Текст книги "Астероидно-кометная опасность: вчера, сегодня, завтра"
Автор книги: Коллектив Авторов
Жанр: Физика, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]
Глава 4
Кометы
Кометы действительно сталкиваются с планетами.
Юджин Шумейкер
4.1. Кометы как опасность для Земли
Кометы, как и астероиды, относятся к малым телам Солнечной системы. Размеры ядер известных комет действительно малы: как правило, они не превышают 50 км, хотя нельзя исключить, что размеры ядер могут достигать сотен километров. Так, диаметр очень яркой кометы Хейла – Боппа (С/Hale – Bopp), которая была в 1000 раз ярче, чем комета Галлея (1P/Halley), приблизительно равен 40 км. Здесь и в дальнейшем мы будем употреблять названия комет, написанные кириллицей, а в скобках при первом упоминании кометы приводить ее латинское название. Кроме этого, в скобках латинская буква и косая черта указывают на вид орбиты кометы: С/ – непериодическая комета или комета, имеющая период обращения вокруг Солнца больше 200 лет, P/ – короткопериодическая комета – период меньше или равен 200 лет. Для короткопериодических комет перед обозначением вида орбиты приводится номер по каталогу Марсдена [Marsden and Williams, 2003].
Доказательством существования больших ядер комет могут служить две занумерованные малые планеты, которые обнаруживают признаки кометной активности. По этой причине они входят также в кометные каталоги. Это малые планеты (2060) Хирон и (4015) Вильсон – Харрингтон, они же комета Хирон (95P/Chiron) и комета Вильсона – Харрингтона (107P/Wilson – Harrington). По имеющимся оценкам (Fernandez et al., 2002), диаметр Хирона составляет около 150 км. Кроме того, считается, что объекты, открытые в поясе Эджворта – Койпера, являются кометами. Этот пояс располагается на периферии нашей Солнечной системы за орбитой планеты Нептун. К настоящему времени обнаружено более 1000 объектов в этом поясе, большинство из которых имеет поперечный размер в несколько сотен километров, а у десяти крупнейших диаметр превышает 1000 км.
Выделяют следующие структурные составляющие кометы при ее движении вокруг Солнца: ядро, кому – газопылевую оболочку, окружающую ядро, газовый хвост, направленный в противоположную от Солнца сторону, и пылевой хвост, как правило, отклоняющийся от направления Солнце – кометное ядро. Строение обычной кометы показано на рис. 4.1.
Рис. 4.1. Структурные составляющие кометы
Имеются отличительные особенности, которые выделяют кометы из остального ряда малых тел Солнечной системы.
1. Кометы движутся по сильно вытянутым эллиптическим (близпараболическим) орбитам. В результате этого кометы достаточно часто сближаются и даже сталкиваются с планетами. Ярким примером столкновения кометы с планетой явилось столкновение кометы Шумейкеров – Леви 9 (D/Shoemaker – Levy 9; D означает, что комета разрушилась) с Юпитером в 1994 г. Однако существуют и короткопериодические кометы, периоды движения которых вокруг Солнца не больше 200 лет, и они движутся по эллиптическим орбитам с умеренными эксцентриситетами.
2. В ядрах комет имеется большое количество легкоплавких веществ. Поэтому при приближении кометы к Солнцу такие вещества сублимируют (т. е. испаряются, минуя жидкую фазу), и вокруг ядра образуется оболочка – туманная область, называемая комой. Вместе с молекулами с поверхности кометного ядра в кому выносится большое количество мелкой пыли органической и неорганической природы. Под действием давления солнечных лучей и солнечного ветра пылинки и молекулы газа увлекаются в противоположную от Солнца сторону, образуя хвост.
Эта последняя особенность делает кометы одними из самых ярких и впечатляющих объектов на земном небосводе (рис. 4.2). Средние размеры комы составляют порядка 100 тыс. км. Хвосты комет имеют длину 10 млн км, а у некоторых комет достигают 150 млн км. Однако концентрация частиц в коме и хвосте очень низкая – несколько пылинок на сотни кубических метров. Неслучайно кометы иногда называют «видимым ничто».
3. В результате сублимации вещества возникает реактивное давление на поверхность ядра, которое приводит к изменению поступательного и вращательного движения ядра кометы.
Рис. 4.2. Комета Хиакутаки, апрель 1996 г. Снимок получен на камере ВАУ Звенигородской обсерватории ИНАСАН
4. Ядра комет отличаются нестабильностью. Периодически у части комет наблюдаются вспышки яркости, отделение достаточно значительных фрагментов. У нескольких комет ядра разрушились полностью.
Кометы в течение долгого времени были и все еще остаются источником многих страхов и предрассудков. Появление на небе яркой кометы, ее необычный вид с древнейших времен привлекал внимание людей. Слово «комета» появилось очень давно и является производным от греческого слова «кометис» – волосатая. Большой интерес к кометам всегда проявляли астрологи. По сравнению со сложными астрологическими связями планет, астрология комет относительно проста – это небесный беспорядок. По мнению Уильяма Шекспира, появление кометы предвещает перемены времени и состояний, является предвестницей всяческих неприятностей, особенно для людей с высоким положением. Во времена Древнего Рима на роль жертвы лучше всего подходил император. Поэтому, когда в 60 г. нашей эры на небе появилась яркая комета, не было сомнений, кому она несет несчастье. Историк Тацит писал: «Начали говорить о том, кого избрать в преемники Нерону, как будто его уже свергли».
У Нерона было свое мнение о значении появления этой кометы, он обратил свой гнев против самых именитых своих подданных и родственников. Он убил свою мать, двух своих жен и большую часть своих родственников. Такой же ужас вызывали появления комет в китайском императорском дворе. Император окружил занятия астрономией глубочайшей тайной, чтобы недоброжелатели не смогли нанести вред императору и его двору. Легенда рассказывает о двух астрономах – Хи и Хо, которые отпраздновали возлияниями очередное открытие звезды и пропустили солнечное затмение. За это император приказал отрубить им головы. К XVII в. значение астрологии и страх перед кометами значительно уменьшились. Так, Оксфордский и Кембриджский университеты перестали включать астрологию в свои учебные программы. В начале XIX в. король Англии Георг VI установил закон, согласно которому «каждый, кто берется или обещает предсказывать судьбу, или же использует иные хитрые способы или средства, прибегая к хиромантии и тому подобному, чтобы обманывать и обирать подданных Его Величества, признается Мошенником и Бродягой в смысле, определяемом и караемом этим Законом». Здесь надо отметить, что и в наши дни газеты и журналы непрерывно нарушают этот закон, помещая астрологические материалы. Астрология остается всемирным и очень доходным способом выкачивания денег у доверчивых людей.
Для понимания природы комет понадобились усилия многих поколений ученых. Неожиданные появления комет на небе, их необычный по сравнению с другими светилами вид, ставил в тупик древних философов и ученых. Так, Аристотель считал, что кометы – это сгустившиеся испарения в атмосфере Земли. Первым, кто обнаружил, что кометы располагаются значительно дальше Луны, был Тихо Браге. Искуснейший наблюдатель, он со своими учениками наблюдал движение яркой кометы из двух удаленных друг от друга обсерваторий и определил ее параллакс относительно звезд, что позволило оценить расстояние от кометы до Земли. Однако и после того, как кометы заняли место в Солнечной системе наравне с планетами, их природа и даже их траектории были загадками для ученых. И. Кеплер считал, что движение комет происходит по прямым линиям. Наиболее тщательная разработка теории прямолинейного движения комет была дана в труде польского астронома Яна Гевелия «Cometographia», опубликованном в 1668 г. Только И. Ньютон, наблюдая комету 1680 г., пришел к выводу, что ее истинный путь в Солнечной системе представляет собой параболу. Согласно закону всемирного тяготения, открытому Ньютоном, движение небесных тел вокруг Солнца может происходить по любому коническому сечению, в фокусе которого находится Солнце.
Английский астроном Э. Галлей, современник и друг Ньютона, занялся поисками комет, которые возвращались в прошлом к Солнцу через примерно равные промежутки времени. Обработав наблюдения более 20 комет, Галлей обратил внимание на то, что орбиты комет, наблюдавшихся в 1531, 1607 и 1682 гг., одинаково ориентированы в пространстве, движение комет – обратное, и их появления разделены примерно одинаковыми интервалами времени.
Галлей сделал вывод о том, что это были не три кометы, а одна, движущаяся по очень вытянутой эллиптической орбите и возвращающаяся к Солнцу каждые 75–76 лет, и предсказал ее следующее появление в 1758 г. Комета, которая действительно была переоткрыта в 1758 г., получила название «комета Галлея».
Уже в конце XVII в. высказывались предположения о возможных столкновениях комет с Землей и неизбежном в результате такого столкновения «конце света». В 1770 г. комета Лекселя (D/Lexell) прошла на расстоянии от Земли в 2,25 млн км, что всего в 6 раз больше расстояния от Земли до Луны, подтвердив тем самым реальность угрозы. Большой переполох у жителей Земли вызвало возвращение кометы Галлея в 1910 г. По расчетам астрономов комета должна была сблизиться с Землей на расстояние 22 млн км 20 мая 1910 г. В этот момент комета должна была находиться на прямой линии Земля – Солнце, как бы заслоняя Солнце от земных наблюдателей (рис. 4.3).
Вследствие такого расположения кометы в момент сближения пылинки и молекулы газа, вылетающие с поверхности ядра и образующие хвост кометы, могли долетать до атмосферы Земли. Сообщение об этой возможности вызвало большую тревогу, а в некоторых местах и панику обывателей. В газетах выдвигалось предположение, что погружение Земли в хвост кометы Галлея вызовет отравление и гибель всего живого на Земле. Однако хвост кометы был настолько разрежен, что прохождение Земли через него не вызвало никаких изменений в земной атмосфере.
Рис. 4.3. Положение кометы Галлея в момент ее тесного сближения с Землей 20 мая 1910 г.
Наиболее вероятным зафиксированным фактом столкновения Земли с ядром кометы, произошедшим в течение прошедшего столетия, является Тунгусское явление. 30 июня 1908 г. произошло уникальное событие – огромный болид вошел в плотные слои земной атмосферы и взорвался на высоте около 10 км, вызвав значительные разрушения в сибирской тайге. Кометная природа этого тела подтверждается многочисленными наблюдаемыми особенностями этого небесного феномена [Гладышева, 2008; Никольский и др., 2008]. Грандиозным событием в Солнечной системе явилось уже упомянутое столкновение фрагментов кометы Шумейкеров – Леви 9 с Юпитером в 1994 г. В июле 1992 года эта комета прошла на расстоянии менее 100 тыс. км от Юпитера и распалась на два десятка фрагментов (см. рис. 4.4 на вклейке).
В период с 16 по 22 июля 1994 г. все фрагменты кометы Шумейкеров– Леви 9, как было предсказано заранее [Клумов и др., 1994], упали на Юпитер, вызвав значительные возмущения в его атмосфере. Пятно (см. рис. 4.5 на вклейке), образовавшееся на диске Юпитера в результате падения фрагмента G (все фрагменты кометы были обозначены буквами английского алфавита), уже через 1 ч 45 мин после падения достигло диаметра 9 тыс. км (1,5 радиуса Земли). Оценки размера ядра материнского тела, сделанные на основании анализа движения отдельных фрагментов, лежат в диапазоне от 2 до 10 км в диаметре [Chernetenko and Medvedev, 1994]. Общее количество энергии, выделившееся при падении осколков кометы, по оценкам различных авторов, находится в диапазоне 1028–1030 эрг или 105–107 мегатонн тротилового эквивалента.
Хотя опасных для Земли комет гораздо меньше, чем АСЗ, динамические и физические особенности комет таковы, что опасность эта вполне реальна. Если учитывать, что фактор внезапности, непредсказуемости появления опасного объекта играет важную роль в проблеме астеродно-кометной опасности, то наибольшую опасность представляют близпараболические кометы. Среднее количество таких комет, открываемых в год, за последние несколько лет составило 10–15. Однако это число – величина не постоянная. Существуют предположения, что периодически в окрестности Солнца могут наблюдаться «кометные ливни» – явление, когда число близпараболических комет значительно возрастает. Это связано с возмущениями, действующими на ледяные небесные тела, находящиеся на периферии нашей Солнечной системы. Время от времени возмущения заставляют двигаться ледяные тела в направлении Солнца.
По оценкам Бейли [Bailey, 1992], доля ударных кратеров на земной поверхности, вызванных столкновениями с кометами, может достигать 10 % и выше. Особенно интенсивной бомбардировке Земля подвергалась на ранней стадии своего образования.
Кроме того, как уже отмечалось, наклоны орбит комет могут принимать значения от 0 до 180° (в отличие от короткопериодических комет, наклоны орбит большинства которых невелики), а это означает, что для части комет возможно столкновение с Землей на встречных траекториях. При этом скорость столкновения может достигать 72 км/с. Раннее обнаружение близпараболических комет является единственной гарантией того, что в распоряжении землян будет от нескольких месяцев до нескольких лет для предотвращения их возможного столкновения с Землей.
Таблица 4.1. Кеплеровские элементы орбиты и звездные величины комет, MOID которых меньше 0,1 а.е.
Примечание. H – абсолютная звездная величина, T – момент прохождения через перигелий, e – эксцентриситет орбиты, q – перигелийное расстояние в а.е., ω – аргумент перигелия, Ω – долгота восходящего узла, i – наклон орбиты к плоскости эклиптики (последние три величины даны в градусах).
В табл. 4.1. приводятся элементы орбит и звездные величины короткопериодических комет, минимальные расстояния между орбитами которых и орбитой Земли (MOID, Minimum Object Intersection Distance) меньше 0,1 а.е. Эти кометы можно считать потенциально опасными для Земли, поскольку из-за наличия плохо моделируемых воздействий на ядра комет их орбиты могут достаточно быстро меняться. Такие кометы имеют ненулевую вероятность столкновения с Землей. Уже состоявшиеся известные близкие прохождения комет вблизи Земли приводятся в приложении 2.
4.2. Физические характеристики, строение ядра
В последнее десятилетие наши знания о кометах и о процессах, происходящих на них, значительно расширились. Резкому повышению интереса к кометам способствовали подготовка и проведение международного космического эксперимента – полета космических аппаратов к комете Галлея. Целая флотилия космических станций – советские «Вега-1» и «Вега-2», западноевропейская «Джотто», японская «Суисей» (Планета-А) – исследовала комету Галлея. В ходе этих исследований были получены уникальные данные о составе и физических процессах, происходящих на поверхности ядра кометы, впервые с близкого расстояния было сфотографировано ядро кометы. Данные, полученные с космических станций, в основном подтвердили ледяную модель кометного ядра, разрабатываемую Ф. Уипплом с 1950 г. В книге [Comets II, 2005] обсуждаются четыре модели кометного ядра (рис. 4.6).
Рис. 4.6. Модели кометных ядер [Comets II, 2005]: а) – «конгломерат льдов» [Weissman and Kieffer, 1981]; б) – «агрегат фракталов» [Donn and Hughes, 1986]; в) – «изначально смерзшийся щебень» [Weissman, 1986]; г) – «склеенные льды» [Gombosi and Houpis, 1986]
Низкие оценки плотности кометного ядра, полученные из анализа движения кометы Галлея, можно объяснить кластерным механизмом образования кометного ядра, разработанным Донном (рис. 4.6, модель б) и в дальнейшем развитым Гринбергом. Согласно этому механизму, ядро кометы образуется в результате налипания друг на друга отдельных гранул (зерен), представляющих собой частицы, по составу близкие к углистым хондритам. Промежутки между зернами заполнены легкосублимирующим веществом. По этой модели ядро кометы представляет собой очень рыхлое образование, подобное гигантскому снежному кому, и по структуре близко к частицам межпланетной пыли. В модели в, названной Вейссманом «изначально смерзшийся щебень», предполагается наличие некоторого количества крупных ледяных фрагментов, смерзшихся в единое тело. В момент сближения такого ядра с Солнцем в результате нагрева часть осколков может терять механический контакт и образовывать компактный метеорный рой. Эта модель представляет собой развитие идей Фесенкова о существовании кратных кометных ядер и позволяет объяснить распад ядра кометы Шумейкеров – Леви 9 на несколько десятков фрагментов в окрестности Юпитера в 1992 г. Нельзя исключить, что для части ледяных тел верна модель а, когда ядро представляет собой ледяной монолит. Модель г – «склеенные льды» – была разработана по результатам пролетов космических аппаратов около ядра кометы Галлея.
Альтернативными моделями являются модель каменистого монолита, разработанная Б. Ю. Левиным, и модель кометного ядра в виде облака частиц, которую в разное время и в различных модификациях отстаивали Дубяго [Дубяго, 1942], Воронцов-Вельяминов [Воронцов-Вельяминов, 1945], Рихтер [Richter, 1963] и Литтлтон [Lyttleton, 1977]. Интересна модель Литтлтона, которая дает механизм образования таких роев. Согласно его исследованиям, местом образования подобных роев может быть область антиапекса, где в результате гравитационного действия Солнца должна наблюдаться повышенная концентрация межзвездного вещества. Солнце, двигаясь сквозь межзвездное газопылевое облако, действует подобно гигантской линзе, фокусируя частицы в антиапексной области. Частицы огибают Солнце по гиперболам, пересекающимся в области антиапекса. Столкнувшись в этой области, они частично гасят свои скорости, и если полная скорость будет меньше параболической, то столкнувшаяся материя оказывается захваченной Солнцем.
Однако надо отметить, что и модель каменистого монолита, и модель кометного ядра в виде облака частиц наталкиваются на определенные трудности.
Приведем основные доводы в пользу ледяной модели:
1) негравитационные эффекты в движении комет лучше объясняются ледяной моделью;
2) газопроизводительность ядра должна обеспечивать поток вещества на уровне 1028–1030 молекул в секунду со всей поверхности при гелиоцентрическом расстоянии 1 а.е. и должна оставаться примерно постоянной на интервале нескольких десятков оборотов кометы вокруг Солнца;
3) наблюдения комет, «царапающих Солнце» (имеющих очень небольшое перигелийное расстояние), до и после перигелия дают нижнюю границу размера ядра в несколько метров;
4) приливные силы и световое давление резко ограничивают время существования плотного роя частиц на кометных орбитах.
Итак, общепринятой моделью ядра кометы в настоящее время является ледяная модель. При приближении ядра кометы к Солнцу ледяное ядро нагревается и начинается испарение газов. Процесс сублимации вещества играет большую роль в определении как физических, так и динамических характеристик ядра. В результате сублимации вещества, как уже отмечалось, возникает достаточно плотная газовая и пылевая атмосфера (кома) кометы. Наличие у комет газовой оболочки позволяет изучать химический состав ядер комет спектроскопическим способом. Уже первые спектроскопические наблюдения показали, что спектры комет состоят из непрерывного фона и эмиссионных молекулярных полос. Непрерывный спектр наблюдается, главным образом, в центральной части головы кометы и в пылевых хвостах. Непрерывный спектр обусловлен рассеянием солнечного света частицами пыли на поверхности ядра и в кометной атмосфере.
По эмиссионным молекулярным полосам в спектре головы кометы различными наблюдателями были отождествлены C2, CH, CN, NH, NH2 и OH+, в хвосте – CO+, CO+2, N+2. Отмечены многочисленные случаи отождествления молекулярных полос с NO, O2, O+2 и др. Кроме того, предполагается наличие в голове кометы большого количества атомарного водорода. Все молекулы кометных атмосфер, как правило, принадлежат к свободным радикалам и появляются в результате диссоциации и ионизации некоторых первичных, или «материнских», молекул. Всесторонний анализ спектральных данных, выполненный Фаулером, Бальде, Аделем, Свингсом, Арпиньи и многими другими, постепенно сформировал список родительских молекул:
H2O, CO2, CH4, NH3, C2H2.
В дальнейшем этот список постоянно дополнялся. Так, в качестве источников амина и имина Дельземме предлагает гидроксиламин NH2OH, формамид HCONH2, глицин NH2CH2COOH. В спектрах комет Остина, Леви и Свифта – Туттля обнаружены такие углеродсодержащие вещества, как метанол CH3OH и формальдегид CH2O.
В моменты сближений комет с Солнцем в спектрах комет отождествлены некоторые металлы: железо Fe, хром Cr, марганец Mn, никель Ni, кобальт Co и ряд других. В работе Дельземме [Delsemme and Miller, 1971] указан примерный процентный химический состав ядра кометы, который воспроизведен в табл. 4.2.
Таблица 4.2. Химический состав ядра кометы
Как видно из табл. 4.2, кометы состоят из четырех основных элементов: водорода, углерода, азота и кислорода. Для некоторых из них сюда можно добавить серу, обнаруженную в форме молекул S2 в кометах ИРАС – Араки – Олкока, Черниса и Галлея, и в форме сульфида водорода H2S в кометах Остина и Леви.
В 1995 г. была открыта комета Хейла – Боппа. Ее особенностью было достаточно большое, более 40 км в диаметре, ядро. Это обусловило большую газопроизводительность и возможность наблюдения кометы в радиоспектре. Во время наблюдений кометы в радиоспектре были обнаружены 8 новых молекул, ранее не наблюдавшихся в кометах: SO, SO2, H2CS, HC3N, HNCO, NCONH2 [Чурюмов, 2009].
В зависимости от химического состава сублимирующего вещества устанавливаются равновесная температура на поверхности ядра и величина потока сублиманта. В табл. 4.3 приведены газопроизводительность кометы для различных веществ, определяющих процесс сублимации.
Таблица 4.3. Интенсивность сублимации для различных веществ
Примечание. Z0 – число молекул сублимирующего вещества с единичной площадки, находящейся в подсолнечной точке (местное зенитное расстояние Солнца равно 0°), в единицу времени, T0 – равновесная температура для невращающегося ядра, T1 – средняя эффективная температура для вращающегося ядра, r0 – расстояние, на котором процесс сублимации для данного вещества прекращается.
По данным, полученным с борта «Джотто», были определены примерный процентный состав газовой компоненты комы кометы Галлея: 80 % – водяной пар H2O; 10–12 % – окись углерода CO; 2 % – метан CH4; 1,5 % – углекислый газ CO2; 1–2 % – аммиак NH3; 1–2 % – формальдегид CH2O, а также общая газопроизводительность кометы – 18 т/с, и пылепроизводительность – 20 т/с.
Важной физической характеристикой ядра кометы является его масса. Обычно средняя масса комет оценивается как 4 1013 кг [Levison et al., 2002]. Но, во-первых, имеется большой разброс в размерах индивидуальных комет. Так, в обзорной работе по современным определениям размеров кометных ядер [Lamy et al., 2005] найдены оценки эффективных радиусов ядер – от 0,2 км до 37 км. Основная проблема заключается в том, что практически отсутствуют прямые определения масс комет. Большинство оценок масс сделано на основе рассмотрения негравитационных ускорений в моделях с большим числом неопределенных параметров. Прямые же измерения масс во время четырех космических миссий были невозможны из-за очень малого влияния кометного притяжения на траектории космических аппаратов [Weissman and Lowry, 2008]. Последние оценки, полученные для кометы Темпеля 1 на основе рассмотрения скорости выброса вещества во время эксперимента Deep Impact, дали массу 4,5 1013 кг для объекта с эффективным радиусом 3,0 км [A’Hearn, 2008].
Из-за отсутствия прямых определений массы кометы Галлея и существования некоторой неопределенности в оценке плотности ядра кометы – от 0,2 до 1 г/см3 – масса этой кометы оценивается в пределах 0,6 1014–4,2 1014 кг.
Вещество ядра кометы очень пористое (средняя плотность составляет около 0,5 г/см3), его можно сравнить с огромным снежным комом. При приближении кометы к Солнцу под действием солнечной радиации происходит сублимация летучей составляющей ядра, а на его поверхности образуется корка из нелетучего вещества. Иногда под давлением испаряющихся газов часть корки может быть сброшена, что приводит к вспышкам блеска или даже фрагментации кометного ядра. Ядро кометы может полностью распасться с образованием нескольких крупных фрагментов и большого количества более мелких обломков, что, например, произошло с кометой Веста (C/West) при ее приближении к Солнцу в 1976 г. (рис. 4.7).
Рис. 4.7. Фрагменты кометы Веста [Колдер, 1984]
На рис. 4.8 показаны 3 фрагмента кометы Швассмана – Вахмана 3 (73P/Schwassmann – Wachmann), разрушение которой на пять больших фрагментов (A, B, C, D, E) произошло в 1995 г.
Рис. 4.8. Три фрагмента кометы Швассмана – Вахмана 3. Изображение получено на Европейской южной обсерватории в Чили 31 января 1996 г. (http://www.eso.org/public/images/eso9608a/)
При появлении в 2006 г. произошло дальнейшее разрушение крупных фрагментов кометы Швассмана – Вахмана 3. На рис. 4.9 приводятся изображения фрагмента B (слева) и фрагмента G (справа), полученные космическим телескопом Хаббла 18 апреля 2006 г.
Чем больше прохождений вблизи Солнца совершила комета, тем большую часть поверхности может занимать корка, препятствующая дальнейшей сублимации. В конце концов, комета становится «потухшей» и для наблюдателя выглядит так же, как астероид. Такие «потухшие» кометные ядра, как это уже отмечалось, вполне могут быть частью популяции АСЗ.
Рис. 4.9. Дезинтеграция кометы Швассмана – Вахмана 3: фрагмент B (слева) и фрагмент G (справа). Снимки получены космическим телескопом Хаббла 18 апреля 2006 г. (http://www.hubblesite.org)
Возможен и другой сценарий эволюции кометного ядра, когда его размер постепенно уменьшается до превращения кометы в мини-комету, а затем и полной ее дезинтеграции.
Кометные ядра имеют форму, заметно отличающуюся от шарообразной и напоминающую неправильную форму некоторых небольших астероидов. Она вполне может являться результатом неравномерной инсоляции и неравномерного испарения вещества с поверхности ядра, вращающегося вокруг некоторой произвольным образом ориентированной в пространстве оси. В результате испарения вещества меняются моменты инерции ядра, что приводит к сложной эволюции его вращения.
В работе [Jessberger and Kotthaus, 1991] представлены основные физические характеристики кометного вещества и ядра в целом. Некоторые основные физические характеристики ядра кометы приведены в табл. 4.4.
Таблица 4.4. Основные физические характеристики кометного ядра (минимальное, наиболее вероятное и максимальное значения)
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?