Электронная библиотека » Марсело Глейзер » » онлайн чтение - страница 5


  • Текст добавлен: 6 апреля 2017, 19:10


Автор книги: Марсело Глейзер


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Тем не менее и для Галилея, и для Кеплера космос оставался закрытой структурой, ограниченной сферой звезд. Идея бесконечности Вселенной вселяла в Кеплера отвращение: «Даже сами мысли об этом полны скрытого ужаса, возникающего в попытках представить себе столь полное отрицание любых границ и центров, что любое определение местоположения становится бессмысленным».[40]40
  Из манускрипта Кеплера о сверхновых De Stella Nova 1604 г. Цит. по: Alexandre Koyre, From the Closed World to the Infinite Universe (Baltimore: Johns Hopkins University Press, 1957), 61.


[Закрыть]

Кеплер верил, что космос, созданный Богом, должен быть симметричным и геометрически упорядоченным, а не бесконечным и бесформенным. Он даже сравнивал его со Святой Троицей: Солнце, находящееся в центре, представляло Бога-Отца, сфера звезд на периферии – Сына, а пространство между ними, наполненное солнечным (Божественным) светом, – Святой Дух. Чтобы подкрепить свое теологическое объяснение, он заявлял, что идея бесконечной Вселенной противоречит данным астрономических наблюдений, и приводил в качестве примера сверхновую 1604 года (так называемую Кеплерову сверхновую, последнюю, наблюдавшуюся невооруженным глазом). Защитники теории бесконечного космоса утверждали, что новая звезда стала заметна, приблизившись к Земле из космических глубин, а затем снова исчезла из виду, когда расстояние увеличилось. Кеплер отрицал эту идею, говоря, что звезды не могут двигаться. Кроме того, он считал, что бесконечный космос был бы однородным и выглядел бы одинаково в любой точке, в то время как наблюдения за созвездиями показывали, что это не так.

Вполне возможно, что и Кеплер, и в особенности Галилей просто не забывали об ужасной судьбе Джордано Бруно, закончившего жизнь на костре инквизиции, пускай его обвинение и казнь стали результатом скорее его борьбы с религиозными догматами, чем трудов в области астрономии. К примеру, Бруно утверждал, что Христос был не сыном Бога, а просто ловким волшебником, и что Святой Дух – это душа всего мира. Тем не менее он верил в бесконечность Вселенной и в то, что каждая звезда представляет собой солнце, вокруг которого вращаются другие планеты (подумать только, как он был прав!), населенные мыслящими существами. Эта теория также противоречила представлениям о Земле как о центре творения и людях как любимых детях Создателя.

Итак, Галилей и Кеплер подготовили сцену к выходу еще одного человека, готового изменить реальность, – Исаака Ньютона. Он не только точно сформулировал закон всемирного тяготения, применимый ко всем объектам во Вселенной, но и разбил небесный свод, показав, что за ним скрывается бесконечный космос. Ни одному человеку до него не удавалось настолько увеличить наш Остров знаний – и лишь немногим это удастся после.

Глава 6. Разбить небесный свод
в которой мы узнаем больше о гении Исаака Ньютона и поймем, почему его физика стала маяком человеческой мысли во тьме непознанного

Галилей умер в 1642 году – в год рождения Ньютона. Великий итальянец не ограничивался в своей работе только астрономией. Он потрясал основы Аристотелевой физики и на Земле, показывая, к удивлению многочисленных читателей и ярости святых отцов, что внешность действительно бывает обманчива. Самое блестящее открытие Галилея касается природы тяготения. Даже сегодня, когда я читаю лекции, посвященные этой теме, и показываю, насколько неверными могут быть наши интуитивные представления, я вижу удивление и зачастую даже неверие на лице своих студентов. Как писал Аристотель и как подсказывают нам органы чувств, все объекты в мире стремятся к своему «месту в природе». «Места в природе» организованы в соответствии с иерархией четырех стихий. Они располагаются вертикально снизу вверх в такой последовательности: земля, вода, огонь и воздух. Это кажется совершенно логичным, ведь мы знаем, что, если подбросить камень в воздух (или бросить его в огонь или воду), он упадет вниз, а если разжечь костер, то языки пламени будут стремиться вверх. Из этого эксперимента можно сделать вывод, что чем тяжелее предмет, тем быстрее он упадет. Соответственно, гравитация должна каким-то образом учитывать состав предмета. Почему бы и нет, если перо действительно падает на землю куда медленнее булыжника?

Проведя ряд потрясающих экспериментов, Галилей доказал, что ни Аристотель, ни наша интуиция не правы. Все предметы, вне зависимости от их веса, формы или состава, падают вниз с одной и той же скоростью. Различия могут объясняться лишь сопротивлением воздуха или разницей во времени броска. Если точнее, можно сказать, что все предметы, вне зависимости от их массы, в вакууме падают с одинаковой скоростью (хотя для того, чтобы объяснить разницу между весом и массой, необходимо было дождаться прихода Ньютона). Галилей описал кинематические характеристики свободного падения, измерив его скорость для различных объектов. Для осуществления таких измерений он придумал блестящий эксперимент – наблюдение за шарами, скатывающимися по наклонной поверхности. При этом он мог варьировать угол наклона, контролируя тем самым их скорость и рассчитывая время движения шара даже в отсутствие часов (которые к тому моменту еще не изобрели). Для измерения времени он использовал собственный пульс, музыку (так как все люди известны своей способностью чувствовать ритм) и даже воду, капающую в ведро. Чтобы убедиться, что в гроб Аристотеля загнано уже достаточно гвоздей, Галилей провел еще два опыта. В рамках одного из них, самого известного, он сбросил деревянный и свинцовый шары с верхушки Пизанской башни. Несмотря на разницу в весе, оба шара коснулись земли практически одновременно.[41]41
  Несмотря на существование споров относительно того, действительно ли Галилей делал что-то подобное, у входа в башню висит мемориальная табличка, посвященная его эксперименту. Кроме того, ученик и первый биограф Галилея Вивиани заявлял, что подобный опыт имел место. Как бы там ни было, я провел точно такой же эксперимент на знаменитой башне для бразильской телепередачи об истории науки. Воспроизводимость – главное в нашем деле.


[Закрыть]

Еще один эксперимент с падением предметов был проведен ранее, в 1602 году, во время мессы в Пизанском соборе, когда внимание Галилея привлек прислуживающий в алтаре мальчик, зажигавший свечи на большой люстре. Галилей заметил, что после того, как мальчик отпускал люстру, она некоторое время раскачивалась вперед и назад. К его удивлению, даже при уменьшении амплитуды время между полными колебаниями (период осцилляции) оставалось примерно одинаковым (на самом деле это верно лишь для колебаний с небольшой амплитудой). Позднее Галилей доказал, что время колебаний не зависело от массы объекта: при старте из одного и того же положения (то есть под одним и тем же углом к перпендикуляру) и легкие и тяжелые предметы колебались с одинаковой скоростью. Для колебаний с небольшой амплитудой время определяется лишь длиной подвеса и местным значением силы притяжения (которое в экспериментах Галилея оставалось неизменным).

Учитывая, что движение маятника представляет собой, по сути, контролируемое падение, тот факт, что маятники с разным весом имели равное время колебания, соответствовал данным эксперимента с шарами, движущимися по наклонной плоскости или сброшенными с Пизанской башни. Итак, свободное падение – это демократичное явление, ведь в нем все массы равны. Различия, которые мы будем наблюдать, если одновременно сбросим с высоты 10 футов перо и кадиллак, объясняются исключительно сопротивлением воздуха. В конце своей прогулки по Луне командир корабля «Аполло-15» Дэвид Скотт одновременно выпустил из рук перо и молоток, чтобы провести опыт Галилея в вакууме. Видео, снятое во время этого эксперимента, поражает воображение и кажется совершенной магией, хотя и не должно удивлять тех, кому известно об открытиях Галилея.[42]42
  Вот ссылка на это видео в YouTube: http://www.youtube.com/watch?v=KDp1tiUsZw8. Представьте, как бы поразился Галилей, если бы узнал, что его опыт был повторен на поверхности Луны менее чем через 400 лет после него.


[Закрыть]
Единственное волшебство здесь заключается в отсутствии всякого волшебства.

Пока Кеплер формулировал первые математические законы, описывающие орбиты небесных тел, Галилей работал над выведением законов, регулирующих движения более близких к Земле объектов. Природа стала подвластной рациональному объяснению через математические формулы и собранные данные. И Кеплер, и Галилей сумели сформулировать то, что мы сегодня называем эмпирическими законами природы, после проведения экспериментов и тщательного анализа данных. Помимо всего прочего, их история учит нас, что для открытия математических законов Природы крайне важна экспериментальная точность (подумайте о Кеплере с его отклонением 8 угловых минут и о Галилее с его замерами времени при свободном падении). Естественным наукам необходимы методы, включающие в себя как математические уравнения, так и точные приборы. Одно значение измерений – это всего лишь число, но вот ряд значений может указывать на тенденцию. Задача ученого – понять смысл этой тенденции, изучить вероятные закономерности и выразить их в терминах математических законов, применимых к аналогичным системам. Законы Кеплера работают для всех объектов, движущихся по орбитам, будь то в Солнечной или иной звездной системе (если только гравитация в ней не слишком сильна), а результаты экспериментов Галилея со свободным падением применимы для всех (постоянных) гравитационных полей.

Ньютон стал для науки великим объединителем, связав физику Земли с законами небес. Своим законом всемирного тяготения он показал, что и закон Галилея о свободном падении, и закон Кеплера о движении планет по сути являются одним и тем же. Ньютон приблизил небеса к Земле и ко всему человечеству и позволил человеческому уму проникнуть в их тайны. Если эмпирические законы его предшественников рассказывали о закономерностях процессов на Земле и над ней, то его закон описывал общий космический порядок в масштабе, доселе недоступном мыслителям. Будучи увлеченным алхимиком, Ньютон, должно быть, очень радовался, когда ему удалось найти практическое воплощение знаменитого выражения из «Изумрудной скрижали» Гермеса Трисмегиста, главного кодекса алхимии: «То, что находится внизу, аналогично тому, что находится вверху».[43]43
  Jonathan Hughes, The Rise of Alchemy in Fourteenth-Century England: Plantagenet Kings and the Search for the Philosopher’s Stone (London: Continuum, 2012), 24.


[Закрыть]
Для Ньютона математические принципы натурфилософии, алхимический поиск единства духа и материи и роль Бога как Создателя и хранителя мирового порядка были прочно связаны между собой.

Движения всех деталей космического механизма, будь то дальние планеты или падающее яблоко, подчиняются ряду правил, выраженных в одном уравнении. Неудивительно, что Ньютона превозносят как создателя современной науки, как воплощение силы разума, позволяющей познать мир вокруг.

Но многие забывают, что Ньютон не был типичным одиноким теоретиком, погруженным в поиски математических законов природы в своем кабинете в Кембридже. Он и правда был отшельником и отрицал любые прямые социальные контакты или обмен знаниями, чему существует множество документальных доказательств и что не раз отражалось в его биографиях. Гораздо меньше широкой публике известно о том, что Ньютон был старательным экспериментатором, проведшим много часов за изучением свойств света и алхимическими опытами в поисках тайных знаний. К этому мы еще вернемся чуть позже.

В оптике Ньютон занимался исследованиями природы видимого света, в частности, он определил, что тот состоит из напластования бесконечного количества цветов, находящихся в радуге между красным и фиолетовым. Более того, Ньютон изобрел новый тип телескопа, рефлектор, гораздо более мощный, чем рефракторный телескоп Галилея, дававший изображения с гораздо большим разрешением и не имевший цветовых искажений (так называемых аберраций). Благодаря рефлекторному телескопу, в котором использовалось зеркало, собирающее свет и фокусирующее его в глазах наблюдателя, Ньютон стал знаменитым еще до открытия законов механики и всемирного тяготения. К 1669 году он уже был назначен вторым Лукасовским профессором математики в Кембриджском университете. Эта должность была создана в 1663 году и существует до сих пор. С 1979 года ее занимал Стивен Хокинг, а после его ухода на пенсию место перешло к Майклу Грину – известному ученому, занимающемуся теорией струн.

В декабре 1671 года первый Лукасовский профессор Исаак Барроу, восхищавшийся работами Ньютона, отвез его рефлекторный телескоп в Лондон, чтобы продемонстрировать членам Королевского общества – знаменитого сообщества ученых, ставившего своей целью познание законов Природы. Еще через месяц Ньютон вступил в общество, тем самым закрепив за собой место среди элиты британской науки. Однако вместе со славой к нему пришла известность, а с известностью – профессиональная зависть и интеллектуальная конфронтация. Ньютону совсем не хотелось играть в эти игры, по крайней мере поначалу. Только после публикации в 1687 году «Начал», его труда, в котором были представлены законы механики и всемирного тяготения, и признания в качестве одного из величайших ученых всех времен Ньютон осмелился вернуться в общество.

Что касается алхимических работ Ньютона, то их он по большей части держал при себе, делясь лишь с избранными коллегами, например с одним из первых химиков Робертом Бойлем (кстати говоря, так же ревностно он охранял и свои теологические труды). Тем не менее ньютоновская новая теория мира распространялась на все области знаний быстрее лесного пожара, и Ньютон уже не мог это контролировать. Разумеется, теория, объясняющая динамику небесных тел воздействием невидимых сил не могла не вызвать интереса у теологов, тем более что эти силы, судя по всему, управляли всеми процессами в космосе – от падения самой крошечной песчинки до движения планет и комет. Могли ли верующие люди увидеть за силой гравитации что-то иное, кроме воли Творца? Как объяснял Ньютон кембриджскому теологу Ричарду Бентли, только бесконечный космос мог являться отражением безграничной Божественной силы творения. Если Бог присутствует во всем космосе, значит, космос не имеет конца. В «Общем поучении» к «Началам» Ньютон пишет, что Бог и Вселенная суть одно и то же: «[Бог] существует всегда и присутствует везде и, будучи вечным и всеобъемлющим, представляет собой время и пространство».[44]44
  Newton, Mathematical Principles, 941.


[Закрыть]

Новая теория гравитации Ньютона разбила небесный свод и показала, что простирающийся за ним космос безграничен. Вселенная предстала перед людьми во всей своей бесконечной и грозной красоте. Это был космос тысячи солнц, «находящихся на неисчислимых расстояниях друг от друга», в котором Земля оказалась лишь крошечной точкой в пустоте, не имеющей центра, лишь хрупким убежищем для человечества. Через несколько десятков лет после публикации революционных идей Ньютона французский математик и философ Блез Паскаль, вторя Кеплеру, описал экзистенциальный ужас, охватывающий его при мысли о безграничности мира: «Вечная тишина этого бесконечного пространства пугает меня». Если точнее, его мысль звучала так:

Когда я размышляю о мимолетности моего существования, погруженного в вечность, которая была до меня и пребудет после, о ничтожности пространства, не только занимаемого, но и видимого мною, растворенного в безмерной бесконечности пространств, мне неведомых и не ведающих обо мне, я трепещу от страха и недоуменно вопрошаю себя: почему я здесь, а не там, потому что нет причины мне быть здесь, а не там, нет причины быть сейчас, а не потом или прежде. Кто определил мою судьбу? Чей приказ, чей промысел предназначил мне это время и место?[45]45
  Blaise Pascal, Pensées, trans. A. J. Krailsheimer (New York: Penguin, 1995), nos. 205 and 206.


[Закрыть]

И сегодня, сталкиваясь с новыми научными открытиями, постоянно подтверждающими бесконечность времени и пространства, многие испытывают тот же ужас, что и Паскаль. Великого философа поддерживала в борьбе с его страхом христианская вера. Но как еще, если не с помощью религии, мы можем понять истинный смысл нашего мимолетного существования в этом мире?

Глава 7. Наука как грандиозное описание Природы
в которой автор рассуждает о том, что наука – это человеческий конструкт, действующий в установленных рамках, но открытый для изменений

Ньютон, Галилей и Кеплер, равно как и многие после них, находили смысл существования в познании законов Природы. Если мир и его законы действительно были созданы Богом, то поиск этих законов и постижение Божественного плана – обязанность каждого верующего. Понимание задумки Творца было высочайшей целью человеческого разума, вооруженного математикой, интуицией и точными данными. Даже сегодня верующие ученые точно так же объясняют, как в их жизни сочетаются наука и религия: чем больше они узнают о Природе, тем сильнее восхищаются результатами Божественного труда. Но даже среди тех, кто не причисляет себя ни к одной религии, распространено представление о природном единстве.

Теперь мы знаем, как Галилей, Кеплер и Ньютон изменили правила игры в свое время, как наука стала больше полагаться на инструменты и приборы и как в эффективности этих устройств отражались ограниченные возможности человека при познании мира. Природные закономерности выражались в математических законах, разработанных на основании внимательных наблюдений за физическими явлениями. С каждым открытием Остров знаний разрастался, но и береговая линия непознанного становилась длиннее. У ученых появлялись новые вопросы, на которые они не могли дать ответ.

Тем не менее начало было положено, и настолько эффективно, что к 1827 году, через 100 лет после смерти Ньютона, научное знание полностью изменилось. Такие понятия, как энергия и законы ее сохранения, электрический ток и магнетизм, были признаны частью природного повествования. На небеса направлялись все более и более мощные телескопы, и физика расширяла свое присутствие. После открытия Урана Уильямом Гершелем в 1781 году число известных человечеству планет достигло семи, новые кометы пересекали небеса, двигаясь по своим огненным орбитам, туманности виделись наблюдателям уже не как бесформенные облака, но как объекты, наполненные невероятной игрой света и цвета. Космос оказался куда более ярким и живым, чем можно было предположить. Древние ионийцы с их представлениями о постоянно меняющейся Вселенной внезапно снова вышли на передний план. Разумеется, нельзя было забывать и о противоположных идеях идеальной неизменности космоса. Для того чтобы понять природу космоса, наука должна была уравновесить понятия симметрии, красоты и сохранения энергии с представлениями об изменениях, распаде и перерождении.

По мере накопления знаний о мире увеличивался и объем непознанного. Приборы, предназначенные для улучшения человеческого зрения, открывали перед наблюдателями неожиданные богатства на всех уровнях, от крошечного до галактического. Если та или иная теория достаточно успешна, она может предсказать существование новых природных объектов и характеристик. Но предвидеть все, чего мы еще не знаем, невозможно. Новые инструменты не только расширяют наше видение мира, но и показывают, сколького мы еще не знаем и не можем предсказать, причем зачастую это происходит весьма впечатляюще. В качестве примера можно привести голландцев Захария Янсена и Антони ван Левенгука, совершивших революцию в микромире и создавших микроскоп примерно в то же время, когда Галилей впервые направил свой телескоп на звезды. В частности, Левенгук исследовал налет, снятый с его собственных зубов, и обнаружил в нем бактерии, открыв, таким образом, целый новый мир микроорганизмов.

Открытие этих крошечных форм жизни сразу же породило лавину вопросов. Насколько маленьким может быть живой организм? В чем разница между живой и неживой материей? Откуда вообще произошла жизнь? У важнейших вопросов макромира, вроде границ Вселенной и возраста нашего мира, нашлись эквиваленты и в микромире. Какова минимальная частица материи? Какова продолжительность ее жизни? Что есть смерть – Божественная установка или природное явление? Возможность того, что неживая материя когда-то превратилась в живую без какого бы то ни было посредничества Творца, пугала многих верующих. Здесь уместно вспомнить четвертое письмо Ньютона к Ричарду Бентли, в котором он отвечает на вопрос теолога о природе гравитации:

Невозможно представить, чтобы неодушевленная грубая материя без посредства чего-нибудь еще нематериального могла действовать и оказывать влияние на другую материю без взаимного соприкосновения с ней… То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее…представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее.[46]46
  Isaac Newton, Four Letters to Richard Bentley, in Newton: Texts, Backgrounds, Commentaries, ed. I. Bernard Cohen and Richard S. Westfall (New York: Norton, 1995), 330–339.


[Закрыть]

Ньютон настаивал на том, что гравитация не может иметь материального объяснения, так как инертная материя остается инертной. В самой материи имелось что-то непостижимое, запускавшее силы притяжения. Возможно, Ньютон объяснял это вмешательством Бога, хотя в своем ответе Бентли по этому поводу он весьма осторожен (если не сказать противоречив): «Тяготение должно вызываться неким агентом, постоянно действующим по определенным законам; материален этот агент или нематериален, я предоставляю судить читателям».

После Ньютона поведение материальных объектов начали объяснять с помощью сил. Именно они определяют то, как мы познаем мир вокруг нас через наши органы чувств и их искусственные продолжения – приборы. В «экспериментальной философии» не осталось места для метафизики. Говоря словами Ньютона, «то, что не проистекает из фактов, не имеет места».[47]47
  Newton, Mathematical Principles, 943.


[Закрыть]

Это высказывание и по сей день остается кредо науки. Онтологическое описание физического мира через силы, влияющие на материальные объекты, не содержит никаких объяснений о природе таких сил или причинах их существования. Массы притягиваются друг к другу с силой, которая обратно пропорциональна расстояниям между ними. Притяжение (или отторжение) заряженных тел происходит по аналогичному принципу. Такие формулы позволяют физикам описывать поведение масс и зарядов в различных ситуациях. При этом мы не знаем, что представляют собой электрический заряд или масса и почему некоторые базовые единицы материи, например электроны или кварки, обладают и тем и другим. Масса или заряд – это характеристики материальных объектов, которые мы познаем с помощью приборов и опытов и используем для классификации их типов и физических свойств. Масса и заряд не существуют сами по себе. Они лишь часть информационной картины, которую люди создают для описания мира вокруг себя. Пятьсот лет назад этих понятий еще не существовало, а через 500 лет их могут заменить другие концепции. Иными словами, если во Вселенной существуют другие разумные существа, они, несомненно, пытаются объяснить наблюдаемые ими физические явления. Но считать, что они используют при этом те же концепции, что и мы, то есть что придуманные нами описания отражают какую-то вселенскую истину, – это глупость и антропоцентризм.

Наше понимание материальных объектов и взаимодействий между ними резко изменилось в ХХ веке с распространением нового описательного инструмента – понятия поля, породившего новую онтологию. Частицы материи стали представляться как локализованные флуктуации в полях, сгустки энергии, появляющиеся из базового поля и исчезающие в нем же. Несмотря на то что после введения полей как инструмента для объяснения фундаментальной физической реальности наше понимание материи и взаимодействий между объектами существенно улучшилось, поля все равно следует рассматривать как всего лишь один из уровней описания, а не как окончательное объяснение того, почему массы и заряды ведут себя так, как мы наблюдаем. Наверняка мы можем сказать лишь то, что на нашем текущем уровне понимания массы и заряды представляют собой измеримые характеристики возбуждения полей на уровне частиц. То, что это объяснение успешно, не значит, что в будущем мы не найдем ничего лучше. Более того, учитывая скорость развития научных знаний, это почти наверняка произойдет. Точно так же, как современные представления об электроне отличаются от представлений вековой давности, концепции будущего будут отличаться от сегодняшних.[48]48
  Обратите внимание, что мое заявление не имеет ничего общего с традиционными философскими течениями, такими как релятивизм или постмодернизм, или с любыми заявлениями о том, что наука по сути своей субъективна, или с теми, которые утверждают, что она представляет собой единственный путь к истине. Даже несмотря на то что научные концепции часто возникают из субъективных рассуждений людей или групп людей в рамках определенного культурного контекста, ученые в своей практической деятельности стремятся к универсальным истинам, то есть к результатам, которые любой желающий, обладая необходимой технической базой, может проверить и воспроизвести. Важно понимать, что научное описание реальности представляет собой непрерывный процесс создания картины мира и исправления ошибок в ней, направленный на достижение максимальной эффективности. Мое отношение к философии науки можно назвать натуралистическим конструктивизмом. Более подробно мы поговорим об этом позже.


[Закрыть]

Но давайте вернемся в XIX век. Двести лет назад ньютоновская наука потрясла основы человеческого знания и изменила наши представления о мире. Девятнадцатый век породил ученых, выдающихся не только своим блестящим воображением, но и потрясающей работоспособностью и экспериментальным мастерством. В 1865 году Джеймс Клерк Максвелл объединил десятки на первый взгляд разрозненных электрических и магнитных явлений, введя понятие колебаний магнитного поля. В 1886 году Генрих Герц подтвердил предположение Максвелла о том, что такие колебания распространяются в пространстве, перенося энергию и импульс. Позже он также доказал, что электромагнитные волны движутся со скоростью света (как и предсказывал Максвелл). Объединившись, теория и опыт оказались непобедимыми. Чтобы избавиться от ассоциаций с философами прошлого, натурфилософию стали называть наукой. Согласно Оксфордскому словарю английского языка, слово «ученый» вошло в обиход в 1863 году.

Ученый – это человек, который ищет знания о физическом мире, используя специальную методику. Научный метод предполагает выдвижение гипотезы с ее последующим экспериментальным подтверждением. У ученого имеется четкая цель: описать природное явление, используя для этого рациональные аргументы, основанные на воспроизводимых экспериментах и единообразии. Рассуждения допустимы только в той степени, в которой они ведут к возникновению доказуемых прогнозов. Итак, между старой натурфилософией и новой наукой возникла четкая граница, и пересекать ее ученым предлагалось на свой страх и риск (впрочем, желающих оказалось немного). Большинство физиков-исследователей занимаются изучением твердой материи, ее элементарных частиц, жидкостей, плазмы и небесных тел, от планет и звезд до галактик и их расположения в космосе. Однако с ростом наших знаний о Вселенной в ХХ и XXI веках ученые (по крайней мере те, кого интересуют космологические и фундаментальные проблемы) все чаще сталкиваются с вопросами метафизического характера, которые угрожают разрушить неприступную стену между наукой и философией. К сожалению, в большинстве случаев встречи этих двух областей человеческого знания сопряжены с невнимательностью и концептуальной неосторожностью, что лишь больше усложняет дело. Когда известные космологи делают заявления вроде «философия не имеет смысла» или «квантовая космология доказывает, что в Боге нет необходимости», они лишь ухудшают ситуацию. Для того чтобы понять, как мы оказались в такой ситуации и как она демонстрирует нам ограниченность наших знаний, нужно сначала кратко описать современную космологию – от теории Большого взрыва до концепции множественности вселенных.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации