Исаак Ньютон, в пересмотре, чтобы сделать его совместимым с новой концепцией относительности. Эйнштейн с головой ушел в проблему. На ее решение у него уйдет десять лет. Десять лет лихорадочных исследований, попыток, заблуждений, замешательства, ошибочных статей, блестящих идей, неверно понятых мыслей.

В конце концов в ноябре 1915 года он опубликовал статью, в которой давалось полное решение: новая теория тяготения, названная им общей теорией относительности, его шедевр и «самая красивая из существующих физических теорий», по мнению выдающегося русского физика Льва Ландау.

Есть непререкаемые шедевры, которые глубоко нас трогают: «Реквием» Моцарта, «Одиссея», Сикстинская капелла, «Король Лир». Для того чтобы в полной мере оценить их гениальность, порой требуется длительное обучение, но наградой станет истинная красота, и не только: нашим глазам откроется новое видение мира. Жемчужина Эйнштейна, общая теория относительности, – шедевр такого порядка.

Помню волнение, охватившее меня, когда я начал ее понимать. Стояло лето. Я был на пляже в Кондофури в Калабрии, в солнечном сиянии античного Средиземноморья, на последнем году моего обучения в университете. Заниматься лучше всего получается в каникулы, не отвлекаясь на учебный процесс. Я занимался по книге, погрызенной по краям мышами, поскольку раньше ночами я закрывал ею норы этих несчастных созданий в довольно обветшалом, хипповском доме на умбрийском склоне, где укрывался от скуки университетских занятий в Болонье. Я то и дело отрывал взгляд от книги и глядел на сверкающее море: мне казалось, будто я действительно вижу искривление пространства-времени, угаданное Эйнштейном. Как по волшебству: словно друг нашептывал мне на ухо небывалую сокровенную правду, внезапно приподнимая полог реальности, чтобы раскрыть более простой, более глубокий порядок. С тех самых пор, как мы обнаружили, что Земля круглая и вращается, как сумасшедшая юла, мы поняли, что реальность не такая, какой нам кажется: всякий раз, познавая новую ее грань, мы переживаем глубокий эмоциональный опыт. Очередная завеса упала.

Однако среди многочисленных научных прорывов, следовавших один за другим на протяжении всей истории, прорыв Эйнштейна, пожалуй, не имеет себе равных. Почему?

Да хотя бы потому, что, чуть только понимаешь, как теория работает, она поражает своей простотой. Опишу ее суть.

Ньютон попытался объяснить причину, по которой предметы падают, а планеты вращаются. Он вообразил, что существует сила, притягивающая все материальные тела друг к другу, и назвал ее силой тяготения. Как эта сила проявлялась по отношению к удаленным друг от друга объектам, между которыми не было ничего, оставалось неясно – и великий отец современной науки опасался выдвигать предположения. Ньютон также считал, что тела перемещаются по пространству и что пространство – вместительный пустой контейнер, большая коробка, содержащая в себе Вселенную, необъятная структура, по которой все объекты движутся прямо, пока сила не вынудит их траектории искривиться. Из чего сделано это пространство, этот контейнер для мира, изобретенный Ньютоном, он сказать не мог. Однако за несколько лет до рождения Эйнштейна два выдающихся английских физика, Майкл Фарадей и Джеймс Максвелл, добавили в ньютоновский бесстрастный мир ключевой ингредиент: электромагнитное поле. Это поле – реальная сущность: распределенное повсюду, оно переносит радиоволны, наполняет пространство, колеблется, как поверхность озера, и «передает» электрическую силу. Еще с юности Эйнштейн был зачарован этим электромагнитным полем, вращающим роторы на электростанциях, построенных благодаря его отцу, и вскоре начал понимать, что гравитация, как и электричество, должна также переноситься полем: должно существовать «гравитационное поле», аналогичное электрическому. Он задался целью понять, как это гравитационное поле работает и как его можно описать уравнениями.

И тогда необычайная мысль посетила его, абсолютно гениальная идея: гравитационное поле не распределено по пространству, гравитационное поле и есть само это пространство. Вот в чем смысл общей теории относительности. Ньютоновское «пространство», в котором движутся предметы, и «гравитационное поле» – совершенно одно и то же.

Это был миг прозрения. Серьезное упрощение мира: пространство больше не было чем-то отличным от вещества, оно стало одной из «материальных» составляющих мира. Колеблющейся, изгибающейся, искривляющейся, закручивающейся. Мы не содержимся внутри невидимой жесткой структуры: мы погружены в гигантскую гибкую раковину улитки. Солнце искривляет пространство вокруг себя, и Земля вращается вокруг него не под действием загадочной силы, а потому, что несется по прямой в пространстве, которое изгибается, – как шарик, скатывающийся в воронку. Нет никаких таинственных сил, порождаемых в центре воронки; ее изогнутые стенки – вот что заставляет шарик скатываться. Планеты вращаются вокруг Солнца, а предметы падают, потому что пространство искривляется.

Как описать это искривление пространства? Самый выдающийся математик XIX столетия Карл Фридрих Гаусс – его называют королем математиков – вывел формулу для описания двумерных искривленных поверхностей, таких как поверхности холмов. Затем он попросил своего одаренного студента обобщить теорию, чтобы охватить пространства трех или более измерений. Упомянутый студент, Бернхард Риман, написал впечатляющую докторскую диссертацию на эту тему, которая кажется совершенно бесполезной. Вывод его работы состоял в том, что свойства искривленного пространства отражает определенное математическое понятие, которое мы знаем сегодня как риманову кривизну и обозначаем буквой R. Эйнштейн написал уравнение, гласящее, что R эквивалентна энергии материи. Иными словами, пространство искривляется там, где есть материя. Вот и все. Уравнение умещается на половине строчки, полностью. Предвидение – что пространство искривляется – стало уравнением.

Однако в этом уравнении – целая вселенная. И невероятное богатство теории раскрывается в фантасмагорической цепи предсказаний, которые напоминают исступленный бред безумца, но все до единого подтвердились.

Прежде всего, уравнение описывает, как пространство изгибается около звезды. Из-за этого искривления не только планеты действительно обращаются вокруг звезды, но свет перестает распространяться по прямой линии и отклоняется от нее. Эйнштейн предсказал, что Солнце вынуждает свет отклоняться от прямой. В 1919 году это отклонение было измерено – предсказание оправдалось. Но не только пространство искривляется, время тоже. Эйнштейн предсказал, что время бежит быстрее высоко наверху, чем внизу, ближе к Земле. Это было измерено и оказалось верным. Если человек, живший на уровне моря, встретится со своим близнецом, жившим в горах, он обнаружит, что родственник чуть старше его. И это лишь начало.

Когда большая звезда сжигает все свое сгораемое вещество (водород), она умирает. Остатки звезды больше не поддерживаются теплом сгорания и сжимаются под собственным весом в точку, где искривляют пространство настолько, что оно схлопывается в настоящую дыру. Это знаменитые черные дыры. Когда я учился в университете, их считали предсказаниями заумной теории, вызывающими мало доверия. Сегодня астрономы наблюдают их в небе сотнями и очень детально изучают.

Но и это еще не все. Пространство целиком способно расширяться и сжиматься. Более того, уравнение Эйнштейна показывает, что пространство не может не изменяться, оно должно расширяться. В 1930 году расширение Вселенной действительно зарегистрировали. То же уравнение предсказывает, что расширение должно было запуститься взрывом молодой, чрезвычайно маленькой и необычайно горячей Вселенной – тем, что сейчас мы называем Большим взрывом. Опять же никто поначалу в это не верил, но подтверждения все накапливались, пока в небе не было непосредственно зарегистрировано космическое фоновое излучение – рассеянное свечение, оставшееся от тепла, выделившегося при исходном взрыве. Предсказание, порожденное уравнением Эйнштейна, оказалось верным. А дальше теория утверждает, что пространство колышется, как поверхность моря. Эффекты от этих «гравитационных волн» наблюдаются в небе на двойных звездах и соответствуют предсказаниям теории с поразительной точностью – до одной стомиллиардной. И так далее.

Если вкратце, теория описывает многоцветный и потрясающий мир, где вселенные взрываются, пространство схлопывается в бездонные дыры, время замедляется вблизи планет и по безграничному межзвездному пространству бежит рябь, словно по поверхности моря… И все это, постепенно вырисовывавшееся из моей погрызенной мышами книги, не было сказкой, выдуманной сумасшедшим в припадке безумия, или галлюцинацией, вызванной жгучим средиземноморским солнцем и ослепительным морем Калабрии. Это было реальностью.

Или, лучше сказать, проблеском реальности, чуть приоткрывшейся по сравнению с нашим замутненным и банальным повседневным взглядом на нее. Реальности, кажущейся сотканной из той же материи, что и наши сны, но тем не менее более подлинной, чем наши неопределенные ежедневные грезы.

Все это результат изначального прозрения: пространство и гравитационное поле суть одно и то же. И простого уравнения, которое я не могу не привести здесь, даже несмотря на то, что вы почти наверняка не сумеете в нем разобраться. Возможно, кто-то из читателей все-таки сможет оценить его дивную простоту:

Rab – 1/2 R gab = Tab

Вот и все.

Вам, конечно, придется изучить и усвоить риманову геометрию, чтобы овладеть техникой для прочтения и использования этого уравнения. Это требует некоторой решимости и усердия. Но меньших, чем необходимо для того, чтобы оценить изысканную красоту позднего струнного квартета Бетховена. Награда в обоих случаях – истинная красота и новый взгляд на мир.

Этюд второй
Кванты

Два столпа физики XX века – общая теория относительности, о которой я говорил в первой главе, и квантовая механика, с которой мы имеем дело здесь, – не могли бы отличаться друг от друга сильнее. Обе теории учат нас, что тонкая структура природы искуснее, чем кажется. Однако общая теория относительности – плотная жемчужина: это простое и согласованное видение гравитации, пространства и времени, постигнутое единственным умом – Альберта Эйнштейна. Квантовая же механика, или квантовая теория, добилась несравненного экспериментального успеха и привела к созданию практических приложений, преобразивших нашу повседневную жизнь (вспомним хотя бы компьютер, на котором я печатаю), – и все равно спустя более ста лет после своего рождения она остается окутанной тайной, непостижимой.

Обычно говорят, что квантовая механика родилась точно в 1900 году, фактически ознаменовав наступление века напряженной мысли. Немецкий физик Макс Планк вычислил электрическое поле в горячем ящике в состоянии теплового равновесия. Для этого он прибегнул к трюку: представил, будто энергия поля распределена по «квантам», то есть сосредоточена в пакетах, порциях. Это ухищрение привело к результату, который прекрасно воспроизвел измерения (а значит, обязательно в какой-то степени был правильным), но расходился со всем, что тогда было известно. Считалось, что энергия изменяется непрерывно, и не было причин обращаться с ней так, словно она сложена из небольших кирпичиков. Вообразить энергию составленной из ограниченных пакетов было для Планка своеобразной вычислительной уловкой, и он сам не понял до конца причину ее эффективности. И снова Эйнштейн пять лет спустя осознал, что «пакеты энергии» реальны.

Эйнштейн показал, что свет состоит из порций – частиц света. Сегодня мы называем их фотонами. Он написал во вступлении к своей статье:

Я и в самом деле думаю, что опыты, касающиеся «излучения черного тела», фотолюминесценции, возникновения катодных лучей при освещении ультрафиолетовыми лучами и других групп явлений, связанных с возникновением и превращением света, лучше объясняются предположением, что энергия света распределяется по пространству дискретно. Согласно этому сделанному здесь предположению, энергия пучка света, вышедшего из некоторой точки, не распределяется непрерывно во все возрастающем объеме, а складывается из конечного числа локализованных в пространстве неделимых квантов энергии, поглощаемых или возникающих только целиком.[1]1
  Перевод А. Сазыкина, Ю. Данилова и А. Чичерина.


[Закрыть]

Эти простые и ясные строки – настоящее свидетельство о рождении квантовой теории. Обратите внимание на прекрасное начало «Я… думаю…», отсылающее нас к тем же словам, которыми Дарвин предваряет в своих дневниках великую идею о том, что виды эволюционируют, и к «неуверенности», как написал Фарадей, когда впервые выдвигал революционную идею магнитных полей. Гении сомневаются.

К работе Эйнштейна коллеги поначалу отнеслись как к неуклюжей пробе пера исключительно одаренного юноши. Именно за эту работу он впоследствии получил Нобелевскую премию. Если Планк – отец теории, то Эйнштейн – родитель, воспитавший ее.

Однако, как любое дитя, теория затем пошла своим собственным путем, не распознанным самим Эйнштейном. Только датчанин Нильс Бор во втором и третьем десятилетиях XX века положил начало ее развитию. Именно Бор понял, что энергия электронов в атомах может принимать лишь определенные значения, как энергия света, и, самое главное, что электроны способны только «перескакивать» между одной атомной орбитой и другой с фиксированными энергиями, испуская или поглощая фотон при скачке. Это знаменитые «квантовые скачки». И именно в институте Бора в Копенгагене самые блестящие молодые умы века собрались вместе, чтобы изучить эти загадочные особенности поведения в мире атомов, попытаться привнести в них порядок и построить непротиворечивую теорию. В 1925 году уравнения теории наконец появились, заменив собой всю механику Ньютона.

Трудно представить себе более выдающееся достижение. Все сразу обретает смысл, и вы можете все вычислить. Один простой пример: помните периодическую таблицу элементов, составленную Менделеевым, в которой перечислены все возможные простые вещества, входящие в состав Вселенной, от водорода до урана, и которая висит на стенах многих школьных классов? Почему в ней перечислены именно эти элементы и почему периодическая таблица имеет конкретно такую структуру, с этими периодами и элементами, обладающими именно этими специфическими свойствами? Ответ в том, что каждый элемент соответствует одному решению главного уравнения квантовой механики. Вся химия возникает из единственного уравнения.

Первым, кто написал уравнения новой теории, основываясь на невообразимых идеях, был молодой немецкий гений – Вернер Гейзенберг.

Гейзенберг предположил, что электроны существуют не всегда. А только тогда, когда кто-то или что-то наблюдает за ними – или, лучше сказать, когда они взаимодействуют с чем-то еще. Они материализуются на месте, с вычислимой вероятностью, когда с чем-либо сталкиваются. Квантовые скачки с одной орбиты на другую – единственный способ быть «реальными» в их распоряжении: электрон есть набор скачков от одного взаимодействия до другого. Когда ничто его не тревожит, он не находится ни в каком конкретном месте. Он вообще не в «месте».

Словно Бог не изобразил реальность четко прочерченной линией, а лишь наметил ее еле видным пунктиром.

В квантовой механике ни один объект не имеет определенного положения, за исключением случаев, когда он сталкивается лоб в лоб с чем-то еще. Чтобы описать его посередине между одним взаимодействием и другим, мы используем отвлеченную математическую формулу, которая не существует в реальном пространстве, только в абстрактном математическом. Но есть кое-что и похуже: эти основанные на взаимодействии скачки, которыми каждый объект перемещается из одного места в другое, происходят не предсказуемым образом, а по большому счету случайным. Невозможно предсказать, где электрон появится вновь, можно лишь вычислить вероятность, с которой он возникнет здесь или там. Вопрос вероятности ведет в самое сердце физики, где все, как прежде казалось, регулируется строгими законами, универсальными и неотвратимыми.

Считаете это нелепостью? Так думал и Эйнштейн. С одной стороны, он выдвинул кандидатуру Гейзенберга на соискание Нобелевской премии, признавая, что тот понял о мире нечто принципиально важное, тогда как с другой – не упускал ни единого случая, чтобы поворчать о том, что в утверждениях Гейзенберга не слишком-то много смысла.

Молодые львы копенгагенской группы были растеряны: как это возможно, чтобы Эйнштейн так думал? Их духовный отец, человек, который первым явил отвагу мыслить непомыслимое, теперь отступил и боялся этого нового прыжка в неизвестное, прыжка, им же самим и вызванного. Тот же Эйнштейн, показавший, что время не универсально и пространство искривлено, теперь говорил, что мир не может быть настолько странным.

Бор терпеливо объяснял новые идеи Эйнштейну. Эйнштейн выдвигал возражения. Он придумывал мысленные эксперименты, чтобы показать противоречивость новых идей. «Представьте себе ящик, наполненный светом, из которого вылетает один фотон…»[2]2
  Это не цитата.


[Закрыть]
– так начинается один из его знаменитых примеров, мысленный эксперимент над ящиком со светом. В конце концов Бор всегда умудрялся найти ответ, который опровергал возражения Эйнштейна. Их диалог продолжался годами – в виде лекций, писем, статей… В ходе этого обмена мыслями обоим великим ученым приходилось отступать, менять свой подход. Эйнштейн вынужден был согласиться, что никакого противоречия в новых идеях на самом деле нет, а Бор – признать, что все не так просто и прозрачно, как он полагал изначально. Эйнштейн не хотел уступать в том, что для него было ключевым моментом: что есть объективная реальность, не зависящая от того, кто и с чем взаимодействует. Бор не отступился бы от кардинально нового способа, каким квантовая теория осмысляла действительность. В конце концов Эйнштейн признал, что эта теория – гигантский шаг вперед в нашем понимании мира, но остался убежден, что все не может быть настолько странным, как предполагается ею, – что «за» этой теорией должно быть следующее, более разумное объяснение.

Век спустя мы все на том же месте. Уравнения квантовой механики и их следствия применяются ежедневно в самых разных областях – физиками, инженерами, химиками и биологами. Они играют чрезвычайно важную роль во всех современных технологиях. Без квантовой механики не было бы никаких транзисторов. И все же эти уравнения остаются загадочными. Поскольку описывают не то, что происходит с физической системой, а только как физическая система влияет на другую физическую систему.

Что это означает? Что принципиальная сущность системы не поддается описанию вообще? Значит ли это, что нам не хватает лишь кусочка мозаики? Или это значит, как кажется мне, что мы должны смириться: реальность – лишь взаимодействие? Наше знание растет, работая на практике. Оно позволяет нам создавать новое, чего прежде мы даже не могли себе представить. Но это приращение вскрыло и новые вопросы. Новые загадки. Те, кто использует уравнения теории в лабораториях, спокойно продолжают это делать, но в статьях и на конференциях, все более многочисленных в последние годы, физики и философы продолжают поиск. Что такое квантовая теория спустя столетие после своего рождения? Небывалое погружение вглубь природы реальности? Большой просчет, который по случайности работает? Фрагмент неполной мозаики? Или ключ к некоему абсолюту, касающемуся структуры мира, которую мы все еще по-настоящему и не познали?

Когда Эйнштейн умер, его главный соперник Бор нашел для него слова трогательного восхищения. Когда через несколько лет умер и Бор, кто-то сделал фотографию доски в его кабинете. На ней рисунок. Ящик со светом из мысленного эксперимента Эйнштейна. До самого конца – стремление спорить с самим собой, чтобы понять больше. И до последнего – сомнение.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> 1
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации