Электронная библиотека » Лоуренс Краусс » » онлайн чтение - страница 3

Текст книги "Всё из ничего"


  • Текст добавлен: 21 апреля 2022, 19:13


Автор книги: Лоуренс Краусс


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

Есть люди, для которых литий важен, однако для нас с вами гораздо важнее более тяжелые ядра – углерод, азот, кислород, железо и т. д. Они в результате Большого взрыва не возникли. Создание их возможно только в раскаленных недрах звезд. А попасть к вам в организм они сумеют, только если звезда окажет им любезность и взорвется, развеяв свое содержимое по космосу, и тогда в один прекрасный день атомы встретятся, соединятся и войдут в состав маленькой голубой планетки, расположенной возле звезды по имени Солнце. За всю историю нашей Галактики в ней взорвалось около 200 млн звезд. Эти сонмища звезд пожертвовали собой, если хотите, ради того, чтобы вы когда-нибудь родились. По-моему, они подходят на роль спасителя ничуть не хуже любой другой кандидатуры.

Как показали тщательные исследования, проведенные в 1990-е гг., взрывающиеся звезды определенной разновидности, так называемые сверхновые типа Ia, обладают замечательным свойством: те из них, которые имеют бо́льшую светимость[10]10
  Принятое в астрономии название для энергии, излучаемой звездой в единицу времени. – Прим. науч. ред.


[Закрыть]
, светят дольше. Эмпирически эта зависимость прослеживается очень надежно, хотя теоретически мы еще не вполне понимаем, почему это так. А значит, такие сверхновые служат прекрасными «стандартными свечами». С их помощью можно калибровать расстояния, поскольку их светимость можно определить посредством измерения, которое не зависит от расстояния. Если мы обнаружили сверхновую такого типа в далекой галактике, – а это нам по силам, потому что они очень яркие, – то можно пронаблюдать, сколько времени она светится, и установить ее светимость. А тогда, измеряя ее видимую яркость с помощью телескопа, можно точно подсчитать, на каком расстоянии от нас находится и сама сверхновая, и ее галактика. Затем, измерив красное смещение света звезд в этой галактике, можно определить ее скорость, сравнить скорость движения галактики с расстоянием до нее и сделать вывод о темпе расширения Вселенной.

Замечательно, но, если сверхновые в отдельно взятой галактике взрываются только раз в 100 лет, каков шанс, что нам доведется это увидеть? Ведь последнюю сверхновую в нашей Галактике наблюдал еще Иоганн Кеплер в 1604 г.! Говорят, что сверхновые в нашей Галактике наблюдаются только при жизни великих астрономов, а Кеплер, безусловно, заслуживает такого звания.

Сначала Кеплер был простым учителем математики в Австрии, а затем стал помощником астронома Тихо Браге, который тоже – еще до Кеплера – наблюдал сверхновую в нашей Галактике и за это получил в дар от датского короля целый остров. На основании данных о положении планет, собранных Браге более чем за 10 лет, Кеплер в начале XVII в. вывел три своих знаменитых закона движения планет:

1. Планеты движутся вокруг Солнца по эллипсам.

2. Линия, соединяющая планету с Солнцем, заметает равные площади за равные промежутки времени.

3. Квадрат периода обращения планеты по орбите прямо пропорционален кубу большой полуоси его орбиты (то есть большой полуоси эллипса – половине самой длинной из осей, проходящих через его центр).

А эти законы, в свою очередь, почти 100 лет спустя легли в основу закона всемирного тяготения Ньютона. Но это не единственное замечательное достижение Кеплера: он еще и успешно защитил собственную мать от обвинений в колдовстве, и написал, возможно, первое в истории научно-фантастическое произведение – о путешествии на Луну.

В наши дни, чтобы увидеть сверхновую, надо просто посадить по аспиранту наблюдать за каждой галактикой в небе. Ведь в космических масштабах 100 лет – это период, не слишком сильно отличающийся от среднего времени написания диссертации, а аспиранты дешевы и многочисленны. Однако, к счастью, можно обойтись и без таких крайних мер – по очень простой причине: Вселенная стара и очень велика, а поэтому редкие события происходят в ней все время.

Так что отправляйтесь как-нибудь ночью на лесную поляну или в пустыню, где хорошо видно звезды, и поднимите руку к небу, соединив большой и указательный пальцы в кружок размером примерно с десятицентовик[11]11
  Примерно соответствует диаметру современного российского рубля. – Прим. ред.


[Закрыть]
. Нацельтесь на темный участок неба, где звезд вообще не видно. В достаточно большие телескопы, которыми сегодня пользуемся мы, астрономы на этом клочке неба могут различить около 100 000 галактик, и в любой из них – миллиарды звезд. А поскольку в каждой из этих галактик в среднем раз в 100 лет взрывается сверхновая, можно ожидать, что в каждую конкретную ночь на этом участке неба взорвется примерно три звезды.

Именно так астрономы и поступают. Они запрашивают время для работы на телескопе – и в какие-то ночи наблюдают одну сверхновую, в какие-то – две, а иногда погода стоит пасмурная и вообще ничего не видно.

Вот таким способом нескольким исследовательским группам удалось определить постоянную Хаббла с погрешностью менее 10 %. Новая величина – около 70 км/с для галактик, находящихся от нас на среднем расстоянии в 3 млн световых лет, – почти на порядок меньше, чем получилось у Хаббла и Хьюмасона. В результате мы делаем вывод, что возраст Вселенной ближе к 13 млрд лет, а вовсе не к 1,5 млрд лет.

Как я еще покажу, эта цифра полностью совпадает с независимыми оценками возраста самых старых звезд в нашей Галактике. Четыреста лет современной науки – от Браге до Кеплера, от Леметра до Эйнштейна и Хаббла, от спектров звезд до распространенности легких элементов – составили яркую, непротиворечивую картину расширяющейся Вселенной. Все сходится. Концепция Большого взрыва находится в отличной форме.

Глава 2
Сага о тайнах Вселенной: космос на вес

Бывает известное известное. Это вещи, о которых мы знаем, что их знаем. Бывает известное неизвестное. Это, так сказать, вещи, о которых мы знаем, что их не знаем. Но бывает еще и неизвестное неизвестное. Это вещи, о которых мы не знаем даже того, что о них не знаем.

ДОНАЛЬД РАМСФЕЛД

Теперь, когда мы установили, что у Вселенной было начало и зародилась она в определенный момент в прошлом, приходит на ум резонный вопрос: «А как она закончится?»

Вообще говоря, именно этот вопрос заставил меня в свое время покинуть родное поприще – физику частиц – и углубиться в дебри космологии. В 1970-е и 1980-е гг. с появлением все новых и новых результатов детальных измерений движения звезд и газа в нашей Галактике, а также движения галактик в крупных скоплениях, так называемых кластерах, напрашивался все более очевидный вывод, что во Вселенной есть нечто такое, чего не видно ни невооруженным глазом, ни даже в телескоп.

Главная сила, которая действует на огромных пространствах галактик, – гравитация, поэтому измерение движения объектов на подобных масштабах позволяет исследовать гравитационное притяжение, которое управляет этими движениями. Подобные измерения начались с новаторской работы американского астронома Веры Рубин и ее коллег в начале 1970-х гг. Рубин защитила диссертацию в Джорджтаунском университете, а до этого училась на вечернем отделении, причем муж дожидался ее в машине, потому что она водить не умела. Вера подавала документы в Принстон, в магистратуру по астрономии, но туда до 1975 г. не принимали женщин. В итоге Рубин стала лишь второй женщиной, получившей золотую медаль Королевского астрономического общества. Эта награда и многочисленные заслуженные почести достались ей благодаря революционным измерениям скорости вращения нашей Галактики. Вера Рубин наблюдала звезды и горячий газ, находившиеся на все большем расстоянии от центра нашей Галактики, и определила, что эти области движутся гораздо быстрее, чем должны были бы, если бы сила гравитации, управляющая их движением, соответствовала массе всех наблюдаемых объектов в пределах Галактики. Впоследствии благодаря трудам Рубин космологам стало ясно, что объяснить это движение можно лишь одним способом – предположить, что масса нашей Галактики гораздо больше, чем суммарная расчетная масса всех звезд и всего горячего газа, наблюдаемых в ней.

Однако в этой гипотезе была одна неувязка. Те самые расчеты, которые прекрасно описывали наблюдаемую во Вселенной распространенность легких элементов (водорода, гелия и лития), также говорили нам о том, сколько всего во Вселенной должно существовать протонов и нейтронов – составных частей обычного вещества. Тут все как в кулинарном рецепте, просто кухня у нас ядерная: объем получившегося блюда зависит от того, сколько в него положить каждого из ингредиентов. Если удваиваешь рецептуру – кладешь, например, четыре яйца вместо двух, то конечного продукта, в данном случае глазуньи, получится в два раза больше. И тем не менее первоначальная плотность протонов и нейтронов во Вселенной, возникшая при Большом взрыве, если определить ее в соответствии с наблюдаемым количеством водорода, гелия и лития, давала примерно в два раза больше материала, чем мы видим в звездах и раскаленном газе. Где же все эти частицы?

Придумать, где спрятать протоны и нейтроны, довольно легко (ни сугробы, ни планеты, ни специалисты по космологии не излучают свет), поэтому многие физики предположили, что существуют какие-то невидимые – «темные» – объекты, в которых столько же протонов и нейтронов, сколько и в видимых. Однако, если посчитать, сколько этого «темного вещества» нужно, чтобы объяснить движение видимого вещества в нашей Галактике, мы обнаружим, что отношение общего количества вещества к видимому – вовсе не 2 к 1, а скорее 10 к 1. И если это не ошибка, то темное вещество не может состоять из протонов и нейтронов. Их просто не хватит.

В начале 1980-х гг. я был юным физиком со специализацией по элементарным частицам, и когда узнал о том, что, вероятно, существует экзотическое темное вещество, то пришел в восторг. Ведь из этого буквально следовало, что доминирующие частицы во Вселенной – это не старые добрые нейтроны и протоны, которых кругом навалом, а, возможно, какая-то совершенно новая элементарная частица, нечто, чего в наши дни нет на Земле, нечто загадочное, струящееся меж звезд – какой-то тайный режиссер-постановщик гравитационного балета, который мы зовем Галактикой.

Однако лично меня еще больше приводили в восторг три новых направления исследований, которые потенциально могли представить мироздание в совершенно новом свете.

1. Если эти частицы были порождены Большим взрывом, как и легкие элементы, о которых я уже писал, мы наверняка можем опереться на наши знания о силах, определяющих взаимодействия элементарных частиц (а не ядер, взаимодействия между которыми важны при определении распространенности химических элементов), чтобы оценить количество возможных экзотических новых частиц в сегодняшней Вселенной.

2. Может быть, удастся вывести общее количество темного вещества во Вселенной на основании теоретических идей в физике элементарных частиц либо предложить новые эксперименты по обнаружению темного вещества; и то и другое покажет, сколько имеется вещества в целом, а следовательно, какова геометрия нашей Вселенной. Задача физики – не изобретать то, чего мы не видим, чтобы объяснить то, что мы видим, а разобраться, как увидеть то, чего мы не можем видеть, – увидеть то, что раньше было невидимым, то есть известное неизвестное. Каждый новый кандидат на темное вещество из числа элементарных частиц подразумевает новые эксперименты, которые позволили бы непосредственно зарегистрировать частицы темного вещества в их шествии через Галактику: надо построить на Земле приборы, которые бы регистрировали такие частицы, когда Земля пересекает их путь в космосе. Если частицы темного вещества пронизывают всю Галактику рассеянными потоками, значит, они уже здесь, вокруг нас, их присутствие могут выявить наземные детекторы, и можно не высматривать в телескопы далекие объекты.

3. Если мы сумеем определить природу темного вещества и его количество, то, пожалуй, сможем предсказать, каков будет конец Вселенной.

Последний пункт, наверное, самый интересный, поэтому начну с него. Честно говоря, я на самом деле пошел в космологию потому, что хотел стать первым, кто узнает, чем кончится история Вселенной.

Тогда это казалось отличной идеей.

Главной идеей общей теории относительности Эйнштейна было предположение о том, что в присутствии вещества или энергии пространство искривляется. Эта теоретическая идея перестала быть чистой спекуляцией в 1919 г., когда две экспедиции пронаблюдали, как свет звезд огибает Солнце во время солнечного затмения в точности в той степени, в какой должен был, если присутствие Солнца искривляет пространство по Эйнштейну. Автор теории практически мгновенно прославился – и теперь его имя знают все. (Правда, большинство считает, будто известность ему принесло уравнение E = mc2, полученное на 15 лет раньше, но это лишь распространенное заблуждение.)

Так вот, если пространство потенциально искривлено, то геометрия всей нашей Вселенной становится гораздо интереснее. В зависимости от общего количества вещества во Вселенной она может существовать в геометрии каждого из трех типов – речь идет о так называемых открытой, замкнутой и плоской моделях Вселенной.

Вообразить, как именно выглядит искривленное трехмерное пространство, довольно трудно. Поскольку мы существа трехмерные, нам не легче интуитивно представить себе искривленное трехмерное пространство, чем двумерным героям знаменитой книги про Флатландию[12]12
  Вымышленный двумерный мир, описанный Эдвином Эбботтом. – Прим. науч. ред.


[Закрыть]
вообразить, как выглядел бы их мир в глазах трехмерного наблюдателя, если бы, например, оказался искривлен наподобие поверхности сферы. Более того, если кривизна невелика, трудно представить себе, как ее можно обнаружить в повседневной жизни, – точно так же, как в Средние века многие были уверены, что Земля плоская, поскольку она выглядела плоской.

Представить себе искривленную трехмерную Вселенную, повторяю, довольно сложно. Вот, скажем, замкнутая Вселенная – это трехмерная сферическая поверхность в четырехмерном пространстве, что само по себе звучит устрашающе. Зато эти пространства в некотором смысле легко описать. Если в замкнутой Вселенной долго-долго смотреть в одном направлении, то в конце концов увидишь собственный затылок.

Хотя эти экзотические геометрии могут показаться чистым курьезом, а то и попыткой произвести впечатление в беседе, на практике из их существования проистекали бы намного более важные последствия. ОТО недвусмысленно утверждает, что замкнутая Вселенная, в которой плотность энергии определяется в основном веществом вроде звезд и галактик и в еще больше степени – экзотическим темным веществом, в один прекрасный день должна схлопнуться – в сущности, это будет процесс Большого взрыва наоборот, Большой хруст, если угодно. Открытая Вселенная будет и дальше расширяться с конечной скоростью, а плоская Вселенная занимает промежуточное положение: ее расширение будет замедляться, но никогда не остановится.

Поэтому определение количества темного вещества, а следовательно, общей плотности массы во Вселенной обещало дать ответ на извечный вопрос (а если и не извечный, то, по крайней мере, такой же древний, как поэт Т. С. Элиот): чем же кончится мир – взрывом или стоном? Сага об определении общего количества темного вещества насчитывает уже как минимум полвека, и о ней можно написать целую книгу – на самом деле я так и сделал, и книга называется «Квинтэссенция» (Quintessence). Но сейчас я продемонстрирую, что одна-единственная картинка действительно может стоить тысячи (а то и ста тысяч) слов, но сделаю это сначала все-таки словами и только потом – картинкой.

Самые крупные гравитационно связанные объекты во Вселенной называются сверхскоплениями галактик. Они состоят из тысяч, а то и больше отдельных галактик и могут тянуться на десятки миллионов световых лет. Большинство галактик входят в подобные сверхскопления; в частности, наша собственная Галактика находится в сверхскоплении Девы, центр которого расположен почти в 60 млн световых лет от нас.

Поскольку сверхскопления так велики и массивны, почти все вещество во Вселенной входит в какое-нибудь скопление. А значит, если мы сумеем «взвесить» сверхскопления галактик, а затем оценить общую плотность таких сверхскоплений во Вселенной, то получим возможность «взвесить Вселенную» вместе с темным веществом. Сделав это, мы на основе уравнений ОТО определим, достаточно ли у нас вещества, чтобы Вселенная замкнулась.

Пока все неплохо, но как взвесить объекты с габаритами в десятки миллионов световых лет? Проще простого. У нас же есть гравитация.

В 1936 г. Альберт Эйнштейн по настоянию астронома-любителя Руди Мандла опубликовал в журнале Science заметку под названием «Линзоподобное действие звезды при отклонении света в гравитационном поле». В этой краткой статье Эйнштейн рассказал о примечательном явлении: само пространство может действовать как линза, то есть искривлять и усиливать свет, в точности как линзы в моих очках.

В то время нравы в научном сообществе были куда как мягче, и интересно читать, как неформально начинает Эйнштейн свою статью, опубликованную, между прочим, в авторитетном научном журнале: «Некоторое время тому назад меня навестил Р. Мандл и попросил опубликовать результаты небольшого расчета, который я провел по его просьбе. Уступая его желанию, я решил опубликовать эту заметку»[13]13
  Здесь и далее цит. по: Эйнштейн А. Собрание научных трудов в четырех томах. – М.: Наука, 1965. – Прим. пер.


[Закрыть]
. Не исключено, что подобный задушевный тон не возбранялся одному только Эйнштейну, но мне приятнее полагать, что это просто продукт эпохи, когда научные результаты не всегда облекались в слова, недоступные пониманию простых смертных.

Так или иначе, то, что свет следует по искривленной траектории, если само пространство искривляется в присутствии вещества, стало первым значительным прогнозом ОТО и открытием, которое, как я уже упоминал, принесло Эйнштейну международную славу. Поэтому, возможно, не стоит удивляться, что (как было недавно обнаружено) еще в 1912 г., то есть задолго до того, как Эйнштейн завершил работу над ОТО, он пытался найти какое-то наблюдаемое явление, которое убедило бы астрономов в правоте его теории, и проделал практически те же вычисления, что были изложены по просьбе мистера Мандла в статье 1936 г. Быть может, тогда, в 1912 г., он не стал публиковать свои расчеты, потому что пришел к тому же выводу, что и в статье 1936 г.: «Конечно, нельзя надеяться на то, что удастся прямо наблюдать это явление». Более того, изучая его записные книжки обоих периодов, нельзя сказать с уверенностью, что он вообще помнил, что 24 года назад занимался теми же расчетами.

Зато в обоих случаях он прекрасно понимал, что искривление света в гравитационном поле может означать, что если яркий объект расположен далеко позади большой массы, то свет, идущий от него разными путями, может огибать этот массивный объект и сходиться снова, в точности как при прохождении сквозь обычную линзу, и тогда либо первоначальный объект окажется увеличен, либо получится несколько копий его изображения, причем некоторые из них будут искажены (см. рисунок на следующей странице).



Когда Эйнштейн вычислил ожидаемый эффект от линзирования далекой звезды другой звездой, расположенной в промежутке, эффект оказался очень мал и представлялся совершенно неизмеримым. Поэтому-то Эйнштейн и сделал в статье оговорку о том, что такое явление едва ли удастся когда-нибудь пронаблюдать. В результате Эйнштейн заключил, что его статья не имеет особой практической ценности. Вот как он писал об этом редактору Science: «Позвольте также поблагодарить вас за содействие в публикации заметки, которую выжал из меня мистер Мандл. Пользы от нее никакой, зато бедняге будет приятно».

Однако Эйнштейн не был астрономом – а нужен был именно астроном, чтобы разобраться, что эффект, который он предсказал, можно не просто измерить, но еще и извлечь из него пользу. Для этого понадобилось оценить эффект гравитационной линзы, который оказывают на далекие объекты гораздо более крупные системы – галактики и даже скопления галактик, поскольку линзирование звезд звездами и правда слишком слабо. Не прошло и нескольких месяцев после публикации заметки Эйнштейна, как блистательный астроном из Калифорнийского технологического института Фриц Цвикки представил в журнал Physical Review статью, в которой показал практическую осуществимость именно такой схемы (и тем самым косвенным образом упрекнул Эйнштейна в том, что тот думал только о звездах и не сообразил, какими мощными гравитационными линзами могут служить галактики).

Цвикки славился вспыльчивым характером, зато далеко опережал свое время. Так, он еще в 1933 г. проанализировал относительное движение галактик в скоплении Волосы Вероники и на основании законов Ньютона определил, что галактики движутся так быстро, что должны были бы давно разлететься в стороны, а скопление – распасться. И если этого не произошло, то масса скопления гораздо больше – в 100 с лишним раз, – чем масса одних только звезд. Именно Цвикки по праву можно считать первооткрывателем темного вещества, хотя в то время его вывод был настолько неожиданным, что большинство астрономов, скорее всего, считали, что должно найтись какое-то другое объяснение, не такое экзотическое.

Статья Цвикки, опубликованная в 1937 г. и занимавшая всего страницу, была не менее примечательной. Он предложил три разных способа применения гравитационных линз: 1) проверка ОТО, 2) использование близлежащих галактик как своего рода космического телескопа для увеличения далеких объектов, которые иначе невозможно рассмотреть в земные телескопы, а главное – 3) ответ на загадку, почему скопления как будто весят гораздо больше, чем можно приписать одному лишь видимому веществу: «Наблюдения отклонения света вокруг туманностей способны обеспечить самое прямое определение масс туманностей и разъяснить вышеуказанное несоответствие».

Статье Цвикки уже более 80 лет, однако читается она как вполне современное предложение применять гравитационные линзы для исследования Вселенной. И в самом деле, сбылись все до единого прогнозы Цвикки, включая и самый главный – последний. Гравитационное линзирование далеких квазаров расположенными ближе них галактиками удалось пронаблюдать в 1987 г., а в 1998 г., спустя 61 год после того, как Цвикки предложил взвешивать туманности при помощи гравитационных линз, этот метод позволил определить массу крупного скопления.

В тот год физик Тони Тайсон и его коллеги из исследовательского центра Bell Laboratories (в свое время заслуженно увенчанного всевозможными лаврами, в том числе и нобелевскими, за самые разные достижения – от изобретения транзистора до открытия реликтового излучения) пронаблюдали крупное далекое скопление, получившее поэтичное название CL0024+1654, которое находится на расстоянии около 5 млрд световых лет от нас. Великолепный снимок космического телескопа имени Хаббла стал ярким примером кратного изображения далекой галактики, находящейся еще на 5 млрд световых лет дальше скопления. Видите сильно искаженные продолговатые пятнышки среди других галактик, в основном более округлых?



Когда разглядываешь этот снимок, он будоражит воображение. Во-первых, каждое пятнышко на фото – не звезда, а галактика. Каждая галактика состоит, может быть, из 100 млрд звезд, а при них, вероятно, сотни миллиардов планет, и среди них, не исключено, – давно погибшие цивилизации. Я говорю «давно погибшие», поскольку этой картинке 5 млрд лет. Свет оттуда отправился в путь за 500 млн лет до того, как сформировались наше Солнце и Земля. Многих звезд, запечатленных на этом снимке, давно уже нет, они израсходовали свое ядерное топливо миллиарды лет назад. Далее, искаженные очертания галактик – это именно тот эффект, о возможности которого говорил Цвикки. Большие искаженные изображения левее центра снимка – это сильно увеличенные (и вытянутые) версии той далекой галактики, которую иначе, вероятно, вообще не было бы видно.

Вычислить распределение массы в скоплении исходя из этого изображения – сложная и многоступенчатая математическая задача. Для ее решения Тайсону пришлось создать компьютерную модель скопления и проследить на основе законов ОТО все возможные пути, которыми свет источника может пройти сквозь скопление – и так до тех пор, пока итог не будет в наилучшей степени соответствовать наблюдениям ученых. В конце концов Тайсон с сотрудниками построил графическое изображение, которое точно показывало, где расположена масса в системе, запечатленной на изначальном снимке.



Картина получилась очень странная. Пики на графике показывали расположение галактик, видимых на снимке, однако основная масса в системе была распределена между галактиками, причем достаточно равномерно. В сущности, между галактиками находилось в 40 с лишним раз больше массы, чем содержит видимое вещество системы (и в 300 раз больше массы, чем содержится в одних только звездах: остальное видимое вещество представлено горячим газом вокруг них). Было очевидно, что темное вещество не сосредоточено в границах отдельных галактик и в то же время составляет основную массу в скоплениях.

Специалисты по элементарным частицам, в том числе и я, ничуть не удивились, когда обнаружилось, что темное вещество доминирует и в скоплениях. Хотя у нас не было ни единого прямого доказательства, все мы надеялись, что темного вещества окажется достаточно, чтобы наша Вселенная стала плоской, а для этого его должно было оказаться более чем в 100 раз больше, чем видимого вещества.

Причина была проста: только плоская Вселенная обладает математической красотой. Почему? Следите за ходом моей мысли.

Независимо от ответа на вопрос, достаточно ли темного вещества, чтобы Вселенная оказалась плоской, наблюдения, полученные путем гравитационного линзирования (я напомню, что эффект гравитационной линзы – это результат локального искривления пространства вокруг массивных объектов, а то, плоская ли Вселенная, связано со средней кривизной пространства в целом, где не учитывается локальная рябь в окрестностях массивных объектов), а также относительно недавние результаты в других областях астрономии подтвердили, что общее количество темного вещества в галактиках и скоплениях намного превосходит тот уровень, который можно допустить исходя из теории нуклеосинтеза после Большого взрыва. Сейчас мы, можно сказать, уверены, что темное вещество – а его существование, повторяю, подтверждается независимо в самых разных астрофизических контекстах, от отдельных галактик до скоплений галактик, – должно состоять из чего-то совершенно нового, чего-то такого, чего в обычных земных условиях не существует. Это не звездное вещество, но и не земное. Но что-то такое существует!

Первые выводы о существовании темного вещества в нашей Галактике породили совершенно новую область экспериментальной физики, и я рад отметить, что и сам сыграл роль в ее разработке. Как я уже говорил, частицы темного вещества окружают нас повсюду – и здесь, в комнате, где я набираю этот текст, и «там», в космосе. Следовательно, мы можем ставить эксперименты, чтобы искать темное вещество и элементарные частицы нового типа (или типов), из которых оно состоит.

Такие эксперименты проводятся в шахтах и туннелях глубоко под землей. Почему под землей? Потому что на поверхности Земли нас постоянно бомбардируют всевозможные космические лучи – и от Солнца, и от более далеких объектов. Поскольку темное вещество по самой своей природе не вступает в электромагнитное взаимодействие и не испускает свет, мы предполагаем, что оно взаимодействует с нормальным веществом очень слабо, поэтому зарегистрировать его будет невероятно трудно. Даже если мы каждый день подвергаемся бомбардировке миллионов частиц темного вещества, большинство из них проходят сквозь нас и сквозь Землю, даже не «заметив» нас, и мы их тоже не замечаем. Если хочешь обнаружить крайне редкие исключения из этого правила – те частицы темного вещества, которые все-таки рассеялись на атомах обычного вещества, – готовься регистрировать крайне редкие события. А чтобы это стало хотя бы в принципе возможно, необходимо в достаточной степени отгородиться от космических лучей, то есть уйти под землю.

Однако сейчас, когда я пишу эти строки, появилась и другая возможность, не менее интересная. Недавно запущен Большой адронный коллайдер, расположенный в Швейцарии, недалеко от Женевы, и это самый крупный и мощный в мире ускоритель частиц. У нас есть много причин полагать, что при очень высоких энергиях, с которыми сталкиваются протоны в этой установке, воссоздаются условия первых мгновений существования Вселенной, пусть и в микроскопически малых масштабах. В этих объемах те же самые взаимодействия, которые когда-то породили частицы темного вещества в космосе, могут породить такие же частицы в лаборатории! То есть сейчас идет большая гонка: кто первым обнаружит частицы темного вещества – экспериментаторы глубоко под землей или экспериментаторы на Большом адронном коллайдере? Хорошая новость состоит в том, что, кто бы ни выиграл гонку, никто не проиграет. Выиграем мы все, поскольку узнаем, из чего на самом деле состоит это вещество.

Астрофизические эксперименты, о которых я рассказал выше, не раскрыли природу темного вещества, зато показали нам, какое количество этого вещества существует на свете. Окончательно и прямо определить общее количество вещества во Вселенной стало возможно благодаря изящным выводам из измерений, полученных при гравитационном линзировании, вроде тех, о которых я уже говорил, в сочетании с наблюдениями рентгеновского излучения скоплений галактик. Независимую оценку общей массы скоплений можно провести потому, что температура газа в скоплениях зависит от общей массы системы, в которой он находится и излучает (в рентгеновском диапазоне). Результаты получились неожиданные и, как я уже упоминал, для многих из нас, ученых, огорчительные. Когда осела пыль (и буквально, и метафорически), оказалось, что общая масса, содержащаяся в галактиках и скоплениях и вокруг них, составляет лишь около 30 % общего количества массы, которая нужна, чтобы Вселенная была плоской. Обратите внимание, что и это количество более чем в 40 раз больше массы видимого вещества, которое, таким образом, составляет менее 1 % массы, необходимой для того, чтобы Вселенная оказалась плоской.

Эйнштейн был бы удивлен, если бы узнал, что его «статейка» в конечном итоге оказалась совсем не пустой. Благодаря поразительным новым инструментам для наблюдений и экспериментов, открывшим новые окна в космос, новым теоретическим разработкам, которые привели бы Эйнштейна в восторг, а также открытию темного вещества, которое бы сильно его взволновало, крошечный шажок Эйнштейна в мир искривленного пространства обернулся колоссальным скачком. К началу 1990-х гг. Священный Грааль космологии, похоже, удалось обрести. Наблюдения однозначно показали, что мы живем в открытой Вселенной, которая, следовательно, расширяется и будет расширяться вечно.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 4.4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации