Текст книги "Всего шесть чисел. Главные силы, формирующие Вселенную"
Автор книги: Мартин Рис
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]
АЛХИМИЯ В ЗВЕЗДАХ
В природе атомы существуют в 92 разновидностях, что мы видим в периодической таблице Менделеева. Место каждого атома в ней зависит от числа протонов в его ядре. Таблица начинается атомом водорода, который стоит под № 1, и заканчивается ураном под № 92[16]16
Есть и атомы с большим числом протонов, так что таблица продолжается, но такие элементы в основном создаются искусственно. В природе их крайне мало. – Прим. науч. ред.
[Закрыть]. Ядро атома содержит не только протоны, но и другие частицы, которые называются нейтронами. Нейтрон немного тяжелее протона, но у него нет электрического заряда. Атомы каждого отдельного элемента могут существовать в нескольких вариантах, которые называют изотопами, с разным количеством нейтронов. Например, углерод имеет шестой номер в периодической таблице, т. е. его ядро содержит шесть протонов. Самая распространенная форма углерода (так называемый 12С) также содержит шесть нейтронов, но существуют и изотопы с семью или восемью нейтронами (соответственно – 13С и 14С). Уран – самый тяжелый из встречающихся в природе элементов, хотя более тяжелые ядра, в которых количество заряженных частиц может достигать 114, могут быть получены в лабораториях. Эти сверхтяжелые элементы нестабильны и легко распадаются. Некоторые, такие как плутоний (№ 94 в периодической таблице) имеют время существования в несколько тысяч лет. Элементы с порядковым номером больше 100 могут быть получены в экспериментах, где ядра атомов сталкиваются друг с другом, но такие элементы распадаются в течение очень непродолжительного периода.
Когда водород, находящийся в центре большой звезды, превращается в гелий (элемент № 2 в таблице Менделеева), ее ядро сжимается, повышается температура и гелий начинает реагировать. Электрический заряд ядра гелия в два раза выше, чем у водорода, поэтому этим частицам нужно сталкиваться на большей скорости, чтобы преодолеть более сильное электрическое отталкивание, а для этого требуется более высокая температура. Когда запас гелия истощается, звезда сжимается и разогревается еще больше. У таких звезд, как Солнце, ядро никогда не достигает такой температуры, чтобы эти преобразования зашли слишком далеко, но центральные части более тяжелых звезд, где притяжение сильнее, нагреваются до миллиарда градусов. Они освобождают полученную энергию путем образования атомов углерода (шесть протонов) и затем цепочкой преобразований в вещества с постепенно возрастающим атомным весом: кислород, неон, натрий, кремний и т. д. Количество энергии, высвобождающейся при формировании отдельных атомных ядер, зависит от соотношения двух сил: атомной, которая «склеивает» определенные протоны и нейтроны вместе, и разрушительного эффекта электрической силы между протонами. Ядра атомов железа (26 протонов) связаны крепче, чем любые другие атомы; для создания еще более тяжелых ядер требуется еще больше энергии. Таким образом, когда ядро звезды переживает переход в железо, она испытывает энергетический кризис.
Его последствия драматичны. Когда железное ядро достигает порогового размера (примерно 1,4 массы Солнца), тяготение берет верх и ядро сжимается до размеров нейтронной звезды. Этот процесс высвобождает достаточно энергии, чтобы вещество внешних слоев звезды вспыхнуло в колоссальном взрыве, создавая сверхновую. Более того, эти внешние слои к тому моменту имеют весьма неоднородный состав: водород и гелий все еще горят во внешних слоях, но более горячие внутренние слои продвинулись куда дальше по периодической таблице. Вещество, разлетающееся по космосу, содержит смесь этих элементов. Более всего распространен кислород, за ним следуют углерод, азот, кремний и железо. Если принимать в расчет все типы звезд и различные пути их развития, то рассчитанные пропорции веществ согласуются с тем, что можно наблюдать на Земле.
Железо является всего лишь 26-м элементом в таблице Менделеева. На первый взгляд с более тяжелыми атомами могут быть проблемы, поскольку для их синтеза необходимо вложение энергии. Но огромная температура во время коллапса звезды и взрывная волна, которая разносит ее внешние слои, производят небольшие количества остальных элементов периодической таблицы вплоть до урана под № 92[17]17
Современные данные говорят о том, что значительное количество тяжелых элементов также синтезируется при слияниях нейтронных звезд. – Прим. науч. ред.
[Закрыть].
ГАЛАКТИЧЕСКАЯ ЭКОСИСТЕМА
Первые звезды сформировались примерно 10 млрд лет назад из первичной материи, которая содержала только самые простые атомы – никакого углерода, никакого кислорода и никакого железа. Химия в те времена была бы очень скучным предметом. Разумеется, вокруг первых звезд не обращалось никаких планет. До того как появилось наше Солнце, несколько поколений тяжелых звезд могли пройти через свой полный жизненный цикл, преобразовав первоначальный водород в основные строительные материалы жизни и распространив их по космосу с помощью звездного ветра или взрывов. Некоторые из этих атомов вошли в состав межзвездного облака, напоминающего Туманность Ориона, и в нем примерно 4,5 млрд лет назад сформировалась звезда, окруженная диском из газа и пыли, которому предстояло стать нашей Солнечной системой. Почему на Земле так распространены углерод и кислород, а золото и уран встречаются так редко? Ответ связан со звездами, которые взорвались до того, как образовалось Солнце. Наша Земля и мы сами – осколки древних звезд. Наша Галактика – экосистема, снова и снова перерабатывающая одни и те же атомы с помощью поколений звезд.
Атомы углерода, кислорода и железа в Солнечной системе являются остатками пылевого облака, из которого она сформировалась 4,5 млрд лет назад. Атомы появились внутри тяжелых звезд, которые к тому времени уже разбросали свое вещество. Эти «загрязняющие вещества» составляли всего 2 % массы: водород и гелий по-прежнему оставались доминирующими атомами. Тем не менее тяжелых атомов на Земле хватает, потому что водород и гелий – легкоиспаряющиеся газы, которые быстро покинули все внутренние планеты. Напротив, гигантский Юпитер, как и Солнце, по большей части состоит из водорода и гелия. Он был сформирован из более холодной внешней части диска, который окружал только что появившееся Солнце, и собственного тяготения Юпитера было достаточно для того, чтобы удержать эти легкие атомы.
Более старые по сравнению с Солнцем звезды появились раньше, чем наша Галактика была так сильно «загрязнена». Поэтому по сравнению с Солнцем их поверхность должна испытывать недостаток тяжелых элементов. У звездного света сложный спектр, в котором каждый вид атомов оставляет характерный след. (Например, уличные огни знакомы нам по желтому натриевому свету или характерному голубому свету ртутных паров.) И в самом деле, более тяжелые атомы реже встречаются на самых старых звездах, что соответствует общей схеме истории Галактики. Напротив, гелий очень распространен даже на старых звездах. Причина этого, которую мы обсудим в следующей главе, ведет нас непосредственно к первым минутам после Большого взрыва.
АТОМНЫЙ КОЭФФИЦИЕНТ: ε = 0,007
Расчет соотношения различных атомов – и понимание того, что Творцу не было никакой нужды поворачивать целых 92 ручки настройки, – это триумф астрофизиков. Мы не знаем некоторых деталей, но суть зависит всего лишь от одного числа – значения той силы, что удерживает вместе частицы (протоны и нейтроны), из которых состоят атомные ядра.
Знаменитое уравнение Эйнштейна Е=mc2 сообщает нам, что масса (m) соотносится с энергией (Е) через скорость света (с). Таким образом, скорость света имеет фундаментальное значение. Она точно определяет «переводной коэффициент»: сообщает нам, сколько энергии можно получить из каждого килограмма вещества. Единственный способ, с помощью которого некоторая масса материи может быть на 100 % превращена в энергию, – это ее соприкосновение с равной массой антиматерии, которая (к счастью для нас) в нашей Галактике нигде не встречается в больших количествах. Всего лишь килограмм антиматерии даст такое количество энергии, какое большая электростанция вырабатывает за 10 лет. Но обычное топливо, такое как бензин, и даже взрывчатые вещества, такие как тринитротолуол, высвобождают только миллиардные доли содержащейся в веществе «энергии массы покоя». С помощью этих материалов можно провести химические реакции, которые не изменяют ядра атомов, а только перетасовывают орбиты их электронов и связи между атомами. Но сила термоядерной реакции приводит в трепет, потому что ее эффективность в миллионы раз выше, чем при любом химическом взрыве. Вес ядра атома гелия составляет 99,3 % от веса двух протонов и двух нейтронов, которые нужны, чтобы его создать. Оставшиеся 0,7 % высвобождаются в основном как тепло. Поэтому топливо, которое снабжает энергией Солнце – водород в его ядре, – превращает 0,007 % своей массы в энергию, когда превращается в гелий. Именно число ε определяет срок жизни звезд. Дальнейшие превращения гелия вплоть до железа дают прирост выхода энергии всего на 0,001 %. Таким образом, более поздние стадии жизни звезды оказываются относительно короткими. (Они становятся еще короче, потому что в самых горячих частях звездного ядра дополнительная энергия незримо утекает в нейтрино.)
Количество энергии, высвобождающееся, когда простые атомы подвергаются термоядерной реакции, зависит от значения той силы, которая «склеивает вместе» части атомного ядра. Эта сила отличается от тех двух, о которых я уже рассказывал, т. е. от тяготения и электричества, потому что действует только на очень маленьком расстоянии и эффективна исключительно в масштабах ядер атомов. Мы не испытываем ее воздействия напрямую в отличие от действия электрических и гравитационных сил, которое можем ощутить. Тем не менее внутри атомного ядра эта сила крепко удерживает протоны и нейтроны и достаточно сильна, чтобы бороться с электрическим отталкиванием, которое в противном случае смогло бы оттолкнуть положительно заряженные протоны. Физики называют эту силу «сильным взаимодействием».
Это сильное взаимодействие – доминирующая сила в микромире – удерживает протоны в атомах гелия и более тяжелых атомах так прочно, что их термоядерный синтез является мощным источником, которого достаточно, чтобы на длительное время обеспечить солнечное тепло, необходимое для нашего существования. Без атомной энергии Солнце истощилось бы в течение примерно 10 млн лет, как 100 лет назад предсказывал Кельвин. Поскольку эта сила действует только на коротком расстоянии, она становится менее эффективной в более крупных и тяжелых ядрах атомов: именно поэтому ядра атомов тяжелее железа менее связаны.
ТОЧНАЯ НАСТРОЙКА ε
Атомные силы жизненно важны, но насколько? Что изменилось бы, если бы ε был равен, скажем, 0,006 или 0,008, а не 0,007? На первый взгляд, кто-то мог бы предположить, что никакой разницы не было бы. Если ε будет меньше, водород будет менее эффективным топливом и срок жизни Солнца и других звезд станет короче, но это само по себе не будет настолько жизненно важным (если уж на то пошло, мы-то уже здесь, а Солнце не прожило еще и половины своего срока). Но, как выяснилось, есть и более тонкие эффекты, чувствительные к этому числу и сказывающиеся на процессе синтеза, который превращает водород во все остальные элементы периодической системы.
Самое важное, первое звено в этой цепи – постройка гелия из водорода – весьма чувствительно к силе атомного взаимодействия. Ядра гелия состоят из двух протонов, но также в них входят и два нейтрона. Эти четыре частицы соединяются вместе не за один шаг, ядра гелия поэтапно собираются через дейтерий (тяжелый водород), состоящий из одного протона и одного нейтрона. Если ядро будет «склеено» слабее, т. е. ε будет ближе к 0,006, чем к 0,007, протон не будет связан с нейтроном и дейтерий не будет стабилен. На этом путь преобразования водорода в гелий закончится. У нас будет простая вселенная, состоящая из водорода, атом которого состоит из одного протона и вращающегося вокруг него единственного электрона, и никакой химии. В такой вселенной звезды все еще смогут формироваться (если все остальное останется неизменным), но атомного топлива в них не будет. Они будут истощаться и остывать, заканчивая свое существование как мертвые остатки. Не будет никаких взрывов, чтобы распространить вещество по космосу для того, чтобы из него возникли новые звезды, и не будет никаких элементов, из которых могли бы сформироваться твердые планеты.
На первый взгляд из этого объяснения можно было бы предположить, что более сильное атомное взаимодействие стало бы преимуществом для жизни, сделав термоядерный синтез более эффективным. Но мы не смогли бы существовать, если бы ε был больше 0,008, потому что после Большого взрыва не осталось бы никакого водорода. В нашей Вселенной два протона отталкивают друг друга так сильно, что даже сильное атомное взаимодействие не может связать их вместе без помощи одного или двух нейтронов (которые добавляются к ядерному «клею», но, поскольку не имеют заряда, не добавляют дополнительного электрического отталкивания). Если ε будет равняться 0,008, тогда два протона можно будет связать друг с другом напрямую. Это случится непосредственно в только что возникшей вселенной, поэтому не останется водорода, который мог бы стать топливом для обычных звезд, и вода не сможет существовать.
Поэтому для любой вселенной с большим набором химических веществ необходимо, чтобы число ε находилось в диапазоне от 0,006 до 0,008. Некоторые отдельные детали еще более чувствительны к его значению. Английского физика-теоретика Фреда Хойла мысль о самом популярном примере «точной настройки» осенила, когда он точно рассчитывал процесс синтеза углерода и кислорода в звездах. Углерод (с шестью протонами и шестью нейтронами в атомном ядре) получается из сочетания трех ядер атомов гелия. Шанс на то, что все три соединятся одновременно, очень мал, и поэтому процесс идет через промежуточную стадию, на которой два ядра гелия соединяются в бериллий (четыре протона и четыре нейтрона), прежде чем соединиться с еще одним атомом гелия, чтобы получился углерод. Хойл столкнулся с проблемой нестабильности этого атома бериллия: он распадается так быстро, что, кажется, у третьего атома гелия очень мало шансов прилепиться к нему до распада. Так как же углерод вообще мог возникнуть? Выяснилось, что у ядер углерода есть характерная черта – присутствие резонанса с особым видом энергии, которая повышает шанс на то, что бериллий захватит еще одно ядро гелия в короткий интервал до своего распада. Хойл фактически предсказал существование этого резонанса и призвал коллег-экспериментаторов его измерить. Его предсказание было доказано. Этот процесс, казавшийся физикам-ядерщикам случайным, позволяет образовываться углероду, но подобного явления не возникает на следующей стадии, когда углерод захватывает еще один атом гелия и превращается в кислород. Этот жизненно важный резонанс очень чувствителен к ядерной силе. Сдвиг ее даже на 4 % сильно уменьшил бы количество углерода, которое могло бы образоваться. Таким образом, Хойл доказал, что наше существование могло быть поставлено под угрозу изменением числа ε всего на несколько процентов{6}6
Ливио и др. (Nature, 340, 281 1989) вычислили, насколько производство углерода чувствительно к изменениям в закономерностях ядерной физики.
[Закрыть].
Независимо от того, как создаются элементы, изменения в значении числа ε отразились бы на длине периодической таблицы. Более слабая атомная сила переместила бы наиболее прочно связанные атомы (которым сейчас является железо, № 26) ниже в периодической таблице и понизило бы количество стабильных элементов до уровня куда меньшего, чем 92. Это привело бы к «обедневшей» химии. Наоборот, увеличение значения числа ε могло бы повысить стабильность тяжелых атомов.
На первый взгляд, более длинный список различных распространенных атомов открывает путь к более интересной и разнообразной химии. Но это вовсе не само собой разумеется – например, английский язык не стал бы значительно богаче, если бы в алфавите было больше букв. Аналогично и сложные молекулы могут существовать в бесконечном разнообразии, хотя и состоят из относительно небольшого набора общих элементов. Химия была бы скучнее (а сложные молекулы, необходимые для жизни, в ней вовсе бы не существовали), если бы в изобилии не было кислорода и железа (№ 8 и № 26 соответственно), а особенно – углерода (№ 6). При этом мало что изменится от увеличения количества часто встречающихся элементов или от наличия нескольких дополнительных стабильных элементов, помимо привычных нам 92.
Существующее ныне сочетание элементов зависит от значения числа ε, но куда более значимо то, что никакая основанная на углероде биосфера не может существовать, если оно будет равно 0,006 или 0,008, а не 0,007.
ГЛАВА 5
НАША КОСМИЧЕСКАЯ СРЕДА ОБИТАНИЯ II: ЗА ПРЕДЕЛАМИ НАШЕЙ ГАЛАКТИКИ
ВСЕЛЕННАЯ ГАЛАКТИК
Я уже рассказал, как были созданы атомы периодической таблицы и что мы – это звездная пыль или, если быть менее романтичным, «ядерный мусор», оставшийся от топлива, позволяющего звездам сиять. Эти процессы зависят от значения атомной силы, которая «склеивает» протоны и нейтроны внутри атомного ядра и измеряется космическим числом ε = 0,007, которое обозначает, в каком соотношении высвобождается энергия во время термоядерной реакции преобразования водорода в гелий. Но откуда появились самые первые протоны и атомы водорода и как из изначальной материи образовались первые галактики и звезды? Чтобы ответить на эти вопросы, нам нужно расширить наши границы в пространстве и во времени – в межгалактическую область и назад в ту эпоху, когда еще не было первых звезд. Мы должны познакомиться с другими числами, которые описывают нашу Вселенную, и удостовериться, что наше появление зависит от их точного значения.
Звезды собираются в галактики, которые являются основными единицами, образующими Вселенную. Наша Галактика – одна из самых типичных. Ее сотня миллиардов звезд лежит главным образом в плоскости диска, кружась вокруг яркой внутренней выпуклости – «балджа», где звезды расположены ближе друг к другу, чем в плоскости. Прямо в центре скрывается черная дыра с массой, в 2,5 млн раз превышающей солнечную. Лучу света потребуется 25 000 лет, чтобы добраться от нас до центра Галактики, а мы вместе с Землей находимся чуть дальше, чем на полпути от центра до края диска. С того места, где расположено Солнце, другие звезды диска выглядят как лента, тянущаяся через все небо, мы ее называем Млечный Путь. Обычным звездам потребуется более 100 млн лет, чтобы совершить полный оборот вокруг центра Галактики (этот оборот иногда называют «галактическим годом»).
Туманность Андромеды, наш самый близкий космический сосед, находится примерно в 2 млн св. лет. Для астронома, находящегося на планете, обращающейся вокруг одной из звезд в Туманности Андромеды, наша Галактика будет выглядеть приблизительно так же, как для нас Туманность Андромеды: диск из звезд и газа, кажущийся наклоненным и вращающийся вокруг центральной основы. С помощью мощных телескопов можно увидеть миллионы других галактик. Не все из них по форме напоминают диски[19]19
Такие галактики астрономы обычно называют спиральными. – Прим. пер.
[Закрыть] – другой важный класс составляют так называемые «эллиптические галактики», в которых звезды не организованы как диск, а кружат по более свободным орбитам, испытывая притяжение всех остальных звезд такой галактики.
В космосе галактики не располагаются случайным образом: большинство из них собираются в группы или кластеры, которые притяжение удерживает вместе. Наша собственная Местная группа галактик включает Млечный Путь и Туманность Андромеды, а также 43 карликовые галактики (по крайней мере, по последним подсчетам их было именно столько – ученые продолжают находить очень слабых и маленьких членов Местной группы). Притяжение тянет Туманность Андромеды в нашу сторону со скоростью приблизительно 100 км/с. Примерно через 5 млрд лет наши спиральные галактики могут столкнуться. В космосе такие столкновения являются рутинными событиями: в его глубинах мы видим много других галактик, которые, надо полагать, пережили такие встречи с соседями.
Галактики являются такими огромными и разреженными, и звезды в них так рассеяны, что реальные столкновения между ними происходят чрезвычайно редко. (Это полностью верно по отношению к соседям Солнца, поскольку даже самые близкие из них выглядят слабыми искрами света.) Даже когда две галактики столкнутся вместе и перемешаются, столкновений звезд будет очень немного. Единственное, что произойдет, – каждая звезда испытает на себе коллективное притяжение всего вещества из другой галактики. Орбиты так исказятся, что звезды в конце концов окажутся не в двух отдельных дисках, а в едином хаотичном рое. Именно так выглядят эллиптические галактики, и я подозреваю (хотя на этот вопрос все еще нет однозначного ответа), что большие эллиптические галактики формировались именно подобным образом.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?