Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 12


  • Текст добавлен: 27 марта 2015, 03:06


Автор книги: Коллектив Авторов


Жанр: География, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 58 страниц) [доступный отрывок для чтения: 19 страниц]

Шрифт:
- 100% +
Литература

Грикуров Г.Э., Равич М.Г., Соловьев Д.С. 1970. Главные черты тектогенеза Антарктиды // Информ. бюлл. САЭ, 1970, № 77.

Грикуров Г.Э., Каменев Е.Н., Равич М.Г. Тектоническое районирование и геологическая эволюция Антарктиды // Информ. бюлл. САЭ, 1978, № 97, с. 15–35.

Грикуров Г.Э., Михальский Е.В. Некоторые черты тектонического строения и эволюции Восточной Антарктиды в свете представлений о суперконтинентах // Российский журнал наук о земле, 2002. Т. 4, № 4, с. 247–257.

Лейченков Г.Л., Гусева Ю.Б., Гандюхин В.В., Голь К., Иванов С.В., Голынский А.В., Казанков А.Ю. 2010. Тектоническое развитие земной коры и формирование осадочного чехла в антарктической части Индийского океана (море Содружества, море Дейвиса, плато Кергелен). Настоящий сборник.

Лобач-Жученко С.Б. Источники вещества и механизмы формирования архейских кратонов // В сб.: Изотопные системы и время геологических процессов. Материалы IV Российской конференции по изотопной геохронологии, 2009.Т. 1, Санкт-Петербург, с. 334–337.

Михальский Е.В. Районирование земной коры Антарктиды по Sm-Nd изотопным данным // Доклады РАН. 2008. Т. 419, № 4, с. 519–523.

Михальский Е.В. Неопротерозойские и раннепалеозойские геологические комплексы Восточной Антарктиды: вещественный состав и происхождение // Вестник МГУ, Сер.4 – Геология, 2007. № 5, с. 3–15.

Равич М.Г., Грикуров Г.Э. Основные черты тектоники Антарктиды // Советская геология. 1970. № 1, с. 12–27.

Соботович Э.В., Каменев Е.Н., Комаристый А.А., Рудник В.А. Древнейшие породы Антарктиды (Земля Эндерби) // Изв. АН СССР, сер. геол. 1974. № 11, с. 30–50.

Шарков Е.В., Богатиков О.А. Происхождение и дальнейшая судьба раннедокембрийской земной коры. // В сб.: Гранит-зеленокаменные системы архея и их поздние аналоги. Материалы научной конференции и путеводитель экскурсий. Петрозаводск, КарНЦ РАН, 2009, с. 179–181.

Boger S.D., Miller J.McL. 2004. Terminal suturing of Gondwana and the onset of the RossDelamerian orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions // Earth and Planetary Science Letters. V. 219, pp. 35–48.

Boger S.D., Wilson C.J.L., Fanning, C.M. 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana? // Geology. V. 29, pp. 463–466.

Borg S.G., DePaolo D.J. 1994. Laurentia, Australia, and Antarctica as a Late Proterozoic supercontinent: constraints from isotopic mapping // Geology. V. 22, pp. 307–310.

Buggisch W., Kleinschimidt G. 2007.The Pan-African nappe tectonics in the Shackleton Range // in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A. K. Cooper and C. R. Raymond et al., USGS Open-File Report 2007–1047, 2007. Short Research Paper 058, 4 p.; doi:10.3133/of2007-1047.srp058.

Craddock C. Tectonic map of Antarctica. // In: Bushnell V.C. and C. Craddock, ed. Geologic Maps of Antarctica. Antarctic Map Folio Ser., Folio 12, Pl. XXI.

Dalziel I.W.D. 1997. Neoproterozoic – Paleozoic geography and tectonics: review, hypothesis, environmental speculation // Geological Society of America Bulletin. V. 109, p. 16–42.

Elliot D.H. 1975. Tectonics of Antarctica: a review // American Journal of science. V. 275-A, pp. 45–106.

Fitzsimons I.C.W. 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica / In: Yoshida M. et al. (eds.) Proterozoic East Gondwana: supercontinent assembly and breakup. Geological Society of London Special Publication 206, pp. 93–130.

Grikurov G.E. 1982. Structure of Antarctica and outline of its evolution / In: Craddock C. (ed.) Antarctic geosciences. Madison, pp. 791–804.

Groenewald P.B., Moyes A.B., Grantham G.H., Krynauw J.R. 1995. East Antarctic crustal evolution: geological constraints and modelling in western Dronning Maud Land // Precambrian Research. V. 75, pp. 231–250.

Grunow A., Hanson R., Wilson T. 1996. Were aspects of Pan-African deformation linked to Iapetus opening? // Geology. V. 24, pp.1063–1066.

Hubscher, C., Jokat, W. and Miller, H. 1996. Structure and origin of southern Weddell Sea crust: results and implications. In: Storey, B.C., King, E.C., Livermore, R.A (Eds.). Weddell Sea Tectonics and Gondwana Break-Up, Geol. Soc. Spec. Publ., London. Vol. 108, pp. 201–211.

Jacobs J., Fanning C.M., Henjes-Kunst F., Olesch M., Paech H.J. 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in central Dronning Maud Land // Journal of geology. V.106, No.4, pp. 385–406.

King E., Leitchenkov G., Galindo-Zaldivar J., Maldonado A., and Lodolo E. 1997. Crustal structure and sedimentation in Powell Basin. In: Barker P., Cooper A.K et. al (Eds.), Geology and seismic stratigraphy of the Antarctic Margin, Part 2. Ant. Res. Ser., vol. 71, pp. 75–93.

Leitchenkov G.L. and Kudryavtsev G.A. 2000. Structure and origin of the Earth’s crust in the Weddell Sea Embayment (beneath the front of the Filchner and Ronne Ice Shelves from the Deep Seismic Soundings data. Polarforschung. Vol.67, N3, pp. 143–154.

Leitchenkov G.L., B.V. Belyatsky, N.V. Rodionov and S.A. and Sergeev. 2007a. Insight into the geology of the East Antarctic hinterland: study of sediment inclusions from ice cores of the Lake Vostok borehole, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A. K. Cooper and C. R. Raymond et al., USGS Open-File Report 2007–1047, Short Research Paper 014, 4 p.; doi:10.3133/of 2007–1047.srp 014.

Leitchenkov G.L., V.V. Gandyukhin, and Y.B. Guseva. 2007b. Crustal structure and evolution of the Mawson Sea, western Wilkes Land margin, East Antarctica. In: Antarctica – A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A. K. Cooper and C. R. Raymond et al., USGS Open-File Report 2007–1047, Short Research Paper 028, doi:10.3133/of2007-1047.srp028.

Leitchenkov G., Guseva J., Gandyukhin V., Grikurov G., Kristoffersen Y., Sand M., Golynsky A., Aleshkova N. 2008. Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies. Mar. Geoph. Res. Vol. 29, pp. 135–158.

Mikhalsky E.V., Sheraton J.W., Laiba A.A. & Beliatsky B.V. 1996. Geochemistry and origin of Mesoproterozoic metavolcanic rocks from Fisher Massif, Prince Charles Mountains, East Antarctica // Antarctic Science. V. 8, pp. 85–104.

Mikhalsky E.V., Beliatsky B.V., Savva E.V., Wetzel H.-U., Fedorov L.V Weiser Th., Hahne K. 1997. Reconnaissance geochronologic data on polymetamorphic and igneous rocks of the Humboldt Mountains, Central Queen Maud Land, East Antarctica / In: Ricci C.A. (ed.), The Antarctic region: Geological evolution and Processes. Siena, TERRAPUB, pp. 45–53.

Mikhalsky E.V., Sheraton J.W., Laiba A.A., Tingey R.J., Thost D.E., Kamenev E.N., Fedorov L.V. 2001. Geology of the Prince Charles Mountains, Antarctica // AGSO Geoscience Australia Bulletin. V. 247, 209 p.

Millar I. L., Pankhurst R. J., Fanning C. M. 2002. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin // Journal of the Geological Society. V. 159, pp. 145–157.

Mukasa S.B., Dalziel I.W.D. 2000. Marie Byrd Land, West Antarctica: Evolution of Gondwana’s Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions // GSA Bulletin. V. 112, pp. 611–627.

Munksgaard N.C., Thost D.E., Hensen B.J. 1992. Geochemistry of Proterozoic granulites from northern Prince Charles Mountains, East Antarctica // Antarctic Science. V. 4, pp. 59–69.

Osanai Y., Shiraishi K., Takanashi Y, Ishizuka H, Tainosho Y, Tsuchiya N, Sakiyama T., Kodama S. 1992. Geochemical Characteristics of Metamorphic Rocks from the Central Sor Rondane Mountains, East Antarctica. In: Yoshida Y., Kaminuma K. & Shiraishi K. (eds.) Recent Progress in Antarctic Earth Science. Tokyo, TERRAPUB, pp. 17–28.

Pankhurst R.J., Weaver S.D., Bradshaw J.D., Storey B.C., Ireland T.R. 1998. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica // Journal of Geophysical Research. V. 103. №B2, pp. 2529–2547.

Sheraton J.W., Black L.P., Tindle A.G. 1992. Petrogenesis of plutonic rocks in a Proterozoic granulite-facies terrane the Bunger Hills, East Antarctica // Chemical Geology. V. 97, pp. 163–198.

Shiraishi K., Hiroi Y., Ellis D.J., Fanning C.M., Motoyoshi Y., Nakai Y. 1992. The First Report of a Cambrian Orogenic Belt in East Antarctica– An Ion Microprobe Study of the Lutzow-Holm Complex. In: Yoshida Y., Kaminuma K. & Shiraishi K. (eds.) Recent Progress in Antarctic Earth Science. Tokyo, TERRAPUB, pp. 67–74.

Siddoway C. S. 2008. Tectonics of the West Antarctic Rift System: New Light on the History and Dynamics of Distributed Intracontinental Extension In: Cooper A. K., Barrett P. J. et al. (Eds.). Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Washington, DC: The National Academies Press.doi:10.3133/of2007-1047.kp09.

Smith C. H. 1997. Mid-Crustal Processes During Cretaceous Rifting, Fosdick Mountains, Marie Byrd Land // In: Ricci C. A. (ed.), The Antarctic Region: Geological Evolution and Processes. Siena, Terra Antartarctica Publ., pp. 313–320.

Tessensohn F. Shackleton Range, Ross orogen and SWEAT hypothesis. 1997. In: Ricci C.A. (ed.) The Antarctic Region: Geological Evolution and Processes. Siena, Terra Antarctica Publ., pp. 512.

Zhao J-X., Shiraishi K., Ellis D.J., Sheraton J.W. 1995. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: implications for the origin of syenitic magmas // Geochimica et Cosmochimica Acta. V. 59, pp. 1363–1382.

Grikurov[65]65
  Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia), St. Petersburg, Russia


[Закрыть]
G.E., Leitchenkov[66]66
  Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia), St. Petersburg, Russia


[Закрыть]
G.L., Mikhalsky[67]67
  Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia), St. Petersburg, Russia


[Закрыть]
E.V. Antarctic Tectonic Evolution in the light of modern geodynamic concepts

Abstract

A compilation of Tectonic Map of the Polar Regions, 1:10 000 000 (TEMPORE) was proposed by the Commission for the Geological Map of the World as part of research activities under the auspices of IPY 2007–2009. The first stage of this project envisaged creating a draft of new international tectonic map of Antarctica and its surrounding seas in I.S. Gramberg Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia). This work involved critical evaluation and synthesizing of abundant new geological and geophysical data obtained by the Russian and foreign Antarctic expeditions in the past 15–20 years. The results of state-of-the-art isotopic and geochemical studies of Antarctica’s rocks, as well as new insights in the deep structure of its continental margin gained in the course of systematic marine geophysical investigations make possible to refine the tectonic models advanced by Antarctic scientists in preceding years and to propose an up-to-date vision of tectonic arrangement and geodynamic history of the Antarctic.

А.В. Зайончек[68]68
  Геологический институт РАН, Москва, Россия


[Закрыть]
, Х. Брекке[69]69
  Норвежский нефтяной директорат, Ставангер, Норвегия


[Закрыть]
, С.Ю. Соколов[70]70
  Геологический институт РАН, Москва, Россия


[Закрыть]
, А.О. Мазарович[71]71
  Геологический институт РАН, Москва, Россия


[Закрыть]
, К.О. Добролюбова[72]72
  Геологический институт РАН, Москва, Россия


[Закрыть]
, В.Н. Ефимов[73]73
  Геологический институт РАН, Москва, Россия


[Закрыть]
, А.С. Абрамова[74]74
  Геологический институт РАН, Москва, Россия


[Закрыть]
, Ю.А. Зарайская[75]75
  Геологический институт РАН, Москва, Россия


[Закрыть]
, А.В. Кохан[76]76
  Геологический институт РАН, Москва, Россия


[Закрыть]
, Е.А. Мороз[77]77
  Геологический институт РАН, Москва, Россия


[Закрыть]
, А.А. Пейве[78]78
  Геологический институт РАН, Москва, Россия


[Закрыть]
, Н.П. Чамов[79]79
  Геологический институт РАН, Москва, Россия


[Закрыть]
, К.П. Ямпольский[80]80
  Геологический институт РАН, Москва, Россия


[Закрыть]

Строение зоны перехода континент-океан северо-западного обрамления Баренцева моря (по данным 24–26-го рейсов НИС «Академик Николай Страхов», 2006–2009 гг.)

Аннотация

В ходе экспедиций на НИС «Академик Николай Страхов» 2006–2009 гг. (Геологический институт РАН, Норвежский Нефтяной Директорат) детально закартированы акустическими методами значительные области хребта Книповича, южного склона хребта Мона, желобов Стурфьорд и Орли, континентального склона и окраин Земли Франца-Иосифа с общей протяженностью съемки около 22 000 км. Были открыты: меридиональная зона деструкции шельфовой Свальбардской плиты, проявления дайковых комплексов и других вулканогенных образований на шельфе, проявления разгрузки газогидратов, современные тектонические нарушения на континетальном склоне и в осадочном чехле бортов хребтов Книповича и Мона и многое другое. Северо-западная окраина шельфа Баренцева моря обнаруживает сходство с рифтоподобными структурами на суше в северных районах о-вов Шпицберген, что свидетельствует о единой обстановке их формирования, а с учетом данных по смежным областям ложа океана дает материал для разработки модели, связывающей геодинамические процессы в континентальной и океанической литосфере.

1. Научные задачи и схема работ

Пристальное внимание к фундаментальным исследованиям шельфа и континентального склона в Арктике обусловлено двумя основными обстоятельствами. Во-первых, это открытие крупных и гигантских месторождений углеводородного сырья на Арктическом шельфе и континентальном склоне Атлантики и Северного Ледовитого океана, во-вторых, общая относительно слабая изученность взаимоотношения океанских и континентальных структур, особенно в высоких широтах, труднодоступных для исследований.

В 2006–2009 гг. Геологическим институтом РАН совместно с Норвежским Нефтяным Директоратом были проведены три экспедиции на НИС «Академик Николай Страхов» на хребте Книповича (север Атлантического океана), на севере Баренцева моря и на континентальном склоне Северного Ледовитого океана (рис. 1). Работы проводились в рамках задач Международного полярного года (МПГ) как совместный проект России и Норвегии «Позднемезозойская-кайнозойская тектоно-магматическая эволюция баренцевоморского шельфа и континентального склона как ключ к палеогеодинамическим реконструкциям в Северном Ледовитом океане». В результате работ с эхолотированием и высокочастотным профилированием было пройдено около 22 000 км, в том числе с сейсмоакустикой – 14 000 км.

В экспедициях использовалась установленная на борту гидроакустическая система фирмы RESON. Она включает в себя программно-аппаратурный комплекс SeaBat, который объединяет: многолучевые эхолоты – SeaBat 8111 (мелководный) и SeaBat 7150 (глубоководный); GPS, сенсоры движения; датчики скорости звука у антенн эхолота и в водной толще (SVP-70 и SVP-30 соответственно); программного пакета сбора и обработки данных PDS2000. Одновременно с работой гидроакустической системы проводилась съемка высокочастотным акустическим профилографом EdgeTech 3300 и комплексом оборудования для проведения непрерывного сейсмического профилирования разработки ГИН РАН. Станционные работы включали измерения теплового потока, изучение верхней части осадочного чехла гравитационными трубками (длиной до 6 м) и драгирование коренных пород.

В настоящей работе представлены первичные результаты исследований на хребтах Книповича и Мона, континентальных склонах Атлантического и Северного Ледовитого океанов в районе архипелага Шпицберген, а также на севере шельфа Баренцева моря между архипелагами Шпицберген и Земля Франца-Иосифа. Подчеркнем, что изучение хребтов Книповича и Мона было логическим продолжением работ ГИН РАН в осевой зоне Срединно-Атлантического хребта, которые проводились с 1986 г.

Проведенные исследования преследовали несколько целей. Во-первых, создать правдоподобную модель подъема архипелагов Шпицбергена и Земли Франца-Иосифа с момента начала продвижения хребта Книповича на север до времени снятия гляциоизостатической нагрузки на шельфе, которая привела к активному сносу обломочного материала с шельфа в океан. В результате этих процессов была создана уникальная ситуация, когда рифтовая зона Атлантики, расположенная в нескольких десятках километров от бровки шельфа оказалась в зоне лавинной седиментации. Исследования деформаций осадочного чехла позволяют предлагать обоснованные выводы о характере и амплитудах современных движений на срединно-океаническом хребте, что, практически, невозможно в других сегментах Мировой рифтовой системы.

Во-вторых, выявить и объяснить происхождение магматических образований на акватории между архипелагами Шпицберген и Земли Франца-Иосифа. Дайковые комплексы северной части Баренцева моря в пределах российского сектора имеют северо-западное простирание, что полностью согласуется с геологическими данными по архипелагу Земля Франца-Иосифа. Применительно к Норвежскому сектору подобных работ вообще не проводилось. В настоящее время известны только две станции, в которых подняты базальты апт-альбского возраста. Они сопровождаются амплитудными магнитными аномалиями.

В-третьих, по существующим моделям на ранней стадии развития Арктической системы хребтов континентальная зона сдвига, соединяющая хребты Гаккеля и Мона, превратилась в результате продвижения спредингового центра со стороны хребта Мона в хребет Книповича. В последнем имеются косвенные признаки указывающие на возможность выхода на поверхность дна пород верхней мантии. К ним можно отнести: ультрамедленную скорость спрединга, наличие глубинных срывов в осевой части срединно-океанического хребта, аномальные скорости продольных сейсмических волн в океанической коре, соответствующие серпентинизированным ультрамафитам, сегментацию хребта, обусловленную большим количеством нетрансформных смещений. К последним приурочены значительные аномалии метана.

В-четвертых, в пределы шельфа Баренцева моря «вдаются» троги (Франц-Виктория и др.), которые практически не изучены. На основании морфологических признаков предполагается (например Милановский, 1996), что они имеют рифтовую природу. Детальные геолого-геофизические исследования в них не проводились.

Область сочленения прогиба Стурфьорд с Норвежско-Гренландским бассейном (Ljones et. al., 2004) располагается в пределах разломной зоны Хорнсунд, являющейся одной из ключевых при рассмотрении этапов развития региона и активизации северо-западной окраины Баренцева моря. Она также расположена на «линии» нахождения четвертичных вулканов Шпицбергена. Желоб Орли, расположенный параллельно этой разломной зоне к востоку от Свальбарда, также содержит признаки четвертичных вулканических образований. В совокупности с полученными батиметрическими данными это позволяет предположить наличие там четвертичных вулканов.

Обзор объектов, подлежащих изучению для решения указанных выше задач, позволил наметить контуры районов полигонных съемок и полевых работ, которые и были реализованы в ходе экспедиционных работ 2006–2009 гг. (рис. 1). Это окраина Земли Франца-Иосифа, желоб Орли и прилегающий континентальный склон, желоб Стурфьорд и прилегающий континентальный склон, хребет Книповича и его сочленение с хребтом Мона, южный фланг хребта Мона. Далее будут описаны результаты акустических методов – многолучевой батиметрии, сейсмоакустики и высокочастотного профилирования на указанных объектах.


Рис. 1. Схема работ 24–26 рейсов НИС «Академик Николай Страхов» (Геологический институт РАН, Норвежский Нефтяной Директорат, 2006–2009). Рельеф показан по данным (IBCAO, 2005). Штриховая линия – расположение границы Норвегии, по представлениям последней.

2. Краткий обзор геологии северо-запада Баренцева моря

Баренцево море расположено в западной части Евроазиатского шельфа Арктики (рис. 2). Оно отделено от глубоководных впадин Северного Ледовитого и Атлантического океанов поднятиями архипелагов Шпицберген и Земля Франца-Иосифа.


Рис. 2. Схема расположения основных географических объектов и элементов структуры северо-запада Баренцева моря и прилегающих частей Атлантического и Северного Ледовитого океанов. Рельеф показан по данным (IBCAO, 2005). (Условные обозначения см. Рис. 1)


В Баренцевом море преобладают глубины от 100 до 350 м. Вблизи границы с Норвежским морем они достигают 600 м. Рельеф характеризуется многими пологими подводными возвышенностями и понижениями (см. рис. 2). Строение рельефа осложняется рядом желобов ортогональных в плане к кромке шельфа как на севере, так и на западе моря. В первом случае это желоба Франц-Виктория, Орли (глубины превышают 530 м), а также морфоструктуры, расположенные на продолжении пролива Хинлопен, Вуд– и Вейде-фьордов. На западе – это желоба Медвежий и Зюйдкапп. Северо-запад Баренцева моря (Дибнер, 1957, Карякин и др., 2009, Объяснительная, 1996, Сущевская и др., 2004, Столбов и др., 2006, Хаин, 2001, Шипилов, Тарасов, 1998, Smith et al., 1976, The Geology…, 1997, Geology…, 1998) имеет континентальную кору гренвильского возраста (т. н. Свальдбардская плита), которая в пермское и мезозойское время претерпела несколько этапов деструкции или магматических прявлений.

В северо-западной части Баренцева моря расположен архипелаг Шпицберген. Он включает в себя четыре главных острова и около 150 мелких с общей площадью более 62 тыс. км2. Максимальная высота рельефа – 1717 м. Около 60 % территории архипелага покрыто ледниками.

Основные складчатые и разрывные структуры Шпицбергена имеют меридиональные простирания. Крупными разломами (левые сдвиги с амплитудами до тысячи (?) километров), которые заложились в конце силура – начале девона, архипелаг разделен на три главных зоны – Западную, Центральную и Восточную. Последняя имеет гренвильский фундамент и слабо дислоцированный верхнепротерозойский и палеозойско-мезозойский чехлы (суммарная мощность оценивается в первые километры). В конце юры – начале мела отмечены слабые несогласия и внедрение силлов и даек долеритов. Время образования складчатых структур Западного Шпицбергена – от начала палеоцена до конца эоцена.

Складчатые деформации на Западном Шпицбергене были вызваны коллизией двух континентальных плит, разделенных трансформным разломом Книповича, по которому происходило правостороннее смещение. На рубеже эоцена и олигоцена (50–30 млн. лет) и в миоцене (15–5 млн. лет) был интенсивный подъем Баренцевоморского региона. Последний вызвал оживление тектонических движений. В четвертичное время были сформированы вулканические постройки и трубки взрыва в зоне разлома Брейбоген – Бокк-фиорд (север о. Западный Шпицберген). Четвертичные базальты по своему составу относятся к производным щелочно – оливин – базальтовой магмы.

В восточной части архипелага Шпицберген расположен архипелаг Короля Карла. Его максимальная высота составляет 270 м. Он включает в себя множество небольших островков и скал, а также три главных острова. Наиболее восточный (о. Абельсойа) сложен базальтами мелового возраста. Более западные (о-ва Конгсойа и Свенксойа) сложены осадочными, в основном, терригенными породами позднетриас – раннемелового возраста, а также лавами меловых базальтов.

Архипелаг островов Земля Франца-Иосифа включает в себя порядка 190 островов, которые разделены глубоководными (400–650 м) проливами (Кембридж, Британский канал и Австрийский). Площадь архипелага составляет порядка 12 тыс. км2. Его максимальная высота составляет 620 м. Около 60 % территории архипелага покрыто ледниками.

Основная часть архипелага слагается терригенными породами верхнего триаса – верхней юры. В строении архипелага Земля Франца-Иосифа участвуют также образования двух главных магматических комплексов позднеюрского– и ранннемелового возрастов. Во время их становления внедрялись дайки и силлы долеритов, штоки габбро– и габбро-диоритов. Установлены также и покровы базальтов. Они различаются по вещественному составу вулканических пород и физико-химическим параметрам формирования расплавов. Первый, трапповый, был сформирован в результате действия обширного плюма и характеризует собой начальный этап развития Канадского бассейна. Второй был образован в совершенно иной геодинамической обстановке, по большинству параметров сопоставимой с действием «горячей точки».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации