Электронная библиотека » Митио Каку » » онлайн чтение - страница 2


  • Текст добавлен: 22 октября 2021, 09:40


Автор книги: Митио Каку


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Уравнения Максвелла

Ньютон показал, что объекты движутся под действием сил, которые можно описать при помощи дифференциального и интегрального исчисления. Фарадей показал, что электричество возникает под действием поля. Но для исследования полей требовался новый раздел математики, векторное исчисление, которым воспользовался Джеймс Клерк Максвелл. Можно сказать, что если Кеплер и Галилей заложили основы Ньютоновой физики, то Фарадей открыл путь для уравнений Максвелла.

Максвелл – виртуоз математики, совершивший поразительный прорыв в физике. Он понял, что поведение электричества и магнетизма, каким его описывал Фарадей и другие, можно обобщить и описать точным математическим языком. Один из законов гласил, что движущееся магнитное поле способно порождать электрическое поле. Другой закон утверждал обратное: что движущееся электрическое поле способно порождать магнитное поле.

Максвелла осенила гениальная идея. Что, если переменное электрическое поле создает магнитное поле, которое, в свою очередь, порождает другое электрическое поле, которое затем порождает другое магнитное поле и так далее? Блестящее озарение подсказало ему, что конечным продуктом этого стремительного перехода туда-сюда должна быть бегущая волна, в которой электрическое и магнитное поля непрерывно сменяют друг друга. Эта бесконечная цепь превращений живет собственной жизнью и создает бегущую волну из колеблющихся электрического и магнитного полей.

Воспользовавшись методами векторного исчисления, он рассчитал скорость этой бегущей волны и получил величину 310 740 км/с. Результат потряс его. В пределах ошибки эксперимента полученная скорость оказалась поразительно близкой к скорости света (которая, как известно на сегодняшний день, составляет 299 792 км/с). После этого он сделал еще один дерзкий шаг и заявил, что это и есть свет! Свет – это электромагнитная волна.

Максвелл написал пророчески: «Мы практически не можем не прийти к выводу, что свет заключается в поперечных колебаниях той же среды, которая является источником электрических и магнитных явлений»[8]8
  Quotefancy.com, http://quotefancy.com/quote/1572216/James-Clerk-Maxwell-We-can-scarcely-avoid-the-inference-that-light-consists-in-the-transverse-undelations-of-the-same-medium-which-is-the-cause-of-electric-and-magnetic-phenomena.


[Закрыть]
.

Сегодня любому студенту-физику и инженеру-электрику приходится заучивать наизусть уравнения Максвелла. Именно они лежат в основе телевидения, лазеров, электромоторов, генераторов и т. п.

Фарадей и Максвелл объединили электричество и магнетизм. И ключом к объединению стала симметрия. В уравнениях Максвелла есть симметрия, которую называют дуальностью. Если электрическое поле светового луча обозначить E, а магнитное – B, то при замене E на B или наоборот уравнения для электричества и магнетизма не изменятся. Дуальность подразумевает, что электричество и магнетизм представляют собой два проявления одной и той же силы. Симметрия E и B позволяет объединить электричество и магнетизм, и это – одно из величайших прорывных открытий XIX века[9]9
  С формальной точки зрения в уравнениях Максвелла нет идеальной симметрии между электрическим и магнитным полями. Например, электроны являются источником электрических полей, но уравнения Максвелла предсказывают также и существование источников магнитных полей – так называемых монополей (то есть южного и северного магнитных полюсов по отдельности), которых никто никогда не видел. Вследствие этого некоторые физики предполагают, что такие монополи, возможно, когда-нибудь будут открыты.


[Закрыть]
.



Рис. 3. Электрическое и магнитное поля – две стороны одной медали. Переменные электрическое и магнитное поля превращаются одно в другое и движутся подобно волне. Свет – одно из проявлений электромагнитной волны


Физики были околдованы этим открытием. Всякому, кто сможет воспроизвести волны Максвелла в лаборатории, была обещана Берлинская премия. В 1886 г. этот исторический эксперимент провел физик Генрих Герц.

Для начала Герц сгенерировал в одном из углов своей лаборатории электрическую искру. В нескольких футах от нее была установлена проволочная рамка. Герц показал, что проскакивание искры может привести к появлению в рамке электрического тока, и доказал таким образом, что новая загадочная волна распространяется в пространстве без проводов. Это стало предвестником открытия явления нового типа, получившего название радио. В 1894 г. Гульельмо Маркони представил новую форму связи публично[10]10
  В России изобретателем радио считается Александр Степанович Попов, русский физик и электротехник. Попов и Маркони обнаружили возможность беспроводной передачи сигнала независимо друг от друга примерно в одно и то же время, однако Маркони первым получил патент на свое изобретение и коммерциализировал его. – Прим. ред.


[Закрыть]
. Он показал, что можно передавать сообщения без проводов через Атлантический океан со скоростью света.

С появлением радио человек получил сверхбыстрый и удобный беспроводной способ дальней связи. Исторически отсутствие быстрой и надежной системы связи было одним из серьезных препятствий для прогресса. (В 490 г. до н. э. после битвы между греками и персами при Марафоне гонцу было приказано как можно быстрее доставить новость о победе греков. Он доблестно пробежал 42 км до Афин, да еще после того, как пробежал 230 км до Спарты, а потом, согласно легенде, упал замертво от усталости. Его подвиг в те времена, когда не было средств телекоммуникации, сегодня отмечается марафонскими состязаниями.)

Сегодня нам кажется совершенно естественным, что можно без всяких усилий пересылать сообщения и информацию в любой конец света, пользуясь возможностью преобразовывать энергию множеством разных способов. Например, когда разговариваешь по сотовому телефону, энергия звука преобразуется в механические колебания мембраны. Мембрана связана с магнитом, создающим электрические импульсы, которые можно передать в компьютер. Затем эти электрические импульсы преобразуются в электромагнитные волны, которые ловит ближайшая микроволновая вышка. Там сообщение усиливается и посылается на другой конец света.

Но уравнения Максвелла не только дали нам доступ к почти мгновенной связи через радио, сотовые телефоны и оптоволоконные кабели. Они открыли для нас весь электромагнитный спектр, в котором видимый свет и радио – всего лишь два диапазона. В 1660-е гг. Ньютон показал, что белый свет, если пропустить его через призму, можно разложить на все цвета радуги. В 1800 г. Уильям Гершель задал себе простой вопрос: что лежит за краями радуги, цвета в которой меняются от красного до фиолетового? Он взял призму, при помощи которой получал радугу в своей лаборатории, и поместил термометр за красным цветом, где никакого цвета вообще не было видно. К его немалому удивлению, температура в этом пустом вроде бы месте начала расти. Иными словами, за красным следовал еще какой-то «цвет», который был невидим невооруженному глазу, но нес энергию. Он получил название инфракрасного света.

Сегодня мы знаем, что существует целый спектр электромагнитного излучения, большая часть которого невидима и для каждой области которого характерна конкретная длина волны. Теле– и радиоволны, например, длиннее волн видимого света. Длины волн цветов радуги, в свою очередь, больше, чем длины волн ультрафиолетовой области излучения и рентгеновских лучей.

Это, помимо всего прочего, означало, что реальность, которую мы видим вокруг, представляет собой лишь крохотный кусочек полного электромагнитного спектра, мельчайший элемент гораздо более масштабной вселенной электромагнитных оттенков. Некоторые живые существа видят больше, чем мы. Например, пчелы способны воспринимать ультрафиолетовое излучение, невидимое для нас, но важное для пчел, поскольку оно помогает находить солнце и ориентироваться по нему даже в пасмурный день. А поскольку цветы в процессе эволюции обрели свои великолепные цвета, чтобы привлекать необходимых для опыления насекомых, например пчел, это означает, что они зачастую выглядят еще более привлекательно, если рассматривать их в ультрафиолетовом диапазоне.



Рис. 4. Бóльшая часть электромагнитного спектра, простирающегося от радио– до гамма-излучения, невидима для наших глаз. Из-за размера клеток в сетчатке наши глаза способны различать лишь крохотную часть электромагнитного спектра


Когда я еще ребенком читал об этом, мне всегда было интересно, почему мы видим лишь крохотный кусочек электромагнитного спектра. Какая жалость, думал я. Но причина, я теперь понимаю, состоит в том, что длина электромагнитной волны примерно соответствует размеру излучающей эту волну антенны. Размер вашего сотового телефона составляет всего лишь несколько дюймов потому, что размер его антенны должен примерно соответствовать длине передаваемых и принимаемых электромагнитных волн. Аналогично размер клеток сетчатки вашего глаза примерно определяет длины волн тех цветов, которые вы в состоянии различать. Следовательно, мы можем видеть только те цвета, длины волн которых равны размерам наших клеток. Все остальные цвета электромагнитного спектра невидимы для нас, потому что длины их волн либо слишком велики, либо слишком малы, чтобы восприниматься клетками сетчатки. Если бы клетки наших глаз были размером с дом, мы, возможно, воспринимали бы радио– и микроволновое излучение, которое пронизывает все вокруг.

Ну а если бы клетки наших глаз были размером с атом, мы, возможно, видели бы рентгеновские лучи.

Еще один практический аспект, связанный с применением уравнений Максвелла, – это обеспечение энергией целой планеты. Если нефть и уголь приходится возить кораблями и поездами, то электрическую энергию можно передать по проводам одним щелчком выключателя и обеспечить освещение целых городов.

В этой сфере интересно знаменитое противостояние двух гигантов электрического века – Томаса Эдисона и Николы Теслы. Гений Эдисона стоял за многими электрическими изобретениями, включая электрическую лампочку, кинематограф, фонограф, телеграф и сотни других чудес. Кроме того, он первым электрифицировал улицу – это была Перл-стрит в центре Манхэттена.

Его деятельность положила начало второй великой технологической революции и веку электричества.

Эдисон считал, что лучше всего для передачи электричества использовать постоянный ток, или DC, который всегда течет в одном направлении и напряжение которого не меняется. Тесла же, работавший первоначально на Эдисона и помогавший закладывать основы сегодняшней телекоммуникационной сети, был сторонником применения переменного тока, AC, который меняет направление десятки раз в секунду. Это привело к знаменитому противоборству разных видов тока, в ходе которого гигантские корпорации вкладывали миллионы долларов в соперничающие технологии: General Electric поддерживала Эдисона, а Westinghouse – Теслу. Будущее электрической революции полностью зависело от того, кто победит в этом конфликте – DC Эдисона или AC Теслы.

Хотя Эдисон был идейным вдохновителем внедрения электричества и одним из архитекторов современного мира, уравнений Максвелла он до конца не понимал. Эта ошибка обошлась ему очень дорого. Следует отметить, что он ни в грош не ставил ученых, слишком много понимавших в математике. (Рассказывают, что он часто просил ученых, пытавшихся устроиться к нему на работу, определить объем электрической лампочки и, улыбаясь, наблюдал, как они пытались при помощи высшей математики рассчитать форму стеклянной колбы и вычислить ее объем. После этого Эдисон просто наливал в пустую колбу воду, а затем переливал ее в мерный стакан.)

Инженеры знали, что в многокилометровых линиях электропередачи при низком напряжении, предлагаемом Эдисоном, теряется значительное количество энергии. Высоковольтные силовые линии, предлагаемые Теслой, были экономически предпочтительнее, но заводить высоковольтные кабели в жилые дома было слишком опасно. Решение виделось в использовании эффективных высоковольтных кабелей на участке от электростанции до города с последующим преобразованием высокого напряжения в низкое перед входом в вашу гостиную. Требовались трансформаторы.

Как мы помним, Максвелл показал, что движущееся (или переменное) магнитное поле порождает электрический ток и наоборот. Это позволяет создать трансформатор, способный быстро преобразовывать напряжение. Например, напряжение в линиях электропередач, идущих от электростанций, может составлять тысячи вольт. Но трансформатор возле вашего дома снижает это напряжение до 110 или 220 вольт, вполне достаточных для питания микроволновки и холодильника.

Если поля статичны и не меняются, их невозможно преобразовать одно в другое. Переменный ток непрерывно изменяется, поэтому его легко можно превращать в магнитные поля, которые затем преобразуются обратно в электрические поля, но более низкого напряжения, – иными словами, с помощью трансформаторов можно легко менять напряжение переменного тока; в случае постоянного тока (поскольку его напряжение постоянно) это невозможно.

В конечном итоге Эдисон проиграл сражение и потерял немало средств, которые вложил в DC-технологию. Игнорирование уравнений Максвелла обошлось ему дорого.

Конец науки?

Помимо объяснения загадок природы и открытия пути к новой эпохе экономического процветания, сочетание уравнений Ньютона и Максвелла дало нам весьма убедительную теорию всего. Или, по крайней мере, всего, известного на тот момент.

К 1900 г. многие ученые возвещали «конец науки». Так что водораздел XIX и XX веков был довольно бурным временем для жизни. Все, что можно было открыть, уже было открыто – или, во всяком случае, так казалось.

В то время физики не понимали, что два столпа науки – уравнения Ньютона и уравнения Максвелла – на самом деле несовместимы. Они противоречат друг другу.

Один из них должен был пасть. А ключ к разгадке находился у шестнадцатилетнего подростка. Этому юноше суждено было родиться в 1879 году – году смерти Максвелла.

2
Эйнштейн: Поиск путей объединения

Еще подростком Эйнштейн задался вопросом, которому суждено было изменить ход истории XX века. Он спросил себя: можно ли обогнать луч света?

Много лет спустя он напишет, что в этом простом вопросе был ключ к его теории относительности.

Когда-то он прочел детскую книгу Аарона Давида Бернштейна из серии «Популярные книги по естествознанию», в которой читателю предлагали представить себе полет вдоль телеграфного провода. Вместо этого Эйнштейн представил полет вдоль светового луча, который выглядел застывшим в пространстве. Если нестись вдоль луча со скоростью света, световые волны должны казаться неподвижными, думал он, это мог бы предсказать еще Ньютон.

Но даже шестнадцатилетним подростком Эйнштейн понимал, что никто и никогда не видел застывшего в пространстве светового луча. Чего-то в этой картине недоставало. Биться над этим вопросом ему предстояло следующие десять лет.

К несчастью, многие считали его неудачником. Хотя учился он блестяще, профессорам не нравился его бесшабашный образ жизни. Заранее зная значительную часть материала, он часто пропускал занятия, в результате чего профессора писали ему нелестные характеристики; и все его попытки устроиться на работу заканчивались отказом. Отчаявшийся и безработный, он согласился на преподавательскую должность (откуда был уволен за спор с нанимателем). В какой-то момент, пытаясь поддержать свою гражданскую жену и ребенка, он даже подумывал заняться продажей страховых полисов. (Представляете – открываете вы дверь и видите там Эйнштейна, который пытается впарить вам страховку?) Будучи не в состоянии найти работу, он считал себе паршивой овцой в собственной семье. В одном из писем он мрачно писал: «Я всего лишь обуза для родных… Лучше бы меня вовсе не было на свете»[11]11
  Abraham Pais, Subtle Is the Lord (New York: Oxford University Press, 1982), 41.


[Закрыть]
.

В конце концов ему удалось получить работу чиновника третьего класса в патентном бюро в Берне. Эта унизительная на первый взгляд должность на самом деле стала большим благом. В тишине патентного бюро Эйнштейн смог вернуться к вопросу, мучившему его с детства. Именно там ему суждено было начать революцию, перевернувшую физику и весь мир с ног на голову.

С уравнениями Максвелла для света Эйнштейн познакомился еще во время учебы в знаменитом Высшем техническом училище в Швейцарии. Тогда же он задался вопросом: что произойдет с уравнениями Максвелла, если объект будет двигаться со скоростью света? Примечательно, что никто до него не задавал этого вопроса. Пользуясь теорией Максвелла, Эйнштейн рассчитал скорость светового луча, связанного с движущимся объектом, например поездом. Он ожидал, что скорость этого светового луча, с точки зрения внешнего неподвижного наблюдателя, будет равна сумме обычной скорости света и скорости поезда. Согласно Ньютоновой механике, скорости должны складываться. Например, если вы, путешествуя на поезде, бросаете бейсбольный мяч, то внешний наблюдатель скажет, что его скорость равна скорости поезда плюс скорость мяча относительно поезда. Точно так же скорости вычитаются. Так что если бы вы летели со скоростью света вдоль светового луча, то луч этот должен был казаться вам неподвижным.

К своему изумлению, Эйнштейн обнаружил, что световой луч при этом не только не будет казаться неподвижным, но и продолжит улетать прочь все с той же скоростью. Но это же невозможно, думал он. Согласно Ньютону, если двигаться достаточно быстро, можно догнать что угодно. Так говорит здравый смысл. Однако уравнения Максвелла гласили, что свет догнать невозможно: он всегда распространяется с одинаковой скоростью, как бы быстро ни двигались вы сами.

Для Эйнштейна это стало настоящим откровением. Прав может быть кто-то один: либо Ньютон, либо Максвелл. Второй должен быть неправ. Но как так получается, что свет догнать невозможно? В патентном бюро у него было достаточно времени, чтобы поразмышлять над этим вопросом. И однажды весной 1905 г. в поезде на Берн его осенило. «В голове у меня разразилась настоящая буря»[12]12
  Quotation.io, https://quotation.io/page/quote/storm-broke-loose-mind.


[Закрыть]
, – вспоминал он позже.

Блестящее озарение Эйнштейна состояло в том, что, поскольку скорость света измеряется при помощи часов и линеек и постоянна, как бы быстро вы ни двигались, пространство и время должны искривляться для обеспечения этого постоянства!

Это означает, что если вы находитесь на быстро движущемся космическом корабле, то часы внутри корабля идут медленнее, чем часы на Земле. Время замедляется тем сильнее, чем быстрее вы движетесь, – это явление описывается специальной теорией относительности Эйнштейна. Таким образом, ответ на вопрос «Который час?» зависит от того, как быстро вы движетесь. Если космический корабль летит со скоростью, близкой к скорости света, а мы наблюдаем за ним с Земли в телескоп, то нам кажется, что все в корабле движется замедленно. К тому же все в корабле кажется сжатым. Наконец, все в нем стало тяжелее, чем было. При этом, как ни удивительно, его обитателям кажется, что все нормально.

Позже Эйнштейн вспоминал: «Я обязан Максвеллу больше, чем кому-либо другому»[13]13
  Albrecht Fölsing, Albert Einstein, trans. and abridged Ewald Osers (New York: Penguin Books, 1997), 152.


[Закрыть]
. Сегодня провести такой эксперимент совсем несложно. Если поместить атомные часы в самолет и сравнить их ход с ходом часов на земле, можно увидеть, что они идут медленнее (совсем чуть-чуть, на одну триллионную долю).

Но если пространство и время могут изменяться, то все, что вы можете измерить, тоже должно изменяться, включая вещество и энергию. И чем быстрее вы движетесь, тем тяжелее становитесь. Но откуда берется при этом лишняя масса? Ее источником служит энергия движения. Это означает, что часть энергии движения превращается в массу.

Точная взаимосвязь вещества и энергии описывается формулой E = mc2. Это уравнение, как мы увидим, отвечает на один из глубочайших вопросов науки: почему светит Солнце? Ответ таков: Солнце светит потому, что в результате сжатия ядер водорода при очень высоких температурах часть их массы превращается в энергию.

Ключ к пониманию Вселенной – унификация, объединение. Для теории относительности это объединение пространства и времени, а также вещества и энергии. Но как оно достигается?

Симметрия и красота

Для поэтов и художников красота – это эфемерное эстетическое качество, рождающее сильные эмоции и страсть.

Для физика красота – это симметрия. Уравнения красивы, потому что в них присутствует симметрия, то есть при перестановке или замене компонентов уравнение остается неизменным. Оно инвариантно по отношению к этому преобразованию. Представьте себе калейдоскоп. В нем беспорядочно пересыпаются цветные кусочки стекла, которые многократно отражаются в зеркалах, а отражения выстраиваются симметрично по кругу. Нечто хаотическое внезапно становится упорядоченным и красивым, и все это благодаря симметрии.

Точно так же красива снежинка, потому что при повороте на 60º ее форма не меняется. А сфера обладает еще большей симметрией. Ее можно повернуть вокруг центра на любой угол в любом направлении, и она будет выглядеть неизменной. Для физика уравнение красиво, если можно поменять местами его части и элементы и обнаружить, что результат не изменился, – иными словами, если видно, что между его частями имеется симметрия. Математик Годфри Харди однажды написал: «Построения математика, как построения художника или поэта, должны быть красивы; идеи, подобно цветам или словам, должны складываться гармонично. Красота – это первоначальный тест. Для безобразной математики в мире нет постоянного места»[14]14
  Wikiquotes.com, https://en.wikiquote.org/wiki/G._H._Hardy.


[Закрыть]
. Красота, о которой здесь идет речь, – это симметрия.

Как мы уже говорили, если взять Ньютонову силу тяготения для Земли, обращающейся вокруг Солнца, то радиус орбиты Земли будет постоянным. Координаты X и Y меняются, но радиус R остается неизменным. Это правило можно распространить и на три измерения.



Рис. 5. Когда вы перемещаетесь по поверхности Земли, радиус Земли R остается константой, инвариантом, а ваши координаты X, Y и Z непрерывно меняются, как бы переходя друг в друга. Математическим выражением сферической симметрии является трехмерная теорема Пифагора


Представьте, что вы сидите на поверхности Земли, где ваше местоположение в трех измерениях задается тремя координатами X, Y и Z (см. рис. 5). Как бы вы ни перемещались по поверхности Земли, расстояние R от вас до ее центра останется неизменным, причем R2 = X2 + Y2 + Z2. Это уравнение – трехмерный вариант теоремы Пифагора[15]15
  Чтобы убедиться в этом, возьмем Z = 0. Тогда вместо сферы мы увидим окружность в плоскости X и Y, в точности как прежде. При движении по этой окружности выполняется равенство X2 + Y2 = R2. А теперь начнем постепенно увеличивать Z. По мере того как мы будем подниматься по оси Z, окружность будет уменьшаться. (На глобусе эта окружность соответствует линии равной широты.) R остается прежним, но при фиксированной величине Z уравнение для меньших окружностей принимает вид X2 + Y2= R2 – Z2. Если мы теперь разрешим Z меняться, то увидим, что любая точка на сфере имеет такие координаты X, Y и Z, что выполняется трехмерная теорема Пифагора. Так что в конечном итоге все точки на сфере могут быть описаны теоремой Пифагора в трех измерениях, где R остается постоянным, а X, Y и Z меняются при перемещении точки по сфере. Великое откровение Эйнштейна позволило распространить это правило на четыре измерения, где роль четвертого измерения играет время. – Прим. авт.


[Закрыть]
.

Итак, если мы возьмем уравнения Эйнштейна, а затем переведем пространство во время, а время в пространство, то уравнения останутся неизменными. Это означает, что три измерения пространства объединены теперь с измерением времени T, которое становится четвертым измерением в системе[16]16
  Хотя специальная теория относительности обладает четырехмерной симметрией, как видно по простой четырехмерной теореме Пифагора X2 + Y2 + Z2 – T2 (в определенных единицах), время, по сравнению с остальными пространственными измерениями, входит в нее с дополнительным минусом. Это означает, что время в самом деле является четвертым измерением, но особого рода, в котором, в частности, нельзя запросто передвигаться вперед и назад (иначе путешествия во времени давно стали бы обычным делом). Можно легко перемещаться вперед и назад в пространстве, но не во времени именно из-за этого дополнительного минуса. (Кроме того, обратите внимание, что мы приняли систему единиц, в которой скорость света равна 1, ясно показывая, что время входит в специальную теорию относительности в качестве четвертого измерения.)


[Закрыть]
. Эйнштейн показал, что величина X2 + Y2 + Z2 – T2 (где время представлено в определенных единицах) остается неизменной, то есть получил модифицированный вариант теоремы Пифагора для четырех измерений. (Обратите внимание, что координата времени присутствует здесь со знаком минус. Это означает, что, хотя теория относительности инвариантна при вращении в четырех измерениях, с временем в ней обращаются немного иначе, чем с остальными тремя пространственными измерениями.) Таким образом, уравнения Эйнштейна симметричны в четырех измерениях.


Уравнения Максвелла были сформулированы примерно в 1861 г. – в год начала Гражданской войны в Америке. Они, как уже говорилось, обладают симметрией с точки зрения взаимопревращения электрического и магнитного полей. Но эти уравнения обладают еще одной, скрытой симметрией. Если мы преобразуем уравнения Максвелла в четырех измерениях, поменяв местами X, Y, Z и T, как сделал в 1910-е гг. Эйнштейн, они останутся неизменными. Это означает, что, если бы физики не были так ослеплены успехами Ньютоновой физики, теория относительности могла бы появиться еще во время Гражданской войны в США!

Гравитация как искривление пространства

Хотя Эйнштейн показал, что пространство, время, вещество и энергия являются компонентами более масштабной четырехмерной симметрии, в его уравнениях оставалась очевидная прореха: в них ничего не говорилось о тяготении и ускорениях. Эйнштейна это не устраивало. Он хотел обобщить свою более раннюю теорию, которая получила название специальной теории относительности, таким образом, чтобы в нее вошли гравитация и ускоренное движение, и создать более всеобъемлющую общую теорию относительности.

Коллега Эйнштейна физик Макс Планк, впрочем, предупредил его о трудности создания теории, совмещающей относительность и тяготение. Он сказал: «Как старший друг, я должен отговорить вас от этого. Ибо, во-первых, вы не добьетесь успеха, а если даже добьетесь, никто вам не поверит». Но затем он добавил: «Если вам все же удастся это сделать, вас назовут новым Коперником»[17]17
  Brandon R. Brown, «Max Planck: Einstein's Supportive Skeptic in 1915», OUPblog, Nov. 15, 2015, https://blog.oup.com/2015/11/Einstein-planck-general-relativity.


[Закрыть]
.

Любому физику было очевидно, что теория всемирного тяготения Ньютона и теория Эйнштейна не согласуются друг с другом. Если бы Солнце внезапно исчезло без следа, то, согласно утверждению Эйнштейна, Земля ощутила бы его отсутствие только через восемь минут. В знаменитой формуле гравитации Ньютона скорость света отсутствует. Следовательно, гравитация распространяется мгновенно, нарушая законы относительности, и Земля должна ощутить отсутствие Солнца сразу же, мгновенно.

Эйнштейн размышлял над проблемами света на протяжении десяти лет – с шестнадцатилетнего возраста до двадцати шести лет. Следующие десять лет – до тридцатишестилетнего возраста – его мысли были сосредоточены на теории гравитации. Ключ к этой загадке явился ему однажды, когда он откинулся на стуле назад, качнулся на задних ножках и чуть не упал. До него вдруг дошло, что в момент падения он оказался бы в невесомости. Затем он понял, что это, возможно, и есть ключ к теории гравитации. Позже он растроганно вспоминал, что это была «счастливейшая мысль всей его жизни».

Галилей тоже понимал, что, если упасть с крыши здания, на какое-то мгновение окажешься в невесомости, но только Эйнштейн сообразил, как использовать этот факт, чтобы раскрыть с его помощью тайну гравитации. Представьте на мгновение, что вы находитесь в лифте с обрезанным тросом. Вы падаете, но пол лифта падает с той же скоростью, так что вы будете плавать в воздухе, как если бы никакой силы тяжести не существовало (по крайней мере до того момента, когда лифт врежется в землю). Внутри лифта тяготение в точности компенсируется ускорением свободного падения. Тот факт, что ускорение в одной системе отсчета неотличимо от гравитации в другой, называется принципом эквивалентности.

Когда астронавты в космосе плавают в невесомости, то происходит это не потому, что тяготение там исчезает. Солнечная система полна самых разных гравитационных сил. Причина в том, что космический корабль, в котором находятся астронавты, падает точно с такой же скоростью, как и они. Подобно воображаемому ядру Ньютона, которое вылетает из пушки на вершине горы, и сами астронавты, и их корабль свободно падают, обращаясь вокруг Земли. Таким образом, внутри корабля возникает иллюзия отсутствия гравитации, поскольку все в нем, включая ваше тело, падает с одинаковой скоростью.

Затем Эйнштейн применил это правило к детской карусели. Согласно теории относительности, чем быстрее вы движетесь, тем более плоскими становитесь, потому что пространство сжимается. При вращении карусели внешний край движется быстрее, чем все, что внутри. Из-за релятивистского эффекта внешний край и сжимается сильнее, чем внутренняя часть карусели. По мере того как скорость карусели приближается к скорости света, ее пол коробится. Это уже не плоский диск. Его внешний край сжимается, тогда как центр остается таким же, как был, так что поверхность пола выгибается подобно перевернутой чаше.

Теперь представьте, что вы пытаетесь пройти по искривленному полу карусели, – вам не удастся пересечь его по прямой. Поначалу может показаться, что какая-то невидимая сила пытается сбить вас с пути, поскольку поверхность искривлена или изогнута. Человек на карусели говорит, что центробежная сила сталкивает его и все остальное. Но, с точки зрения человека снаружи, никакой внешней силы нет – есть только кривизна пола.

Эйнштейн сложил все это вместе. Сила, которая заставляет вас падать на карусели, на самом деле обусловлена искривлением самой карусели. Центробежная сила, которую вы ощущаете, эквивалентна гравитации, то есть это воображаемая сила, возникающая в ускоряющейся системе отсчета. Иными словами, ускорение в одной системе отсчета идентично гравитации в другой системе, что объясняется искривлением пространства.

Теперь замените карусель Солнечной системой. Земля обращается вокруг Солнца, поэтому нам, землянам, кажется, что Солнце притягивает Землю с силой, которая называется гравитацией. Но наблюдатели за пределами Солнечной системы не увидят никакой силы; с их точки зрения, пространство вокруг Земли искривлено и пустота заставляет Землю обращаться вокруг Солнца.

Эйнштейн пришел к замечательному выводу, что гравитационное притяжение на самом деле иллюзия. Объекты движутся не потому, что на них действует сила всемирного тяготения или центробежная сила, а потому, что их толкает кривизна пространства вокруг них. Это стоит повторить: гравитация не притягивает; толкает искривленное пространство.

Шекспир однажды сказал, что весь мир – театр, а мы в нем – актеры, которые выходят на сцену и уходят с нее. Именно такую картину принял в свое время Ньютон. Мир статичен, а мы движемся по плоской поверхности, подчиняясь законам Ньютона.

Эйнштейн отказался от этой картины. Наша сцена, сказал он, искривлена и закручена. Если вы выходите на нее, то пройти по прямой вам не удастся. Вас непрерывно куда-то толкает, потому что пол под ногами искривлен, и вы все время выписываете кренделя, как пьяные.

Гравитационное притяжение – это иллюзия. Например, прямо сейчас вы, возможно, сидите в кресле и читаете эту книгу. Вам кажется, что это гравитация тянет вас вниз и прижимает к креслу и именно поэтому вы не улетаете в космос. Но Эйнштейн сказал бы, что вы сидите в своем кресле потому, что масса Земли искривляет пространство над вашей головой и это искривленное пространство толкает вас в кресло.

Представьте, что вы кладете тяжелое ядро на батут. Ядро оттягивает батут вниз, искривляет его поверхность. Если после этого вы пустите по батуту небольшой шарик, он будет двигаться по кривой. Мало того, он будет огибать лежащее ядро. Наблюдателю с некоторого расстояния может показаться, что на шарик действует невидимая сила, которая тянет его и заставляет двигаться по орбите. Но стоит подойти ближе, и вы увидите, что никакой невидимой силы нет. Шарик движется не по прямой потому, что поверхность батута искривлена, и это делает эллипс самой прямой траекторией.

Теперь замените шарик на Землю, ядро – на Солнце, а батут – на пространство-время. Тогда видно, что Земля движется вокруг Солнца потому, что оно искривило пространство вокруг себя, и теперь пространство, в котором движется Земля, не плоское.



Рис. 6. Тяжелое ядро, положенное на батут, оттягивает его вниз. Небольшой шарик катится, огибая образовавшуюся вмятину. Издали кажется, что какая-то сила, источником которой является ядро, удерживает шарик и заставляет его двигаться вокруг ядра. На самом деле шарик движется по орбите вокруг ядра, потому что поверхность батута искривлена. Точно так же гравитация Солнца искривляет свет далеких звезд, и это можно заметить при помощи телескопов во время солнечного затмения


Кроме того, возьмите муравьев, которые ползут по смятому листу бумаги. Они не могут двигаться по нему по прямой. Возможно, они чувствуют, что их непрерывно тянет какая-то сила. Но нам, когда мы глядим на них сверху, видно, что никакой такой силы нет. Это и есть озарение, которое легло в основу того, что Эйнштейн назвал общей теорией относительности: большие массы искажают пространство-время, порождая иллюзию действия гравитационной силы.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации