Электронная библиотека » Марк Боуэн » » онлайн чтение - страница 4


  • Текст добавлен: 8 апреля 2019, 10:40


Автор книги: Марк Боуэн


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 37 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
Глава 2
Детство и юность

Сольвеевская конференция 1933 года позволила обрести «полную ясность» и Энрико Ферми. Вернувшись в Рим, он погрузился в создание квантовой теории бета-распада и завершил работу над ней в декабре, менее чем через два месяца после конференции.

Ферми подвергал проверке всё новые и новые идеи. Так, он предположил, что электрон и нейтрино могут возникать одновременно, что протоны и нейтроны способны обмениваться своими идентичностями, а также согласился с Паули в том, что все известные нам законы сохранения энергии работают и в новых условиях. Воспользовавшись подсказкой Гейзенберга, который заявил в Брюсселе (ошибочно, как выяснилось позднее), что протон и нейтрон могут представлять собой различные состояния одной и той же фундаментальной частицы, Ферми предположил, что электрон и нейтрино тоже должны быть как-то с этим связаны, – и этот вывод скоро начал завоевывать все больше сторонников88.

Хотя сам Ферми ничего не говорил на эту тему, но предложенная им модель бета-распада оказалась первой рудиментарной теорией слабого ядерного взаимодействия. Иными словами, можно считать, что он открыл третью фундаментальную силу природы после гравитации и электромагнетизма (в наши дни известны четыре такие силы – вскоре после описываемых событий было открыто сильное ядерное взаимодействие). Кое-кто считает модель Ферми первым примером современной теории поля89, а Фрэнсис Халзен, вдохновитель IceCube, отмечает, что ее также можно считать стартовой точкой для стандартной модели физики элементарных частиц, которая была сформулирована лишь через 40–50 лет.

Теория с блеском выдержала самую главную проверку – тест на прогностическую ценность. Ферми использовал теорию, чтобы получить на основе базовых принципов кривую, которая терзала и теоретиков, и экспериментаторов на протяжении 20 с лишним лет, – форму спектра энергии электрона при бета-распаде. Хотя к тому моменту еще никому не удалось увидеть нейтрино, важная роль этой частицы в теории и ее соответствие данным последующих экспериментов сделали факт существования нейтрино почти неопровержимым – хотя многие физики все равно продолжали упорствовать. Когда Ферми представил свою теорию в журнал Nature – ведущее мировое научное издание, журнал отказал в публикации, поскольку статья «содержит слишком отвлеченные и нереалистичные рассуждения, которые вряд ли заинтересуют читателя» (пятью годами позже редакторы журнала признали, что это было, пожалуй, их самым серьезным профессиональным промахом за всю карьеру90). Тогда Ферми опубликовал свою статью в трех более специализированных – и менее известных – физических журналах91.

Использовав свою теорию для расчета массы нейтрино, Ферми продемонстрировал, что эта масса должна быть «либо равной нулю, либо слишком малой по сравнению с массой электрона»92. Это предположение впоследствии также подтвердилось и, в типичной для этой странной частицы логике, сделало нейтрино еще более неуловимым.

Теория содержала в себе и несколько предположений о возможных методах выявления нейтрино – и тем самым она заложила основы нейтринной астрономии. Теория показала, что бета-распад может идти в обратном порядке: невидимое нейтрино, свободно перемещающееся сквозь пространство и время, может пройти достаточно близко к нейтрону или протону, чтобы вступить с ними во взаимодействие, изменить их сущность на обратную и в конце концов создать свободный электрон или позитрон, который затем можно будет выявить. Именно этот процесс стал теоретической основой работы телескопа IceCube.

К сожалению, всего через три месяца после публикации выводов Ферми Рудольф Пайерлс и другой выдающийся немецкий теоретик Ханс Бете продемонстрировали, что так называемый обратный бета-распад возникает крайне редко93. На основе теории Ферми они продемонстрировали, что нейтрино как тип энергии, обычный для бета-распада, может пролететь в воде до тысячи световых лет – то есть в 63 миллиона раз больше расстояния от Земли до Солнца – без какого-либо взаимодействия с другими частицами. Исходя из этого, они пришли к выводу о «практической невозможности наблюдения» за частицей.

Это весьма осторожное замечание, сделанное двумя весьма умными людьми, может служить хорошим примером того, насколько это опасное дело – прогнозы. Бете и Пайерлс не могли и представить себе, что открытия в физике в течение следующих десяти лет значительно изменят сложившееся положение вещей – не говоря уже о нашем восприятии нашего места на планете в целом. Кроме того, вспоминал Пайерлс почти через 50 лет, они и рассчитывать не могли на «подобное мастерство экспериментаторов»94.

Затем в роли повивальных бабок нейтрино выступили «парни с улицы Панисперна» – несмотря даже на то, что в течение следующего десятилетия нейтрон, открытый Чедвиком, несколько вытеснил нейтрино из фокуса научных интересов физиков, провоцируя всё новые открытия, которые буквально потрясли основы мироздания.

Примерно в то же время, когда стало известно о существовании частицы Чедвика, Ферми и несколько других проницательных ученых поняли, что нейтрон должен проникать в ядро легче, чем заряженная альфа-частица с позитивным зарядом, поскольку из-за отсутствия заряда нейтрон не будет вступать во взаимодействие с протонами ядра, имеющими позитивный заряд. Использовав некоторые догадки Жолио-Кюри, команда Ферми принялась бомбардировать нейтронами все известные науке элементы. В ходе этих экспериментов «парни с улицы Панисперна» совершенно случайно обнаружили, что «медленные», то есть обладающие низкой энергией нейтроны проникают в ядро легче, чем быстрые. В течение следующих нескольких лет им удалось успешно создать радиоактивные изотопы для каждого известного элемента, за исключением двух самых легких – водорода и гелия. За эту серию открытий Ферми получил в 1938 году Нобелевскую премию по физике.

Как вскоре выяснилось, он по чистой случайности остановился в шаге от открытия явления ядерного деления. Принято считать, что «парни с улицы Панисперна» смогли запустить первую искусственную реакцию деления атома в процессе работы с ураном – самым тяжелым из известных на тот момент элементов, – однако не поняли, что именно они сделали, поскольку неправильно определили состав побочных продуктов реакции. Эти парни разбирались в химии намного хуже, чем в физике, – и, возможно, это оказалось благом для всех: как заметил научный писатель и физик-теоретик Джереми Бернстейн,


можно только гадать, что произошло бы, если бы о явлении ядерного распада стало известно в фашистской Италии в 1934 году95.

Ферми получил свою премию в непростое время. В том же году Муссолини заключил союз с Гитлером и в Италии был принят ряд антисемитских законов. С присущим Ферми прагматизмом он посоветовал своей жене-еврейке Лауре купить на все имевшиеся у них деньги драгоценности, меха и тому подобное. Поехав в Стокгольм на вручение премии, он взял жену и дочь с собой. Затем они отплыли в США, где использовали призовой фонд и деньги, вырученные от продажи драгоценностей, на обустройство нового семейного гнезда и начало новой жизни. Семейство Ферми никогда больше не жило в Италии.

Покинуть родину были вынуждены и многие другие ученые – герои саги о бета-лучах: Паули, Пайерлс и Лиза Мейтнер. Мейтнер, еврейка по рождению, была крещена, вполне ассимилирована и имела австрийское гражданство, то есть была защищена от расовых законов нацистской Германии, в которой она жила и работала. Однако этот тонкий слой стабильности и защиты был прорван в марте 1938 года после аншлюса – гитлеровской аннексии Австрии. Лиза Мейтнер в панике бросила свой дом в Берлине и Химический институт кайзера Вильгельма, где в течение четверти века проработала вместе с Отто Ганом, села в поезд и бежала из Германии. Нильс Бор смог найти для нее работу в Стокгольме96. Уже из эмиграции Мейтнер продолжила сотрудничать с Ганом единственным возможным способом – путем переписки.

Эта потрясающая пара исследователей также занималась бомбардировкой различных элементов нейтронами, а Ган, возможно самый заслуженный радиохимик своего времени, увлекся изучением урана, все изотопы которого радиоактивны. За несколько дней до Рождества того же печального года, когда Мейтнер отдыхала со своими друзьями на западе Швеции, она получила письмо от Гана, в котором сообщалось, что Ган и его ассистент Фриц Штрассманн смогли обнаружить среди продуктов распада урана, подвергшегося бомбардировке нейтронами, изотоп бария.

Атомное число бария равно 56, а урана – 92. Случившееся представляло собой трансмутацию совершенно иного порядка, чем ранее выявленные небольшие движения по периодической таблице: ядро урана разделилось почти пополам.

Незадолго до сочельника 1938 года, гуляя по заснеженному лесу со своим племянником, физиком Отто Фришем, Мейтнер поняла, что если в самом деле удастся сформировать два таких фрагмента, то при их разделении произойдет «выброс огромной энергии»97. Суммарная масса продуктов распада настолько меньше массы изначального ядра урана, что в ходе реакции высвобождается невероятный объем энергии-массы Эйнштейна. Позднее Фриш рассчитал, что «энергии каждого распадающегося ядра урана будет достаточно для того, чтобы заставить подпрыгнуть кучку песка». А поскольку в одном грамме урана содержится около 1021, то есть миллиард триллионов ядер98, взрыв в результате будет чудовищно сильным. В середине января Фриш назвал процесс делением, по аналогии с бинарным делением бактерий99.

Дело не ограничивается тем, что каждое отдельно взятое деление ядра создает невероятный всплеск энергии. Задолго до того, как Ган, Штрассманн и Мейтнер совершили свое открытие, несколько прозорливых ученых поняли, что расщепление ядра должно привести к так называемой цепной реакции. Когда один нейтрон расщепляет одно ядро одного изотопа урана, продукты деления проходят через бета-распад и создают новые нейтроны, скорости или энергии которых достаточно для расщепления очередного ядра, продукты распада которого создают еще больше нейтронов, те расщепляют еще больше ядер и так далее.

Второго декабря 1942 года в урановом котле (сердце современного ядерного реактора), управлявшемся Энрико Ферми, произошла первая искусственная и устойчивая ядерная цепная реакция. Реактор, получивший название Pile («поленница»), располагался на площадке для игры в сквош под трибунами заброшенного футбольного стадиона Чикагского университета. Вскоре после этого Ферми стал одним из основных архитекторов атомной бомбы, которая через два с половиной года поможет завершить Вторую мировую войну.

Но как все это связано с нейтрино? Дело в том, что каждый случай бета-распада в ходе цепной реакции приводит к созданию как минимум одной призрачной частицы. Таким образом, ядерный взрыв или контролируемый процесс в ядерном реакторе порождает так много нейтрино, что их количество сложно описать каким-либо конкретным числом (для таких случаев больше подходит слово «мириады»). Появление столь мощных источников нейтрино послужило основой для разработки методов выявления частицы.


В годы войны происходили и другие события, которые ускоряли эти процессы и двигали их вперед. Первое такое событие было связано с теорией, предложенной одним из самых загадочных персонажей в истории физики – худощавым, состоятельным, всегда полным пессимизма человеком по имени Этторе Майорана100, одним из «парней с улицы Панисперна». Эта группа – шутливо, но почти всерьез – считала себя едва ли не религиозным орденом, в котором непогрешимый Ферми играл роль папы, а Майорана занимал должность великого инквизитора. Как и Вольфганг Паули, Майорана критиковал любые проявления неряшливости мышления. Ему не приходилось зарабатывать себе на хлеб, поэтому он часто просто слонялся по коридорам института со скучающим видом, а весь его научный вклад – небольшой по объему, но оказавший огромное влияние на развитие науки – был создан менее чем за десять лет. Сказать, что Майорана был незаурядным человеком, – значит ничего не сказать. Он уже при жизни славился нестандартностью своего мышления, а в 1938 году проделал трюк, который превратил его в культурную икону и любимого героя итальянских конспирологов: он сел на корабль, имея при себе паспорт и большую сумму наличных денег, – и исчез. Кое-кто считает, что он покончил с собой, другие – что он уединился в каком-то католическом монастыре, а не так давно появилась версия о том, что Майорана решил начать новую жизнь под вымышленным именем где-то в Южной Америке.

Основной вклад Майораны в нейтринную физику связан с тем, что он сформулировал загадку, остававшуюся без ответа более 80 лет. В работе, опубликованной в 1937 году101, за год до своего исчезновения, он представил вариацию уравнения Дирака, согласно которой нейтрино должно одновременно являться и своей собственной античастицей. Эта гипотеза может показаться несколько путанной, но, как мы скоро увидим, она оказала вполне реальное влияние на поиск крохотной частицы.


Второе открытие также произошло в 1937 году, и его автором стал тот же Карл Андерсон, который пять лет назад уже потряс весь мир, став первооткрывателем позитрона. Изучая вместе со своим учеником Сетом Недермайером потоки космических лучей на вершине горы Пайкс-Пик в штате Колорадо, он обнаружил частицу, ныне известную как мюон102. Это стало настоящим сюрпризом, поскольку на тот момент было совершенно непонятно, какую возможную роль могла бы играть эта частица. Услышав о ее открытии, будущий нобелевский лауреат Исаак Айзек Раби произнес ставшую знаменитой фразу: «Ну и кто это заказывал?»

Казалось, что частица, изначально получившая название «мезотрон», вполне удовлетворяет требованиям к частице, сформулированным двумя годами ранее японским теоретиком Хидэки Юкавой. Юкава выдвинул гипотезу существования некоей «полевой частицы», способной нести или передавать сильное ядерное взаимодействие, удерживающее протоны и нейтроны вместе в составе ядра. Аналогом этой частицы в области электромагнетизма мог бы считаться фотон, переносящий электромагнитную силу. Юкава предсказал массу частицы, а поскольку масса мезотрона Андерсона оказалась в правильном диапазоне, большинство физиков предположили, что это она и есть. Все шло хорошо, но затем три итальянца, участвовавшие в секретных экспериментах во время войны, доказали, что мезотрон не может быть полевой частицей Юкавы, поскольку на него совершенно не влияет сильное взаимодействие103.

И в этот момент на сцене появилась третья ключевая фигура, благодаря которой исследования нейтрино поднялись на новый уровень. Это был Бруно Понтекорво, «высокий, широкоплечий и миловидный чемпион-теннисист из Пизы»104. Он присоединился к «парням с улицы Панисперна» еще студентом, в 1931 году, а затем работал с семьей Жолио-Кюри в Париже в 1938-м – как раз когда Муссолини вступил в союз с Гитлером. Будучи евреем, он, как и его наставник, решил уехать с семьей в США. Это оказалось непростым приключением, в ходе которого он, к примеру, выехал из Парижа на велосипеде ровно в тот момент, когда в город входили немецкие войска, – а потом доехал на этом велосипеде до Тулузы105.

Когда Понтекорво наконец прибыл в Америку, его бывший коллега Эмилио Сегре помог ему найти работу в нефтяной компании, находившейся в городе Талса, штат Оклахома. Там новый иммигрант, много знавший о нейтронном рассеянии, изобрел несколько методов поиска радиоактивных элементов, в том числе и урана. Это было очень важно с военной точки зрения, поскольку самая сложная часть работы над атомной бомбой была связана с накоплением минимально необходимой, так называемой критической массы оружейного урана или плутония. На решение этой задачи пошла львиная доля материальных ресурсов «Манхэттенского проекта».

В 1943-м Понтекорво получил место в исследовательской лаборатории в монреальском университете Макгилл (лаборатория была подразделением секретной англо-канадской ядерной программы Tube Alloys[2]2
  «Программа получения трубчатых сплавов».


[Закрыть]
), и его изобретения начали приносить практическую пользу. Британцы и канадцы были союзниками США, и программа Tube Alloys представляла собой, по сути, одно из ответвлений «Манхэттенского проекта». Во время работы в университете Макгилл Понтекорво играл ведущую роль в проектировании самого продвинутого на то время ядерного реактора – NRX (Nuclear Reactor X) в Чок-Ривер, провинция Онтарио, работавшего на тяжелой воде.

В ходе своей яркой и полной разнообразной анекдотов лекции «Детство и юность нейтринной физики», которую Понтекорво прочел в Париже в 1982 году, он вспоминал, как в середине 1940-х предполагал, что «появление мощных ядерных реакторов превратит процесс обнаружения свободных нейтрино в достаточно респектабельное занятие». В мае 1945 года, за несколько месяцев до первого ядерного испытания «Тринити» в пустыне штата Нью-Мексико, он предложил первый экспериментальный метод выявления нейтрино в техническом отчете для лаборатории Чок-Ривер106107. Этот отчет оставался под грифом секретности в течение четырех лет, возможно, из-за того, что в нем несколько раз использовалось слово pile – служившее, как мы помним, названием ядерного реактора Ферми108.

Базовая идея Понтекорво состояла в том, что если бомбардировать раствор некого специально подобранного вещества множеством нейтрино, которые могут вступать в процесс обратного бета-распада с исчезающе малой долей растворенных ядер и превращать их в новую, радиоактивную субстанцию, то затем эту субстанцию можно было бы выделить из раствора и измерить ее количество. Каждое ядро, подвергшееся трансмутации, представляло бы собой продукт обратного бета-распада и, таким образом, служило бы четким индикатором смерти свободного нейтрино. Изучая один за другим все известные радиоизотопы, Понтекорво обнаружил, что «почти идеальным» для его целей могло служить ядро хлора109, поскольку оно бы превратилось в ядро радиоизотопа аргона, инертного благородного газа, который затем можно было бы легко отделить. Еще одним преимуществом этого изотопа было то, что он обладал сравнительно длинным, 35-дневным периодом полураспада (то есть возвращения в форму обычного хлора при позитронном бета-распаде), то есть его выделение не требовало особой спешки: это можно было делать через определенные промежутки времени и измерять количество, появившееся со времени предыдущей сепарации, с помощью счетчика Гейгера.

В своем отчете, который позже станет легендарным, Понтекорво размышлял о трех потенциальных источниках нейтрино – «мощном реакторе [вариант, которой он сам считал наиболее перспективным], концентрате радиоэлементов, извлеченных из реактора, и… Солнце»110.

В 1939 году Ханс Бете, один из двух ученых, ранее выдвинувших предположение о том, что выявить нейтрино будет невозможно, создал общую теорию формирования энергии в звездах, согласно которой Солнце могло считаться невероятно ярким источником нейтрино111. Если говорить коротко, то все звезды получают энергию путем ядерного синтеза, маленькие ядра – в основном отдельные протоны и альфа-частицы – связываются вместе, образуя более крупные ядра, и практически каждый шаг этого цикла создает нейтрино (как заметил теоретик в области солнечных нейтрино Джон Бакал, «те же ядерные реакции, которые создают нейтрино, заставляют светить наше Солнце»112). Подавляющее большинство из примерно триллиона нейтрино, проходящих сквозь ваше тело, пока вы читаете эти строки, родилось на ближайшей к нам звезде. Разумеется, нейтрино делают это днем и ночью, поскольку проходят сквозь нашу Землю так же легко, как пуля сквозь туман.


К этому моменту вам уже наверняка очевидно, что хорошие физики способны опередить своих коллег на десятилетия, и это вдвойне справедливо в области нейтринной физики, где прогресс идет медленно и для достижения успеха требуются огромные усилия. Уже в 1940-е годы, задолго до экспериментального открытия частицы, о ней было известно очень много. Впрочем, это знание не подкреплялось достаточным количеством фактов и поэтому вызывало вполне разумные сомнения. К примеру, считалось, что ядерные реакторы должны излучать антинейтрино, а Солнце – нейтрино.

Это были первые дни физики элементарных частиц. Странные новые создания появлялись почти каждый год, в основном благодаря инструментам по изучению космических лучей, расположенным на горных вершинах. Их классифицировали по группам, и постепенно ученые начали формулировать новые правила их поведения.

В 1945-м – в том же году, когда Понтекорво изобрел свой метод выявления, – теоретики Абрахам Пайс и Кристиан Мёллер придумали термин «лептон», от греческого слова lep («легкий»). Это позволило им дать характеристику самым легким из известных частиц – электрону и нейтрино. Помимо сравнительно небольшого веса (в то время считалось, что нейтрино вообще не имеет веса), лептоны также отличались от нуклонов тем, что на них никак не влияло сильное ядерное взаимодействие; они были подвержены лишь слабому.

Одно из первых новых правил было связано с понятием «сохранение лептонов». Давайте внимательнее рассмотрим процесс бета-распада, позволивший Паули выдвинуть идею нейтрино. Когда нестабильное ядро углерода‑14 преобразуется в ядро азота‑14, нейтрон превращается в протон и возникает лептон в виде электрона. Поскольку раньше в этой картине не было лептонов, принцип сохранения лептонов предполагает, что нейтрино, возникающее вместе с электроном, должно иметь форму антилептона или антинейтрино. Поэтому нейтрино, придуманное Паули, фактически представляло собой античастицу. А поскольку именно эта форма бета-распада имеет место в ядерных реакторах, эти последние испускают античастицы, причем в больших количествах.


Нейтрон, меняющийся на протон в изначальной форме бета-распада. До начала распада нет никаких лептонов и никакого электрического заряда. После распада отрицательный заряд электрона компенсирует положительный заряд протона, электронное антинейтрино компенсирует и количество лептонов, и аромат (флейвор) электрона.



Теперь, на первый взгляд, может показаться, что предложенный Понтекорво метод выявления не должен был принимать во внимание наличие античастиц. В его схеме стабильное ядро хлора‑37, имевшее 17 протонов и 20 нейтронов, превращалось в радиоактивное ядро аргона‑37 с 18 протонами и 19 нейтронами: один нейтрон превратился в протон. При сохранении электрического заряда создание этого протона должно сопровождаться созданием электрона, а поскольку электрон представляет собой материю, а не антиматерию, то и частица, начавшая реакцию, также должна быть материей, а именно нейтрино. Поскольку Солнце излучает нейтрино, метод Понтекорво должен был регистрировать их. Однако именно здесь на сцене появляется запутанная гипотеза Этторе Майораны. Если великий инквизитор был прав, значит, нейтрино и антинейтрино идентичны, а метод Понтекорво должен регистрировать обе частицы.

В 1945 году, через несколько месяцев после окончания войны, семья Понтекорво переехала в Чок-Ривер, чтобы быть ближе к реакторному комплексу – новому месту работы отца семейства. Примерно в это же время три итальянских ученых, работавших над своими секретными проектами, рассказали Понтекорво потрясающие новости о мюоне, и интерес Понтекорво достиг своего апогея. «Эта частица показалась мне по-настоящему интригующей, – вспоминал он в Париже много лет спустя. – Я почувствовал дуновение антидогматического ветра и принялся задавать множество вопросов»113. Понтекорво вместе с канадским физиком Э. П. «Тэдом» Хинксом организовал в Чок-Ривер лабораторию по изучению космических лучей, и в течение следующих нескольких лет они сделали ряд открытий, которые позволили Понтекорво получить ответы на все его вопросы – и не только114.

В результате оказалось, что мюон представлял собой третий лептон. Он имел тот же заряд и тот же спин, что и электрон. На него таким же образом влияет слабое, а не сильное взаимодействие; фактически он имеет настолько много общего со своим более легким родственником, что его часто описывают как «тяжелый электрон». Мюон нестабилен, имеет срок жизни 2,2 миллионных секунды, а затем распадается на электрон и две другие частицы. Понтекорво правильно догадался, что на раннем этапе этой игры в процесс будут вовлечены нейтрино и антинейтрино, и это помогло ему сделать еще одну мудрую догадку: нейтрино должно иметь при себе некое «удостоверение», связанное либо с мюоном, либо с электроном. «Для людей, работавших с мюонами в прежние времена, – вспоминал он в Париже, – вопрос относительно различных типов нейтрино никогда не терял своей актуальности»115.

Если каждый мюон, представляющий собой лептон, распадается на три лептона, одним из которых являлся электрон, то сохранение лептонов предполагает, что две другие частицы должны отменить взаимное влияние друг друга: они должны представлять собой лептон и антилептон – иными словами, нейтрино и антинейтрино. Однако когда частица и ее античастица оказываются в тесной близости друг к другу, они обычно аннигилируют и дают жизнь новым частицам. Поскольку Понтекорво и Хинкс обнаружили, что два незаряженных продукта распада мюона не аннигилируют, то Понтекорво пришел к выводу о том, что у них должно иметься некое пока не известное качество, и оно должно быть каким-то образом связано с различием между мюоном и электроном.

Давайте продолжим этот ход размышлений: для сохранения «мюонности», известной в наши дни под названием «аромата» мюона, новое нейтрино должно быть мюонным, а для сохранения аромата электрона, равного до распада нулю, антинейтрино, созданное в связке с новым электроном, должно быть электронным. И теперь мы можем сказать, что именно это предвидел Вольфганг Паули еще в 1930 году: поскольку электрон создается в изначальной форме бета-распада, соответствующее ему нейтрино должно быть электронным антинейтрино.


Мюон распадается на три частицы. До распада имеется один лептон с ароматом мюона и отрицательным электрическим зарядом. После распада электрон несет электрический заряд, мюонное нейтрино – аромат мюона, а электронное антинейтрино компенсирует аромат электрона и количество лептонов. Таким образом, сохраняются число лептонов, аромат лептонов и электрический заряд.


А теперь вернемся обратно на землю (или, скажем точнее, на антарктический лед). Судя по всему, аромат имеет важное значение для нейтринной астрономии. Мюонное нейтрино может инициировать бета-распад точно так же, как и его электронный родственник, с одним важным отличием, позволяющим родиться именно мюону, а не электрону. Представляется, что выявить мюон проще, поскольку он проникает сквозь лед легче, чем электрон. Выявление мюона было основным принципом работы Антарктического массива мюонно-нейтринных детекторов (проект AMANDA) и до сих пор остается хлебом насущным для IceCube. Мюон – это рабочая лошадка нейтринной астрономии.


В 1947 году, пока Понтекорво и Хинкс все еще занимались своими исследованиями, следы новой частицы (пиона) были обнаружены на фотоэмульсии, проявленной на вершинах гор в Пиренеях и Боливийских Андах. Ученые вскоре поняли не только то, что это – частица, существование которой предсказал Юкава, но и то, что пион превращается в мюон, – это позволяло объяснять, почему на более низких высотах обнаруживалась лишь последняя из этих двух частиц.

Пион также играет ключевую роль как в нейтринной астрономии, так и в экспериментальной физике нейтрино, поскольку он обеспечивает самый очевидный механизм создания высокоэнергетических нейтрино в ускорителях частиц – как рукотворных, так и космических. Когда протон ускоряется в электромагнитном поле, на Земле или в космосе, а затем сталкивается с какой-то другой частицей, такой как фотон или ядро атома, то в результате рождается пион.

Если этот пион не имеет заряда, он распадется на два гамма-луча (фотона). Если же он заряжен, то он может распасться одним из двух путей: либо на мюон и мюонное нейтрино, либо на электрон и электронное нейтрино. Поэтому мы вполне можем создать «нейтринную фабрику» на Земле. Для этого нам нужно каким-то образом направить рукотворный протонный пучок на цель или «поглотитель пучка», создающий пионы, а затем манипулировать заряженным пучком пионов и продуктами его распада так, чтобы создать чистый пучок нейтрино. Предполагается, что космические ускорители, такие как звездные скопления с активным ядром, остатки сверхновых и их потомки, будут ускорять протоны и другие ядра своим особенным образом. Эти частицы будут сталкиваться с космическими поглотителями пучка, создавая пионы, а вследствие этого и космические высокоэнергетические нейтрино, поиском которых и занимается IceCube.


В эти продуктивные годы Бруно Понтекорво с успехом жонглировал одновременно несколькими задачами. Они с Марианной, шведской женой Понтекорво, не только воспитывали детей, но и минимум четыре раза сменили место жительства. В 1948 году, отвергнув несколько предложений от ведущих университетов США и Италии, Понтекорво занял руководящую должность в британской национальной лаборатории прикладных ядерных исследований (Atomic Energy Research Establishment) в Харвелле, и семья отправилась в обратный путь через Атлантику.

К тому времени самым трудным из мячей, которые Понтекорво приходилось одновременно держать в воздухе, были подозрения властей в том, что они с Марианной – убежденные коммунисты. Как и многие итальянские интеллектуалы, Бруно вступил в коммунистическую партию в 1936 году, когда началась гражданская война в Испании. Он познакомился с Марианной в Париже, где работал с супругами Жолио-Кюри (также активными участниками коммунистического движения). В годы работы в Париже Понтекорво выступал против нацизма и фашизма. Его брат Джилло, получивший международное признание в качестве кинорежиссера (более всего он известен по фильму «Битва за Алжир»), тоже был членом Коммунистической партии Италии, а их двоюродный брат занимал в партии высокий пост.

Через год после того, как семья Понтекорво переехала в Великобританию, СССР взорвал свою первую атомную бомбу (точную копию американской), а в марте 1950 года немецкий физик Клаус Фукс, убежденный социалист, также работавший в Харвелле, был обвинен в передаче ядерных секретов Советскому Союзу. Запад захлестнула волна антикоммунистической истерии. Летом того же года сенатор США Джозеф Маккарти начал свою печально известную кампанию против коммунистической «пятой колонны». И давление на Бруно Понтекорво становилось все сильнее.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации