Электронная библиотека » Коллектив авторов » » онлайн чтение - страница 1


  • Текст добавлен: 13 мая 2016, 20:00


Автор книги: Коллектив авторов


Жанр: Управление и подбор персонала, Бизнес-Книги


сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Автоматизация адаптивного управления производством на промышленном предприятии

ВВЕДЕНИЕ

Управление современным производственным предприятием связано с необходимостью решения многих сложных задач организации производственных процессов и подготовки производства, планирования и организации управления производством, управления производственными ресурсами и кадрами. С учетом современных требований по автоматизации всех этапов жизненного цикла изделия, включающего и процесс производства, в управлении современными предприятиями широко используются автоматизированные системы управления и поддержки принятия решений.

Эти системы обычно классифицируют по выполняемым функциям: это системы инженерной подготовки производства и управления жизненным циклом изделия (PDM/PLM), системы управления ресурсами (ERP), системы автоматизированного проектирования, финансового и бухгалтерского учета и другие. В частности, весьма востребованными являются производственные исполнительные (MES) системы, основным назначением которых является автоматизация планирования и управления производством.

Системы планирования и управления производством имеют достаточно уникальное положение, что определяет их высокую важность в едином информационном пространстве предприятия. С одной стороны, они имеют доступ к знаниям о производственных ресурсах, обработка которых ведется в ERP системе. С другой стороны, они обладают актуальными данными о текущем статусе производственного процесса. Именно благодаря такому положению этим системам на многих предприятиях отводится главная роль, а, следовательно, в условиях высокой динамики развития предприятий, к ним предъявляются особые требования.

В частности, для обеспечения эффективной автоматизации управления производством необходимо обеспечить автоматизацию планирования производственных ресурсов в реальном времени. Для этого требуется применение новых алгоритмов, которые позволяют за ограниченное время найти оптимальное решение. При этом в ходе планирования и собственно управления производством могут меняться критерии и ограничения, а каждый из многочисленных объектов и субъектов планирования может иметь индивидуальную логику принятия решений.

Такая картина наиболее точно отражает реальный мир, в котором план производства строится в процессе непрерывного согласования, разрешения конфликтов и поиска компромиссов между лицами, принимающими решения, которые отвечают за разные аспекты деятельности предприятия: технологов, мастеров, экономистов и др.

В связи с тем, что многие из хорошо известных и апробированных автоматизированных систем планирования производства не могут обеспечить соответствие указанным требованиям, крайне актуальной является разработка и реализация новых алгоритмов автоматизированного планирования производства. В данном пособии предлагается использование мультиагентных технологий, хорошо зарекомендовавших себя при решении задач планирования ресурсов в реальном времени и позволяющих обеспечить требуемые новые возможности.

Мультиагентные алгоритмы планирования ресурсов базируются на новом подходе к описанию и моделированию сложных систем. В отличие от классических MES систем, в мультиагентной системе внутрицехового планирования каждое предприятие моделируется как динамическая сеть программных агентов потребностей и возможностей. В такой сети могут быть представлены различные подразделения, конкретные производственные заказы (на готовое изделие или его компоненты, отдельную операцию станка и т.д.) и конкретные ресурсы (например, рабочие, детали или станки).

Главной задачей такой системы является построение и поддержание баланса интересов всех участников производственного процесса. Для такого рода систем становится характерным переход от централизованных решений к распределенным; замена иерархий на сетевую организацию, команд-инструкций «сверху-вниз» – на переговоры равноправных сторон, жестких планов – на гибкие планы, фиксированных цен – на договорные и т.д. В условиях современной экономики эти принципы обеспечивают более высокую гибкость и эффективность управленческих решений.

В ходе процесса переговоров агентов производится построение квазиоптимального, сбалансированного по многим критериям плана производства с учетом индивидуальных ограничений и предпочтений, а также целей предприятия в целом. В случае возникновения непредвиденных событий (поломка станка, опоздание рабочего), агенты могут динамически, в режиме реального времени, перераспределить задания на другие доступные ресурсы, без пересмотра всего плана производства.

Агенты потребностей и возможностей взаимодействуют следующим образом. Заказы и ресурсы могут вступать в непосредственные связи между собой и инициировать процесс взаимного пересмотра и согласования планов по мере возникновения ожидаемых или заранее непредвиденных событий с каждым из этих элементов (новый более выгодный заказ, отзыв уже принятого заказа, новый станок, поломка станка и т.д.). За счет такой динамической сетевой организации разрабатываемая система в любой момент времени может пересматривать связи между этими элементами и согласованно менять их планы. Таким образом, обеспечивается автоматическое гибкое планирование ресурсов предприятия в реальном времени, как в автоматическом режиме, так и в диалоге с человеком.

Такой подход является незаменимым на практике для управления производством сложных изделий в реальном времени, требующим учета множества индивидуальных особенностей производства каждого элемента в условиях заранее непредсказуемых изменений спроса и предложения. Распределенное планирование обладает большей гибкостью в том смысле, что планирование осуществляется не перестройкой всего плана, а локальным изменением только тех частей плана, которые действительно необходимо модифицировать.

Другим важным свойством, являющимся следствием распределенного планирования, является адаптивность. Построение локальных изменений производится не по жесткому централизованному алгоритму, а является результатом совместной работы отдельных агентов, учитывающих свои состояния и действующих по обстоятельствам.

Данное пособие содержит сведения, необходимые для понимания основ построения мультиагентных систем планирования производства в реальном времени и понимания механизма работы мультиагентных алгоритмов и основные особенностей их применения. Пособие содержит теоретический материал и лабораторный практикум, для освоения которого необходимы начальные знания основ управления сложными системами и программирования, а также базовые навыки построения мультиагентных систем управления предприятием.

При проведении лабораторного практикума рекомендуется использовать учебную версию автоматизированной системы адаптивного планирования мелкосерийного производства (краткое название – АС адаптивного планирования производства).

Авторы выражают надежду, что представленный материал станет отправной точкой в интереснейшем пути изучения и дальнейшего применения мультиагентных технологий в задачах автоматизации производственного планирования и управления различными ресурсами в реальном времени. Данное пособие можно рекомендовать как студентам вузов, так и инженерам, занимающимся созданием и внедрением новых технологий планирования и управления производством.

1 МЕТОДЫ И АЛГОРИТМЫ ПОСТРОЕНИЯ ПРОИЗВОДСТВЕННОГО ПЛАНА

1.1 Обзор автоматизированных систем распределения производственных ресурсов современных промышленных предприятий
1.1.1 Общая классификация систем автоматизированного управления

Существует множество критериев, по которым можно классифицировать системы автоматизированного управления [1]. Одним из показателей для разделения систем управления на два класса можно назвать наличие или отсутствие обратной связи:

– разомкнутые (незамкнутые) – процесс работы системы не зависит непосредственно от результата ее воздействия на управляемый объект, т.е. в ней отсутствует обратная связь;

– замкнутые – характерной особенностью этой системы является наличие обратной связи, благодаря которой информация о состоянии управляемого объекта передается в управляющее устройство. Данный тип систем управления является естественным дальнейшим усовершенствованием автоматической системы.

По виду задающего воздействия можно выделить следующие типы:

– системы стабилизации – в данном типе систем задающее воздействие константно, то есть постоянно. Цель данных систем – поддержание постоянства некоторого физического параметра;

– системы программного управления – в случае, если задающее воздействие изменяется по какому–либо заранее известному закону. В качестве примера можно привести повышение температуры при термической обработке изделий;

– следящие системы – задающее воздействие в этом случае заранее неизвестно и определяется внешними факторами (например, в радиолокационной станции слежения за самолетом задающее воздействие определяется движением наблюдаемого самолета).

Другим критерием классификации можно назвать вид сигнала на выходе элементов системы управления. При этом системы управления подразделяются следующим образом:

– непрерывные – системы управления, в которых выходные переменные всех элементов являются непрерывными функциями;

– дискретные – системы управления, в которых хотя бы одна выходная переменная какого-либо элемента принимает дискретные значения по значению и/или по времени.

По зависимости характеристик системы управления от времени различают:

– стационарные – характеристики системы управления не зависят от времени;

– нестационарные – характеристики системы управления зависят от времени.

Наиболее актуальным в настоящее время все более становится деление систем управления в зависимости от использования текущей информации:

– обычные (или неадаптивные) – если текущая информация используется только для выработки управляющего воздействия при неизменном алгоритме управления;

– адаптивные – если текущая информация используется также для изменения алгоритма управления и/или задающего воздействия.

Адаптивные системы можно разделить на следующие типы:

– оптимальные – обеспечивают автоматическое поддержание в объекте управления наилучшего режима;

– самонастраивающиеся – в данных системах управления адаптация достигается изменением параметров;

– самоорганизующиеся – системы управления, в которых адаптация достигается изменением параметров, а также и структуры управляющей системы;

– системы с адаптацией в особых фазовых состояниях – в данных системах специально организуются особые режимы (например, режим автоколебаний), которые служат еще одним источником рабочей информации об изменяющихся характеристиках объекта или придают системе новые свойства, за счет которых динамические характеристики управляемого процесса поддерживаются в допустимых пределах, независимо от изменений условий работы системы;

– самообучающиеся – используют процессы обучения: постепенное накапливание, запоминание и анализ накопленного опыта управления объектом. На основании этого система управления совершенствует свою структуру и способ управления. Такие системы повышают качество управления по мере эксплуатации.

В зависимости от характера внешних и внутренних воздействий различают детерминированные и стохастические системы управления. Стохастической системой управления называется такая система, у которой хотя бы одно воздействие является стохастическим, то есть случайным. Иначе система называется детерминированной.

Кроме перечисленных критериев, можно также указать деление на основе типов уравнений, которыми описываются системы управления, т.е. линейные и нелинейные. Если система управления описывается линейными уравнениями, такая система называет линейной, если описывается нелинейными уравнениями – нелинейной.

Как указывается в различной литературе, в частности, в [1], «При исследовании, расчете и синтезе автоматических систем нужно иметь в виду, что наиболее полно разработаны теория и различные прикладные методы для обыкновенных линейных и линейных дискретных систем. Поэтому в интересах простоты расчета всегда желательно (там, где это допустимо) сводить задачу к такой форме, чтобы максимально использовать методы исследования таких систем. Обычно уравнения динамики всех звеньев системы стараются привести к обыкновенным линейным, и только для некоторых звеньев, где это недопустимо или где специально вводится особое линейное или нелинейное звено, учитываются эти особые их свойства. Тогда при наличии одного такого звена система при расчете разбивается на два блока, в одном из которых объединяется весь комплекс обыкновенных линейных звеньев.

Однако это вовсе не значит, что при проектировании новых автоматических систем нужно стремиться к обыкновенным линейным системам. Наоборот, уже из приведенных выше определений совершенно очевидно, что обыкновенные линейные системы обладают ограниченными возможностями. Введение особых линейных и нелинейных звеньев может придать системе лучшие качества. Особенно богатыми возможностями обладают системы со специально вводимыми нелинейностями и дискретные системы, в том числе с цифровыми вычислительными устройствами, а также адаптивные системы».

1.1.2 Современные системы распределения производственных ресурсов

Сложность управления современным машиностроительным предприятием приводит к необходимости применения новых подходов к организации производства, обеспечивающих высокий уровень качества и конкурентоспособности изделий. Большие возможности для настройки как оборудования, так и технологии производства позволяют выйти на более высокий уровень эффективности работы предприятия, при условии правильной настройки данных параметров. Однако это приводит к сильному усложнению логики выбора режимов и времени принятия решения руководителями предприятия.

Одним из главных методов решения этой проблемы является применение автоматизации, что приводит к повышению эффективности работы предприятия. Можно выделить различные уровни автоматизации предприятия [2]:

– для руководства – ERP-система (Enterprise Resource Planning) – корпоративная информационная система (КИС), предназначенная для автоматизации учёта и управления. Как правило, ERP-системы строятся по модульному принципу и в той или иной степени охватывают все ключевые процессы деятельности компании, в том числе управление сбытом, закупками, финансами, бухгалтерией, кадрами.

для инженера-технолога – автоматизированная система управления технологическим процессом (АСУ ТП) – комплекс программных и технических средств, предназначенный для управления технологическим оборудованием на предприятиях.

для конструкторов – система автоматизации проектных работ (САПР) – организационно-техническая система, предназначенная для выполнения проектной деятельности с применением вычислительной техники, позволяющая создавать конструкторскую и/или технологическую документацию.

В настоящее время все больший интерес вызывает новый класс систем управления производством – MES (Manufacturing Execution System – производственные исполнительные системы) [3, 4, 5].

Международная ассоциация производителей систем управления производством MESA [6] определяет понятие MES-системы следующим образом: «…Система, состоящая из набора программных и аппаратных средств, обеспечивающих функции управления производственной деятельностью – от заказа на изготовление партии продукции и до завершения производства. Используя своевременные и точные данные, MES инициирует, ведет, реагирует на изменяющуюся ситуацию и составляет отчеты о производственных процессах по мере их протекания. Эта система позволяет обмениваться информацией о производственных процессах с другими инженерными и бизнес-подразделениями предприятия и цепочками его поставок через двунаправленные каналы связи».

MESA определила одиннадцать типовых обобщенных функций MES систем:

Контроль состояния и распределение ресурсов (RAS) – Управление ресурсами производства: технологическим оборудованием, материалами, персоналом, документацией, инструментами, методиками работ.

Оперативное/Детальное планирование (ODS) – Расчет производственных планов, основанный на приоритетах, атрибутах, характеристиках и способах, связанных со спецификой изделий и технологией производства.

Диспетчеризация производства (DPU) – Управление потоком изготавливаемых деталей по операциям, заказам, партиям, сериям, посредством рабочих нарядов.

Управление документами (DOC) – Контроль содержания и прохождения документов, сопровождающих изготовление продукции, ведение плановой и отчетной цеховой документации.

Сбор и хранение данных (DCA) – Взаимодействие информационных подсистем в целях получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия.

Управление персоналом (LM) – Обеспечение возможности управления персоналом в ежеминутном режиме.

Управление качеством продукции (QM) – Анализ данных измерений качества продукции в режиме реального времени на основе информации, поступающей с производственного уровня, обеспечение должного контроля качества, выявление критических точек и проблем, требующих особого внимания.

Управление производственными процессами (PM) – Мониторинг производственных процессов, автоматическая корректировка либо диалоговая поддержка решений оператора.

Управление техобслуживанием и ремонтом (MM) – Управление техническим обслуживанием, плановым и оперативным ремонтом оборудования и инструментов для обеспечения их эксплуатационной готовности.

Отслеживание истории продукта (PTG) – Визуализация информации о месте и времени выполнения работ по каждому изделию. Информация может включать отчеты: об исполнителях, технологических маршрутах, комплектующих, материалах, партионных и серийных номерах, произведенных переделках, текущих условиях производства и т.п.

Анализ производительности (PA) – Предоставление подробных отчетов о реальных результатах производственных операций, сравнение плановых и фактических показателей.

Так как автоматизацию предприятия необходимо производить в различных областях, то целесообразно автоматизировать в первую очередь ту часть, которая приносит основной доход предприятию.

В работе [7] делаются следующие выводы:

Прибавочная стоимость продукции создается в производственных зонах (цехах, участках), поэтому инвестиции в повышение эффективности производственных процессов дают реальную отдачу.

Достоверная и своевременная информация, необходимая для принятия правильных решений, находится в производственных зонах.

Оптимизация управления технологическими процессами способна реально изменить финансовые показатели предприятия.

Прибыльность и эффективность предприятия зависит от людей в производственных зонах, возможности которых многократно усиливаются с помощью MES системы.

При обнаружении критических и нештатных ситуаций в производственных зонах MES системы быстро анализируют информацию и оперативно предлагают корректирующие решения.

Именно производственные зоны определяют конкурентоспособность предприятия, возможность его быстрой переналадки на изменение требований со стороны потребителей.

Таким образом, автоматизацию производственных предприятий целесообразно проводить в первую очередь MES системами.

Однако выбор MES системы и ее внедрение часто затруднены из-за необходимости задания множества различных критериев составления и оптимизации производственных планов. Необходимость постоянной доработки системы под конкретное предприятие при ориентации на мелкосерийное производство оказывается довольно сильным аргументом для поиска новых методов управления планом производства в MES системах.

1.1.3 Современное состояние MES-систем

Среди множества MES-систем наиболее популярными являются Фобос [8, 9, 10], Omega Production [11], YSB.Enterprise.Mes [12], PolyPlan [13], Zenith SPPS [14], T-FACTORY 6 [15], Preactor [16] и отчасти Axapta [17]. Рассмотрим их более подробно.

Одним из модулей российской системы ФОБОС оказывающих наибольшее влияние на построение плана производства, является Оперативное планирование и контроль (ОПК). Данный модуль является ядром интегрированной системы ФОБОС. Оперативное планирование и диспетчерский контроль прохождения заказов осуществляется в системе посредством расчета оптимального производственного плана. В основу расчета и управления планом положен математический оптимизационный аппарат, позволяющий моделировать 100 сценариев по 14 критериям. ФОБОС предоставляет следующую функциональность [18]:

– формирование и коррекция оперативных производственных планов цеха с учетом имеющихся межоперационных заделов и текущего состояния станочной системы;

– расчет производственного расписания загрузки оборудования по различным критериям (100 комбинаций из 14 критериев);

– представление результатов расчета расписания в виде таблиц текущего состояния партий запуска, графиков обработки партий деталей и диаграмм загрузки оборудования;

– формирование сменно-суточных заданий на рабочие места цеха;

– формирование оперативных маршрутных карт по всем партиям запуска с контролем их прохождения по рабочим местам;

– составление и автоматическая коррекция планово-учетного графика изготовления комплектов деталей с контролем готовности каждой партии запуска;

– автоматизированный контроль состояния производственного процесса и имитационное моделирование материальных потоков в цехе (на участке);

– расчет времени простоя оборудования и пролеживания деталей;

– формирование рабочих нарядов на выполненные и текущие технологические операции, контроль процесса выдачи нарядов в соответствии с производственным планом;

– печать внутрицеховых документов: сменно-суточные задания на рабочие места, оперативные маршрутные карты, рабочие наряды, планово-учетные графики изготовления изделий и прочее.

Система ФОБОС предназначена для использования на крупных и средних машиностроительных предприятиях. ФОБОС осуществляет внутрицеховое планирование и управление, традиционно принимая и выдавая входные и выходные данные ERP-системе, которая обычно используется в машиностроении на крупных заводах. Как правило, это тяжелые ERP-продукты, такие как BAAN и SAP, взаимодействие с которыми осуществляется посредством интеграции, хотя в настоящее время ведутся работы и по интеграции с «1СПредприятием». В комплексе с этими системами система ФОБОС способна решать большинство задач крупного предприятия [19].

В модуле оперативно-календарного планирования Omega Production используется эвристический алгоритм формирования плана. Управление качеством плана при использовании эвристических алгоритмов производится через манипулирование параметрами алгоритма. Примеры таких параметров – загрузка оборудования, приоритет партий, точность определения производственных ресурсов и т.д. Для каждого параметра выделяется перечень возможных значений. Пример возможных значений для параметра «загрузка оборудования» – равномерная загрузка, максимальный коэффициент загрузки и т.д. [20].

Расчет производственной программы производится под заданные критерии оптимальности с использованием данных о приоритетах заказов или партий изделий [21].

Параметрами, на которые может влиять сотрудник плановодиспетчерской службы, являются сроки запуска/выпуска как заказов и изделий, так и определенных партий; изменение размеров партий (партия может дробиться для более динамичного процесса производства, или, наоборот, несколько партий могут объединяться в одну); изменение режимов работы как конкретного производственного оборудования и персонала, так и производственного подразделения. Одним из способов управления является манипуляция параметрами исходных данных, которые вводятся в систему на основе экспертных данных [20]. В системе не предусмотрена возможность, когда сама система предлагает значительное улучшение за счет изменения исходных параметров.

В документации на данную систему [21] говорится, что «на основании производственной программы производится формирование заданий по рабочим местам с возможностью отслеживания их выполнения. Система позволяет гибко корректировать производственную программу. Существует ручной режим корректировки и автоматический, который основывается на закрытии нарядов сменных заданий». На основе данного утверждения можно сделать предположительный вывод, что при возникновении непредвиденных ситуаций система может перестраивать план производства, а не просто осуществлять мониторинг за состоянием выполнения заказов.

YSB.Enterprise.Mes возникла в деревообрабатывающей промышленности и ввиду особенностей, изложенных ниже, ориентируется на сектор средних и мелких предприятий. Система YSB.Enterprise функционировала на предприятиях среднего размера и постепенно расширила свои функциональные возможности по сравнению с функциональностью типичной MES-системы, включив в свой состав продажи с формированием портфеля заказов, возможности по управлению складским дефицитом (не только производственного происхождения) и даже бухгалтерию с расчетом заработной платы различными способами. Конечно, уровня полноценной ERP-системы функциональность YSB.Enterprise пока не достигла, тем не менее, имеющихся возможностей может быть достаточно для многих российских предприятий. Такая политика позиционирования системы выбрана из-за того, что предприятия среднего класса и ниже, уже переросшие уровень возможностей системы «1СПредприятие», пока обделены полноценной производственной автоматизацией, т.к. цены на западный и российский софт, ориентированный на серьезное производство, не говоря уже об оптимальном его планировании, пока превышают уровень доступности для большинства компаний, вынужденных значительную часть средств инвестировать в свое развитие [19].

Расширенный спектр функций YSB.Enterprise по сравнению с традиционными MES предоставляет возможности учета дополнительных данных при управлении производством. Так, включение склада позволяет организовать определение приоритетов при запуске заказов в производство, к примеру, при недостаточной обеспеченности покупными материалами или отсутствии предоплаты за заказ [19].

Система PolyPlan имеет меньший набор функций MES, но позиционируется как система оперативно-календарного планирования для автоматизированных и гибких производств в машиностроении. Российская MES-система PolyPlan ориентирована на машиностроительные производства, но, кроме традиционного класса обслуживающих устройств типа рабочих центров (РЦ), оперативно-календарное планирование PolyPlan предполагает формирование расписаний для транспортных систем, осуществляющих перевозку партий деталей между РЦ, для складских устройств приема-выдачи партий деталей и для бригад наладчиков. Ввиду отсутствия явного контура оперативной диспетчеризации PolyPlan стоит несколько дешевле указанных выше систем [19].

Система MES PolyPlan легко адаптируется для управления и неавтоматизированным производством. Ориентированная на машиностроение, она может быть также использована и на этапе маркетинга, – программа позволяет на укрупненных данных определить возможность выполнения портфеля заказов по существующим фондам времени технологического оборудования. При оперативном планировании производства возможно получение нескольких допустимых решений расписания. Чем выше глубина поиска, которая задается пользователем, тем больше время счета, но и тем выше точность построения расписания. Точность «однопроходной» оптимизации, часто используемой в таких задачах, отличается от оптимального решения не более чем на 5-7%, но на порядки экономит время счета [19].

В версии 1.8 системы Zenith SPPS реализован полноценный обратный расчет расписания. В случае такого расчета для каждой рассчитываемой позиции оперативного плана делается попытка установить максимально позднее начало выполнения операций, при котором еще возможно завершение работы в срок (стратегия Just-In-Time). В результате появляется возможность позднее закупать необходимые для производства материальные средства. В отличие от имеющейся в версиях 1.5-1.7 функции «Поздний срок запуска», обратный расчет работает точно и поддерживает сборы, но при этом требует гарантированного запаса свободного времени на рабочих местах. Функция уплотнения позволяет корректно убрать из плана неоправданные простои, возникшие вследствие оптимизации расписания по другим критериям. В результате происходит дополнительная оптимизация плана. При перерасчете расписания можно сохранить изменения периодов выполнения операций, сделанные в ходе диспетчирования предыдущего расписания [22].

В T-FACTORY 6 MES предусмотрены средства сетевого и перспективного планирования на неограниченный период времени. Планирование возможно осуществлять также во внешних программах – например в MS Project® [23, 24]. Основное отличие T-FACTORY 6 MES от конкурирующих разработок, отмечаемое самим производителем, заключается в следующем [25]:

T-FACTORY 6 MES – коробочный продукт, который может быть полностью освоен и внедрен силами отдела АСУ предприятия;

T-FACTORY 6 MES основан на технологиях реального времени, разрабатывается в тесной интеграции с системой АСУТП предприятия (как бы «вырастает» из нее).

В целом система представляет достаточно сильные средства для автоматизации производства и смещена в большей степени в направлении ERPсистем.

Система Preactor (Великобритания) формируется на этапе построения логической модели производства. В процессе описания основного технологического оборудования с каждым инвентарным номером связываются какие-либо ограничения, способные оказать влияние на его доступность или характеристики работы. В качестве вторичных ограничений может выступать предел потребления электроэнергии, необходимость присутствия оператора на определенных рабочих местах, наличие специфической оснастки и т. п. В дальнейшем при планировании и коррекции плана система будет отслеживать доступность и объем использования вторичных ограничений. В случае превышения или нехватки ресурсов система, прежде всего, проинформирует об этом диспетчера, а затем предложит принять либо отклонить условия этого варианта плана [26].

Идеальным решением является комплексная автоматизация, предлагаемая, например, ERP-системой Axapta от Microsoft. Но, в существующих экономических условиях далеко не все предприятия могут позволить себе использование таких систем. Поэтому приходится автоматизировать предприятие несколькими продуктами различных производителей. При этом необходимо учитывать, что планы по автоматизации не должны сковывать планы предприятия по развитию: всегда нужно обдумывать решения на шаг вперед [27].


Страницы книги >> 1 2 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации