Электронная библиотека » Леонард Млодинов » » онлайн чтение - страница 7


  • Текст добавлен: 3 декабря 2015, 14:00


Автор книги: Леонард Млодинов


Жанр: Биология, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Пока его бывший ученик Александр покорял Азию, Аристотель вернулся в Афины и основал школу, которую назвал Лицеем. Там, прогуливаясь по улице или по саду, он наставлял своих учеников в постигнутом им за годы[124]124
  Затем студентов натирали маслом. Я всегда считал, что это дополнение к занятиям с легкостью укрепило бы мою популярность среди моих же студентов, однако, к сожалению, оно привело бы к противоположному результату среди университетской администрации.


[Закрыть]
. Однако, хоть и был Аристотель великолепным учителем и блистательным – и плодовитым – наблюдателем за природой, его подход к знанию сильно отличался от того, который мы сейчас называем наукой.

* * *

По словам философа Бертрана Расселла, Аристотель «первым начал писать, как преподаватель… как профессиональный учитель, а не вдохновленный пророк»[125]125
  Daniel Boorstin, The Seekers (New York: Vintage, 1998), стр. 54.


[Закрыть]
. Расселл говорил, что Аристотель – это Платон, «разбавленный здравым смыслом». Аристотель эту черту и впрямь высоко ценил. Как и большинство из нас. Благодаря здравому смыслу мы не отвечаем на письма добрых людей из Нигерии, обещающих нам в ответ на присланные им нынче тысячу наших долларов сто миллиардов завтра. Однако, оценивая представления Аристотеля и зная то, что нам известно в наши дни, можно сказать, что именно в приверженности Аристотеля привычным взглядам состоит величайшая разница между сегодняшним и Аристотелевым подходами к науке – и в ней же один из величайших недостатков его физики. Бытовую логику сбрасывать со счетов нельзя, и все же частенько требуется именно логика не бытовая.

Чтобы чего-то добиваться в науке, часто требуется преодолевать то, что историк Дэниэл Бурстин называл «тиранией здравого смысла»[126]126
  Там же, стр. 316.


[Закрыть]
. Здравый смысл, к примеру, подсказывает: если толкнуть предмет, он начнет перемещаться, затем замедлит движение и остановится. Однако, чтобы воспринять законы движения, необходимо глянуть за пределы очевидного, как это удалось Ньютону, и представить, как двигался бы предмет в теоретическом мире, где нет трения. Аналогично, чтобы понять суть механизма трения, нужно суметь прозреть фасад материального мира насквозь, «увидеть» устройство предметов как состоящих из ненаблюдаемых глазом атомов, – такое представление сформулировали Левкипп и Демокрит за век до Аристотеля, но он его не принял.

Аристотель также выказывал большую приверженность общему мнению, учреждениям и взглядам своего времени. Он писал: «То, во что все верят, – истинно»[127]127
  Daniel Boorstin, The Seekers (New York: Vintage, 1998), стр. 55.


[Закрыть]
. А маловерам говорил: «Разрушающий эту веру вряд ли найдет что-либо убедительнее». Живой пример доверия Аристотеля распространенным истинам – и того, как это искажало его видение, – вымученное суждение, что рабство, которое принимали и он, и большинство его сограждан, есть врожденное природное свойство физического мира. Применяя подобный довод, до странности напоминающий его труды по физике, Аристотель заявлял, что «во всех предметах, входящих в состав сложного целого, сделанного из частей… проявляется различие между управляющими и подчиненными элементами. Такая двойственность существует среди живых существ, но не в них одних; она происходит из устройства Вселенной»[128]128
  Там же.


[Закрыть]
. Из-за этой двойственности, утверждал Аристотель, есть люди по природе своей свободные, а есть такие, кто по природе – рабы.

Современных ученых и других новаторов часто представляют чудаками и оригиналами. Думаю, в этом стереотипе есть доля истины. Знавал я одного преподавателя физики, который ежедневно составлял себе обед из соусов и приправ, предложенных в столовой бесплатно. Майонез – источник жиров, кетчуп был ему растительной составляющей, соленые крекеры – углеводной. Другой мой приятель обожал мясные закуски, а хлеб терпеть не мог и в ресторанах запросто заказывал на обед сиротливую горку салями, которую потреблял с ножом и вилкой, будто отбивную.

Традиционное мышление – не лучший подход для ученого, да и для кого угодно, желающего придумать что-то новое, хоть нетрадиционные взгляды иногда стоя т вам отношения окружающих. Однако мы еще не раз убедимся, что наука – естественный враг предубеждений и власти авторитетов, включая даже авторитеты внутри научного сообщества. Революционные прорывы требуют готовности воспротивиться тому, во что верят все, и заменить старые взгляды на убедительные новые. Вообще, есть одна самая заметная преграда на пути прогресса на протяжении всей истории науки и человеческой мысли в целом – чрезмерная приверженность взглядам прошлого (да и настоящего). И потому, если бы я нанимал людей на творческую работу, я бы остерегался избытка здравомыслия, а вот чудаковатости записывал бы в колонку плюсов и следил бы, чтоб на столе с соусами и приправами всегда было всего вдоволь.

* * *

Еще одно важное противоречие между подходом Аристотеля и тем, который сформировался в науке позднее: первый – качественный, второй – количественный. Современная физика, даже в простейшем школьном виде, – количественная. Ученики, изучающие физику на базовом уровне, знают, что автомобиль, движущийся со скоростью шестьдесят миль в час, ежесекундно преодолевает восемьдесят восемь футов. Они знают, что, если уронить яблоко, его скорость каждую секунду падения будет возрастать на двадцать две мили в час. Они производят математические вычисления – например, сила, с которой ваша спина воздействует на спинку кресла, когда вы в него плюхаетесь, на долю секунды может составлять тысячи фунтов. В физике Аристотеля и близко ничего такого не было. Напротив, он шумно жаловался на философов, пытавшихся превратить философию в математику[129]129
  Daniel Boorstin, The Seekers (New York: Vintage, 1998), стр. 48.


[Закрыть]
.

Во дни Аристотеля любая попытка сделать из натурфилософии количественные исследования была, конечно, затруднена состоянием знания в древней Греции. У Аристотеля не было ни секундомера, ни часов с секундной стрелкой, не сталкивался он и с представлением событий в понятиях их точной продолжительности. Кроме того, сферы алгебры и арифметики, потребные для обращения с подобными данными, развились не больше, чем во времена Фалеса. Как мы уже говорили, знаки плюса, минуса и равенства еще не были изобретены, не существовало и системы чисел или же представления о «милях в час». Однако в XIII веке и после ученые чего-то добились в количественной физике благодаря инструментам и математике ненамного сложнее античных, и потому это не единственные препятствия науке уравнений, измерений и численных предсказаний. Важнее тут другое: Аристотеля, как и всех прочих, попросту не интересовали количественные описания.

Даже изучая движение, Аристотель анализировал его исключительно качественно. Например, представления о скорости у него были довольно смутные: «некоторые предметы движутся далее прочих за одно и то же время». В наше время это утверждение смахивает на записку из печенья с предсказаниями, но во времена Аристотеля люди считали его достаточно точным. Обладая лишь качественными представлениями о скорости они располагали туманнейшими соображениями об ускорении, то есть об изменении скорости или направления движения, а мы учим этому детей в средней школе. С учетом таких фундаментальных различий, отправься кто-нибудь на машине времени и дай Аристотелю текст по Ньютоновой физике, античному ученому он был бы понятен в той же мере, что и книга рецептов приготовления пасты в микроволновке. Он не только не смог бы понять, что Ньютон имел в виду под «силой» или «ускорением», – ему было бы на это начхать.

Аристотеля в процессе его пристальных наблюдений интересовало движение и другие разновидности перемен, происходивших с неким результатом. Он понимал движение, к примеру, не как нечто измеримое, а как явление, в чьем назначении можно было разобраться. Лошадь тянет повозку, чтобы та перемещалась по дороге; коза бродит в поисках еды; мышь убегает, чтобы ее не слопали; кролики портят крольчих, чтобы получилось больше разных кроликов.

Аристотель считал, что Вселенная – единая громадная экосистема, созданная для гармоничного существования. Во всем, на что смотрел, он видел цель. Дождь идет, потому что растениям для роста нужна влага. Растения растут, чтобы животным было что съесть. Виноградные косточки превращаются в лозы, а яйца – в кур, чтобы реализовать потенциал, заложенный в эти косточки и яйца. С незапамятных времен люди всегда приходили к понимаю мира, проецируя на него собственные переживания. И потому в Древней Греции естественнее всего было оценивать предназначение событий физического мира, нежели пытаться объяснить их математическими законами, сформулированными Пифагором и его последователями.

Мы вновь видим, до чего важна для науки постановка вопроса. Даже если бы Аристотель воспринял Пифагоров взгляд на природу как подчиняющуюся количественным законам, он все равно упустил бы главное, поскольку был попросту менее заинтересован в количественных особенностях законов, чем в том, почему предметы им следуют. Что заставляет струну музыкального инструмента или падающий камень вести себя с численно выраженным постоянством? Вот что увлекало Аристотеля, и именно в этом состоит главная разобщенность его философии и того, как занимаются наукой в наши дни: то, что Аристотель воспринимал в природе как предназначение, нынешняя наука таковым не воспринимает.

Это свойство Аристотелева образа мыслей – тяга к поиску предназначения – мощно повлияло на дальнейшее развитие человеческой мысли. Оно сблизит с Аристотелем многих христианских философов, однако затормозит научный прогресс почти на две тысячи лет, поскольку совершенно несовместимо с великими принципами науки, направляющими наши современные исследования. Когда сталкиваются два бильярдных шара, дальнейшие события определяются законами, которые предложил Ньютон, а не вселенским предначертанием.

Наука родилась от фундаментального человеческого стремления познавать наш мир и его смыслы, и потому не удивительно, что жажда предназначения, двигавшая Аристотелем, близка многим и поныне. Представление, что «у всего происходящего есть причина», может утешать стремящихся понять природную катастрофу или иную трагедию. И что, по мнению науки, Вселенной не руководит никакая судьба, может создать о науке впечатление как о холодной и бездушной.

Но есть и другой способ смотреть на это – и мне он знаком благодаря моему отцу. Когда бы мы ни касались темы предназначения, мой отец часто ссылался не на доставшийся ему удел, а на один случай, который произошел с моей матерью до их знакомства, когда ей было всего семнадцать. Нацисты заняли ее город, и один их них, по неведомым для мамы причинам, приказал нескольким десяткам евреев, включая мою маму, встать в ряд на колени в снег. После чего он прошел вдоль всего ряда, останавливаясь каждые несколько шагов и стреляя своим пленникам в голову. Будь это частью божественного или природного великого замысла, мой отец не желал бы иметь с Богом ничего общего. Такие люди, как мой отец, находят облегчение в мысли, что наши жизни, какими бы трагическими или восхитительными ни были, суть результат тех же самых безучастных законов, из-за которых взрываются звезды, и что они, хороши ли, плохи ли, – в конечном счете дар, чудо, какое различимо в безжизненных уравнениях, правящих миром.

* * *

Хотя взгляды Аристотеля преобладали в представлениях о естественном мире вплоть до Ньютонова века, за годы нашлось множество наблюдателей, усомнившихся в Аристотелевых теориях. Возьмем, к примеру, мысль о том, что все предметы, не находящиеся в своем природном движении, станут перемещаться лишь под действием внешней силы. Аристотель сам понял, что тогда встает вопрос: что движет стрелой, копьем или любым другим снарядом после начального воздействия? Его объяснение: поскольку природа «не терпит» пустоты, частицы воздуха мчатся вслед снаряду после начального воздействия и толкают его дальше. Японцы, похоже, успешно применили этот взгляд – таким манером они запихивают пассажиров в вагоны токийского метро, – однако даже сам Аристотель не очень загорелся своей теорией. Ее слабость сделалась еще очевиднее в XIV веке, когда повсеместное применение пушек показало абсурдность представления, что частицы воздуха, мчащиеся позади тяжелых пушечных ядер, толкают их по траектории.

Важно и другое: солдат, стрелявших из пушек, нимало не заботило, частицами воздуха ли приводятся в движения ядра, или же крошечными невидимыми нимфами. Интересовала их траектория движения снарядов и, особенно остро, совпадает ли конечная точка этой траектории с головами их врагов. Эта разница иллюстрирует, какова пропасть между Аристотелем и теми, кто позднее станет называть себя учеными: вопросы вроде траектории снаряда, то есть его скорости и положения в пространстве в разных временных точках движения, Аристотелю виделись несущественными. Однако, если требуется применить законы физики для предсказаний исходов событий, эти вопросы становятся ключевыми. И поэтому науки, постепенно вытеснившие Аристотелеву физику, как раз позволяют, среди прочего, рассчитывать траекторию полета ядра и предоставляют количественные подробности процессов, происходящих в мире, – описывают измеримые силы, скорости и ускорения, а не цели или философские причины этих процессов.

Аристотель знал, что физика его несовершенна. Он писал: «Мой – лишь первый шаг и потому малый, хоть и предпринят ценой многих дум и тяжким трудом. На него следует смотреть как на первый шаг и не судить строго. Вы, мои читатели или же слушатели моих лекций, если думаете, что сделал я, сколько можно по справедливости ожидать от начинателя… признае́те то, чего я добился, и простите то, что я оставил довершить другим»[130]130
  См. George J. Romanes, «Aristotle as a Naturalist», Science, 17 (6 марта 1891), стр. 128–133.


[Закрыть]
. Здесь Аристотель произносит вслух то, что чувствовало большинство гениев физики в дальнейшем. Мы считаем их, ньютонов и эйнштейнов, всезнающими, уверенными в своем видении – или даже высокомерными. Но мы еще убедимся, что они, подобно Аристотелю, многого не понимали и, как Аристотель, знали об этом.

* * *

Аристотель умер в 322 году до н. э., в шестьдесят два, судя по всему – от болезни желудка. За год до этого он вернулся в Афины, где после смерти его бывшего ученика Александра свергли про-македонское правительство. Хотя Аристотель провел двадцать лет в Академии Платона, он всегда считал себя в Афинах чужаком. Об этом городе он писал: «Что годится для гражданина, для чужака – нет; трудно остаться»[131]131
  Boorstin, The Seekers, стр. 47.


[Закрыть]
. Но Александр умер, и вопрос с пребыванием в Афинах встал остро: всем, связанным с Македонией, грозили возможные притеснения, и Аристотель знал, что политически мотивированная казнь Сократа создала прецедент применения цикуты как философского аргумента. Аристотель всегда был глубоким мыслителем и понял, что лучше стать беженцем, чем мучеником. Своему решению он дал возвышенное обоснование[132]132
  «Aristotle», The Internet Encyclopedia of Philosophy, по состоянию на 07.11.2014, http://www.iep.utm.edu.


[Закрыть]
– не дать афинянам погрешить «против философии», однако решение это, как и подход Аристотеля к жизни в целом, было очень практичным.

После смерти Аристотеля его взгляды из поколения в поколение передавали ученики Лицея и комментаторы его работ. Теории его, вместе с традицией обучения в целом, в Раннем Средневековье временно отошли в небытие, но вновь обрели звучание во время Позднего Средневековья – среди арабских философов, от которых о них узнали западные книжники. В несколько видоизмененном варианте его представления наконец стали официальной философией Римской Католической Церкви. Вот так все последующие девятнадцать столетий изучать природу означало изучать Аристотеля.

Мы разобрались, как наш биологический вид развил мозг для того, чтобы задавать вопросы, а также склонность их задавать, а заодно и инструментарий – письменность, математику и понятие о законах – с помощью которого можно подступаться к ответам. Благодаря грекам, научившись применять разум к рассуждению о мироздании, мы достигли берегов достославного нового мира науки. Однако то было лишь начало великого приключения-исследования, что ждало нас впереди.

Часть II
Науки

Догмы тихого прошлого несовершенны… и потому думать и действовать следует по-новому.

Авраам Линкольн, Второе ежегодное послание, 1 декабря 1862 года

Глава 6
Новый способ рассуждать

Написав две книги в соавторстве с друзьями – физиком Стивеном Хокингом и духовным наставником Дипаком Чопрой, я приобрел ценнейший жизненный опыт. Их мировоззрения настолько далеки друг от друга, что могли бы происходить из разных вселенных. Мое видение жизни более или менее такое же, как у Стивена, то есть это взгляд ученого. А вот от Дипакова отличается изрядно, и, видимо, поэтому мы назвали нашу книгу «Война мировоззрений»[133]133
  Рус. изд.: Чопра, Дипак, Млодинов, Леонард, «Война мировоззрений. Наука и духовность». М.: София, 2012, пер. Е. Мирошниченко. – Примеч. перев.


[Закрыть]
, а не «Правда чудесно, что мы во всем друг с другом согласны?»

Дипак пылко убежден в том, во что верит, и, пока мы вместе ездили, он все время пытался обратить меня в свою веру и поставить под сомнение мой подход к пониманию мира. Он называл его редукционистским, поскольку я считаю, что математические законы физики могут рано или поздно объяснить в природе всё, в том числе и человека. Как и большинство других ученых, я считаю – и уже говорил об этом, – что всё, включая, опять-таки, нас самих, состоит из атомов и элементарных частиц материи, которые воздействуют друг на друга посредством четырех фундаментальных сил природы, и, если понять, как оно все работает, можно – по крайней мере, в принципе, – объяснить все происходящее в мире. На практике, разумеется, мы не располагаем ни всеми нужными данными об окружающей среде, ни достаточно мощными компьютерами, чтобы применить фундаментальные теории к анализу явлений вроде человеческого поведения, и потому вопрос о том, управляют ли законы физики умом Дипака, остается открытым.

Я в принципе не возражал, что Дипак меня характеризует как редукциониста, однако ощетинивался, когда он говорил это вслух, потому что произносил он это таким тоном, что я чувствовал себя неловко и насупленно: можно подумать, будто человек, у которого есть душа, не может разделять моих взглядов. По чести сказать, на собраниях поклонников Дипака я иногда ощущал себя, как ортодоксальный ребе на съезде производителей свинины. Мне всегда задавали наводящие вопросы типа: «Ваши уравнения сообщают вам, что я переживаю, глядя на картины Вермеера или слушая симфонию Бетховена?» или «Если ум моей жены на самом деле и волны, и частицы одновременно, как вы объясните ее любовь ко мне?» Приходилось признавать, что ее любовь к нему я объяснить не могу. С помощью уравнений я никакую любовь объяснить не в силах. С моей точки зрения, речь вообще не об этом. Речь вот о чем: как инструмент понимания физического мира, если не нашего умозрительного опыта (во всяком случае, пока), математические уравнения достигли беспрецедентного успеха.

Пусть мы не умеем рассчитывать погоду на следующую неделю, отслеживая движения каждого атома и применяя фундаментальные принципы атомной и ядерной физики, однако есть наука метеорология, использующая сложные математические модели, и завтрашнюю погоду она предсказывает неплохо. Мы применили науку и к исследованию океана, света и электромагнетизма, свойств материалов, заболеваний и десятков других аспектов нашей повседневности так, чтобы использовать накопленное знание в блестящих практических целях, о каких всего несколько столетий назад никто и не мечтал. Сегодня – по крайней мере, среди ученых, – в действенности математического подхода к пониманию физического мира практически никто не сомневается. Однако господствующими подобные взгляды стали далеко не сразу.

Принятие современной науки как метафизической системы, основанной на видении, что природа ведет себя в соответствии с определенными закономерностями, началось с греков, но наука не добилась первого убедительного успеха в применении своих законов вплоть до XVII века. Огромен скачок от философских идей Фалеса, Пифагора и Аристотеля к взглядам Галилея и Ньютона. И все же две тысячи лет – многовато даже для такого скачка.

* * *

Первым камнем преткновения на пути принятия греческого наследия и дальнейшего строительства с опорой на него стало завоевание римлянами Греции в 146 году до н. э. и Месопотамии – в 64-м до н. э. Расцвет Рима стал началом многовекового заката интереса к философии, математике и науке даже среди грекоговорящей интеллектуальной верхушки, поскольку римляне с их практическим умом не слишком ценили эти области исследования. Замечание Цицерона[134]134
  Morris Kline, Mathematical Thought from Ancient to Modern Times, т. 1 (Oxford: Oxford University Press, 1972), стр. 179.


[Закрыть]
дивно передает презрение римлян к теоретическим изысканиям: «Греки, – говорил он, – премного почитали геометров, и, соответственно, блистательнее всего у них развивалась математика. Однако мы определили предел этому искусству полезностью в измерении и счете». Так все и было: за примерно тысячу лет существования Римской республики и ее наследницы, Римской империи, римляне добились масштабных и впечатляющих инженерных успехов благодаря, разумеется, навыкам в измерениях и счете, однако, насколько нам известно, в тот период не возникло ни единого римского математика, достойного упоминания. Этот поразительный факт свидетельствует о громадном воздействии культуры на развитие математики и науки.

Хоть Рим и не обеспечил благоприятных для науки условий, после распада Западной Римской империи в 476 году н. э. все стало еще хуже. Города сжались, установилась феодальная система[135]135
  Kline, Mathematical Thought, стр. 204; J. D. Bernal, Science in History, т. 1 (Cambridge, Mass.: MIT Press, 1971), стр. 254.


[Закрыть]
, христианство завладело Европой, и центрами интеллектуальной жизни сделались провинциальные монастыри, а чуть позднее – школы при соборах, а это значит, что образование сосредоточилось на религиозных вопросах, исследования же природы стали считаться легкомысленными и недостойными. Постепенно интеллектуальное наследие греков было для Западного мира утеряно.

К счастью для науки, в арабском мире правящий мусульманский класс, напротив, счел греческое знание ценным. Речь не о том, что в арабском мире искали знания ради него самого – такой поиск поощрялся исламской идеологией не больше, чем христианством. Однако состоятельные арабские покровители желали финансировать переводы греческих научных трудов на арабский, поскольку считали, что греческая наука – штука полезная. И, конечно же, несколько сотен лет[136]136
  Kline, Mathematical Thought, стр. 211.


[Закрыть]
средневековые исламские ученые сами добивались замечательных успехов в прикладной оптике, астрономии, математике и медицине, обогнав европейцев, чья интеллектуальная традиция замерла без развития[137]137
  Средневековый период длится с 500 до 1500 года н. э. (или же, по некоторым определениям, до 1600-го). В любом случае он охватывает, с некоторым перекрытием, эпоху между культурными достижениями Римской империи и расцветом науки и искусств Возрождения. Об этом времени в XIX веке пренебрежительно говорили как о «тысяче лет без бани».


[Закрыть]
.

Тем не менее, к XIII–XIV векам[138]138
  David C. Lindberg, The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450 (Chicago: University of Chicago Press, 1992), стр. 180–181.


[Закрыть]
, когда европейцы начали пробуждаться от длительной дремы, наука в исламском мире пришла в значительный упадок. Случился он, похоже, по нескольким причинам. Во-первых, консервативные религиозные силы принялись навязывать суженное понимание практической применимости, кою считали единственным приемлемым оправданием научным занятиям. Во-вторых, для процветания науке нужно процветающее общество, у которого есть возможности частного или государственного покровительства, поскольку большинство ученых не могло выживать в условиях открытого рынка. В поздние Средние века, однако, арабский мир подвергался атакам внешних сил – от Чингисхана до крестоносцев, а изнутри его раздирали междоусобицы. Ресурсы, прежде выделявшиеся на искусства и науки, теперь поглощала война – и борьба за выживание.

Еще одна причина упадка наук: школы, составившие значимую часть интеллектуальной жизни в арабском мире, не ценили своего положения. Эти школы назывались медресе и были благотворительными фондами, существовавшими на религиозные пожертвования, а основатели и попечители этих школ к наукам относились с подозрением. В результате все обучение должно было сосредоточиваться на религии и исключать философию и науку[139]139
  Toby E. Huff, The Päse of Early Modern Science: Islam, China, and the West (Cambridge, U.K.: Cambridge University Press, 1993), стр. 74.


[Закрыть]
. Любое преподавание этих предметов – вне школы. За неимением учреждения, поддерживавшего и объединявшего их, ученые отдалились друг от друга, что создало серьезную преграду для углубленного научного обучения и исследований[140]140
  Там же, стр. 77, 89. Хафф и Джордж Салиба расходятся во мнениях о происхождении и особенностях исламской науки, особенно в отношении астрономии, что привело к плодотворным и вдохновенным обсуждениям в этом поле исследования. Подробнее о доводах Салибы см. Islamic Science and the Making of the European Renaissance (Cambridge, Mass.: MIT Press, 2007).


[Закрыть]
.

Ученые не могут существовать в вакууме. Даже величайшие невероятно много получают от общения с коллегами в своей области. Недостаток контакта между исследователями в исламском мире создал неблагоприятную среду для перекрестного умственного опыления, необходимого прогрессу. Более того, без полезной здоровой критики стало непросто держать в рамках распространение теорий, которым не хватало эмпирической базы, и трудно собрать критическую массу поддержки тем ученым и философам, кто сомневался в привычных истинах.

Сопоставимое интеллектуальное удушье случилось и в Китае, другой великой цивилизации[141]141
  Подробнее см. Huff, Rise of Early Modern Science, стр. 276–278.


[Закрыть]
, которая могла бы развить современную науку прежде европейцев. Население Китая в период Высокого Средневековья (1200–1500 годы) составляло более ста миллионов человек, что примерно вдвое больше, чем в Европе того периода. Но китайская система образования, подобно той, что существовала в исламском мире, оказалась куда слабее развивавшейся в Европе – во всяком случае, в отношении науки. Ее строго контролировали и сосредоточивали на литературе и нравственном совершенствовании, а научным нововведениям и научному творчеству внимания уделяли мало. Положение дел практически не менялось, начиная с первых монархов династии Мин (1368 год) и до XX века. Как и в арабском мире, были достигнуты лишь скромные успехи в науке (в отличие от техники), и дались они не благодаря, а вопреки образовательной системе. Мыслителям, критиковавшим интеллектуальный «статус кво» и пытавшимся развить и упорядочить интеллектуальные инструменты, необходимые для поддержки жизни ума, сильно противодействовали – мешали и применению эмпирических данных для углубления познаний. Индийский[142]142
  Bernal, Science in History, стр. 334.


[Закрыть]
правящий класс, приверженный кастовому общественному устройству, тоже предпочитал стабильность в ущерб интеллектуальному совершенствованию. В результате, хоть и в арабском мире, и в Китае, и в Индии возникли великие мыслители в отдельных областях знания, однако ученых, равных тем, кто позднее сотворил на Западе современную науку, – не было.

* * *

Возрождение науки в Европе[143]143
  Lindberg, Beginnings of Western Science, стр. 203–205.


[Закрыть]
началось ближе к концу XI века, когда монах-бенедиктинец Константин Африканский начал переводить древнегреческие медицинские трактаты с арабского на латынь. Как и в арабском мире, желание учить греческую мудрость произрастало из практических соображений, и первые переводы подогрели аппетит к переводу и других практических работ по медицине и астрономии. В 1085 году во время христианского похода на Испанию в руки к христианам попали целые библиотеки арабских книг, и за несколько следующих десятилетий множество их оказалось переведено, отчасти благодаря щедрому финансированию заинтересованных местных епископов.

Влиятельность новообретенных трудов трудно себе представить: вообразите, что современные археологи наткнулись на переводы табличек с древними вавилонскими текстами и обнаружили, что в них представлены научные теории куда сложнее наших. В следующие несколько столетий финансирование переводов среди светской и торговой элиты эпохи Возрождения стало символом положения в обществе. Вновь добытое знание распространилось за пределы Церкви и стало своего рода валютой, собираемой богатеями так, как нынче собирают предметы искусства, – и, разумеется, богатеи кичились своими книгами и картами, как в наши дни – скульптурами или живописными полотнами. Постепенно вновь возросшая ценность знания[144]144
  J. H. Parry, Age of Reconnaissance: Discovery, Exploration, and Settlement, 14501650 (Berkeley: University of California Press, 1982). В особенности см. часть 1.


[Закрыть]
, независимого от его практической применимости, привела к почитанию научного поиска. Со временем это почитание посягнуло на церковное «владение» истиной. С истиной, открытой Писанием и церковной традицией, взялась состязаться другая – истина, открытая природой.

Но одного лишь перевода и чтения древнегреческих трудов для «научной революции» недостаточно. Развитие нового учреждения[145]145
  Huff, Rise of Early Modern Science, стр. 187.


[Закрыть]
, университета, – вот что действительно преобразило Европу. Университеты стали движущей силой развития науки в современном нам виде, вывели Европу на передовой край науки на много веков и дали случиться величайшим научным прорывам, какие видел белый свет.

Революцию образования[146]146
  Lindberg, Beginnings of Western Science, стр. 206–208.


[Закрыть]
питало укреплявшееся благоденствие и обилие профессиональных возможностей для хорошо образованной публики. Города вроде Болоньи, Парижа, Падуи и Оксфорда приобрели репутацию центров учености, студенты и наставники тянулись туда во множестве. Преподаватели начинали работу либо самостоятельно, либо под покровительством уже существовавшей школы. Постепенно из них сложились добровольные ассоциации – по образу ремесленных гильдий. Хотя ассоциации эти называли себя «университетами», поначалу то были просто объединения без земельной собственности и определенного месторасположения. Университеты в знакомом нам виде возникли несколькими десятилетиями позже: в Болонье – в 1088 году, в Париже – около 1200-го, в Падуе – около 1222-го, в Оксфорде – к 1250-му. Центром внимания в университетах стала естественная наука, а не религия, и ученые собирались в них общаться и вдохновлять друг друга[147]147
  Huff, Rise of Early Modern Science, стр. 92.


[Закрыть]
.

Нельзя сказать, что университет средневековой Европы был райскими кущами. Например, даже в 1495 году немецкие власти сочли необходимым недвусмысленно запретить всем, имеющим отношение к университету, обливать первокурсников мочой – этого указа более не существует, однако я по-прежнему требую от своих студентов подчинения ему. Преподаватели же частенько не располагали подходящей аудиторией и вынуждены были читать лекции в доходных домах, церквях или даже борделях. Более того, педагогам обычно платили напрямую сами студенты – они могли нанимать и увольнять своих преподавателей. В Университете Болоньи бытовало еще одно причудливое отклонение от принятой в наши дни нормы: студенты штрафовали преподавателей за беспричинный пропуск занятия или опоздание – или же за неспособность ответить на трудный вопрос. А если лекция оказывалась неинтересной или ее читали слишком медленно или слишком быстро, учащиеся вопили и буянили. Агрессивные наклонности студентов настолько вышли в Лейпциге из берегов, что университету пришлось вменить правило, запрещающее швырять в преподавателей камни.

Вопреки этим практическим трудностям европейские университеты сильно поддержали научный прогресс – отчасти тем, что давали людям делиться соображениями и обсуждать их вместе. Ученые в силах выдержать отвлечения в виде вопящих студентов или даже – иногда – брошенный в них пузырь с мочой, а вот без академических семинаров, которым конца не видать, – немыслимо. Ныне бо́льшая часть научных новшеств произрастает из университетских исследований, как и должно быть, потому что именно в них вкладывается львиная доля финансирования фундаментальных разработок. Но, что исторически не менее важно, университеты были средоточием ума.

Считается, что научная революция, которая отдалила нас от аристотелизма, преобразила наши взгляды на природу и общество и создала основу того, кто мы есть ныне, началась с гелиоцентрической теории Коперника и достигла пика в Ньютоновой физике. Но такая картинка – упрощение: хоть я и применяю словосочетание «научная революция» для удобства и краткости, ученые, связанные с ней, имели крайне разнообразные цели и взгляды, а не являли собой единую команду, сознательно пытавшуюся создать новую систему мышления. Что еще важнее, изменения, описываемые как «научная революция», на самом деле происходили постепенно: грандиозный храм знания, построенный великими умами 15501700-х годов, и его вершина, Ньютон, не возникли из ниоткуда. Тяжкий труд закладки фундамента под эту постройку производили средневековые мыслители первых европейских университетов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации