Текст книги "Физика невозможного"
Автор книги: Митио Каку
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]
4. Телепортация
Прекрасно, что мы встретились с парадоксом. Теперь можно надеяться на продвижение вперед.
Нильс Бор
Капитан, я же не могу менять законы физики!
Скотти, главный инженер в сериале «Звездный путь»
Телепортация, или способность мгновенно перемещать людей и предметы из одного места в другое, – это умение, которое может изменить направление развития цивилизации и повлиять на судьбы стран и народов. Так, телепортация раз и навсегда изменила бы принципы и правила ведения войны: владея этим искусством, военачальники могли бы мгновенно закидывать войска в тыл противника или просто телепортировать вражеское руководство в удобное место и захватить его. Транспортная система сегодняшнего дня – автомобили, корабли, самолеты и железные дороги вместе с обслуживающими их многочисленными отраслями промышленности – сразу устарели бы; мы могли бы просто телепортироваться из дома на работу и мгновенно перекидывать грузы и товары в нужное место. Отпуска перестали бы быть проблемой – мы легко телепортировались бы прямо к месту отдыха. Телепортация изменила бы все.
Самые ранние упоминания о телепортации можно обнаружить в религиозных текстах, например в Библии, где духи то и дело переносят людей с места на место. К примеру, это место из Деяний апостолов Нового Завета предполагает, по всей видимости, телепортацию Филиппа из Газы в Азот. «Когда же они вышли из воды, Дух Святый сошел на евнуха, а Филиппа восхитил Ангел Господень, и евнух уже не видел его и продолжал путь, радуясь. А Филипп оказался в Азоте и, проходя, благовествовал всем городам, пока пришел в Кесарию» (Деяния 8:39–40).
Телепортация – среди прочих трюков и иллюзий – входит в репертуар любого мага: кролики из шляпы, карты из рукава, монеты из-за уха ничего не подозревающего зрителя. Один из самых впечатляющих трюков недавнего времени – исчезновение слона на глазах изумленной аудитории. Выглядит это следующим образом. Гигантского слона весом в несколько тонн помещают в клетку. Взмах волшебной палочки – и слон исчезает, к немалому изумлению публики. (Конечно, на самом деле слон никуда не девается. Трюк осуществляется при помощи зеркал. Клетка, в которую помещают слона, не простая. Позади каждого прута имеется зеркало – длинное узкое вертикальное зеркало. Каждое из этих зеркал может поворачиваться вокруг вертикальной оси. В начале номера, когда зеркала развернуты поперек и как бы спрятаны за прутьями клетки, зрителям их не видно – зато видно слона в клетке. Зато когда зеркала по команде иллюзиониста поворачиваются и встают под углом 45° к аудитории, изумленным зрителям остается только вглядываться в отраженное изображение боковой стенки клетки, за которой нет никакого слона.)
Телепортация и научная фантастикаПервое упоминание о телепортации в научно-фантастическом произведении мы находим в рассказе Эдварда Пейджа Митчелла «Человек без тела», опубликованном в 1877 г. В этом рассказе некий ученый открыл способ разобрать кошку на атомы и передать их по телеграфным проводам. К несчастью, в тот момент, когда ученый пытался телепортироваться сам, прекратилось электропитание. В результате успешно телепортировалась только его голова.
Сэр Артур Конан Дойл, создатель знаменитого Шерлока Холмса, был буквально очарован идеей телепортации. Написав большое количество детективных рассказов и романов про приключения Шерлока Холмса, он устал от своего героя и в конце концов прикончил его, заставив вместе с профессором Мориарти упасть в ущелье у Рейхенбахского водопада. Но возмущение читателей оказалось столь велико, что Дойлу пришлось воскресить сыщика. Оказавшись не в состоянии избавиться от Шерлока Холмса, Дойл вместо этого решил создать совершенно нового героя. Им стал профессор Челленджер, практически двойник Холмса. Оба героя обладали острым умом и наблюдательностью и любили разгадывать загадки. Но если Холмс раскрывал запутанные криминальные дела при помощи холодной дедуктивной логики, то профессор Челленджер исследовал темный мир спиритуализма и паранормальных явлений, включая и телепортацию.
В романе «Дезинтеграционная машина», опубликованном в 1927 г., профессор знакомится с изобретателем машины, способной разобрать человека, а затем собрать его заново где-нибудь в другом месте. Но затем изобретатель хвастливо заявляет, что в дурных руках его машина может по нажатию кнопки уничтожать целые города с миллионами жителей. Профессор Челленджер в ужасе. Роман заканчивается тем, что он при помощи машины разбирает изобретателя и покидает лабораторию, «позабыв» собрать его заново.
Немного позже телепортацию открыл для себя и Голливуд. Вышедший в 1958 г. фильм «Муха» наглядно демонстрирует, что может произойти, если процесс телепортации пойдет неправильно. Некий ученый успешно телепортирует себя в пределах комнаты, но по несчастной случайности его атомы перемешиваются с атомами мухи, случайно попавшей в телепортационную лабораторию. В результате ученый превращается в гротескное чудовище – получеловека, полумуху. (В 1986 г. на экраны вышел ремейк этого фильма с Джеффом Голдблюмом в главной роли.)
Сериал «Звездный путь» сделал телепортацию заметным явлением массовой культуры. Его создатель Джин Родденберри вынужден был ввести телепортацию в сюжет, поскольку бюджет студии Paramount не предусматривал дорогостоящих спецэффектов, связанных с имитацией старта и посадки ракетных кораблей на Земле и отдаленных планетах. Дешевле было просто передать экипаж «Энтерпрайза» к месту назначения по лучу.
За прошедшие десятилетия ученые успели высказать множество доводов в пользу того, что телепортация в принципе невозможна. Чтобы телепортировать человека, вы должны знать точное расположение каждого атома в живом теле – а это, вероятно, нарушило бы принцип неопределенности Гейзенберга (который утверждает, что невозможно одновременно знать точное положение и скорость электрона). Продюсеры «Звездного пути», склоняясь перед критиками, установили в телепортационной камере «компенсаторы Гейзенберга» – можно подумать, что законы квантовой физики можно было бы исправить при помощи какого бы то ни было дополнительного блока в устройстве телепорта! Но оказывается, создатели фильма вообще поторопились с введением «компенсаторов Гейзенберга». Возможно, ученые и критики прошлых лет все же ошибались.
Телепортация и квантовая теорияВ рамках теории Ньютона телепортация откровенно невозможна. Законы Ньютона базируются на представлении о том, что вещество состоит из крошечных твердых бильярдных шариков. Объекты не приходят в движение, если их не толкнуть; объекты не исчезают внезапно и не появляются заново в другом месте.
Но в квантовой теории частицы способны проделывать именно такие фокусы. Законы Ньютона продержались у власти 250 лет и были свергнуты в 1925 г., когда Вернер Гейзенберг, Эрвин Шрёдингер и их коллеги разработали квантовую теорию. Анализируя странные свойства атомов, физики обнаружили, что электрон ведет себя как волна и в кажущейся хаотичности своего движения внутри атома может совершать квантовые скачки.
Теснее всего с представлением о квантовых волнах связан венский физик Эрвин Шрёдингер, создатель знаменитого волнового уравнения, названного его именем, – одного из важнейших уравнений физики и химии. Целые институтские курсы посвящены решению этого знаменитого уравнения; целые стены физических библиотек заняты книгами, в которых подробно исследуются его глубокие следствия. В принципе вся сумма знаний по химии может быть сведена к решениям этого уравнения.
В 1905 г. Эйнштейн показал, что световые волны могут вести себя наподобие частиц; это значит, что они могут быть описаны как пакеты энергии, известные под названием фотонов. Но примерно к 1920 г. Шрёдингеру стало очевидно, что обратное тоже верно: частицы, к примеру электроны, могут вести себя подобно волнам. Эту идею первым высказал французский физик Луи де Бройль, удостоенный за эту гипотезу Нобелевской премии. (Мы в университете наглядно демонстрируем это студентам. Для этого мы выстреливаем электронами в катодную лучевую трубку, в точности такую, как в телевизоре. Электроны проходят через крошечное отверстие, так что на экране вроде бы должна появиться маленькая светлая точка. Вместо этого вы обнаружите там концентрические волнообразные круги – точно такие, какие можно ожидать при прохождении через отверстие волны, а не частицы.)
Как-то Шрёдингер читал лекцию об этом любопытном феномене. Один из присутствовавших в зале коллег-физиков Питер Дебай задал вопрос: «Если электрон можно описать как волну, то как выглядит его волновое уравнение?»
С тех пор как Ньютон создал дифференциальное исчисление, физики описывали любую волну на языке дифференциальных уравнений, поэтому Шрёдингер воспринял вопрос Дебая как вызов и решил написать дифференциальное уравнение для электронной волны. В том же месяце Шрёдингер ушел в отпуск, а вернулся уже с готовым уравнением. Как Максвелл в свое время взял физические поля Фарадея и вывел уравнения Максвелла для света, Шрёдингер взял частицу-волну де Бройля и вывел уравнение Шрёдингера для электронов.
(Историки науки потратили немало усилий, пытаясь выяснить в точности, где был и чем занимался Шрёдингер, когда открыл свое знаменитое уравнение, навсегда изменившее современную физику и химию. Оказалось, что Шрёдингер был сторонником свободной любви и на отдых часто ездил с женой и любовницами. Он также вел подробный дневник, в который заносил всех своих многочисленных любовниц и сложным шифром обозначал каждую встречу. В настоящее время считается, что те выходные, когда было открыто уравнение, Шрёдингер провел в Альпах, на вилле «Хервиг», с одной из своих подружек.)
Начав решать свое уравнение для атома водорода, Шрёдингер, к немалому своему удивлению, обнаружил, что энергетические уровни электронов уже до него были точно установлены и опубликованы другими физиками. После этого он понял, что старая модель атома, принадлежащая Нильсу Бору, – та самая, где электроны носятся вокруг ядра и которую до сих пор рисуют в книгах и рекламных проспектах как символ современной науки – на самом деле неверна. Круговые орбиты электронов вокруг ядра атома необходимо заменить волнами.
Можно сказать, что работа Шрёдингера встряхнула физическое сообщество и, подобно брошенному камню, тоже породила разбегающиеся волны. Физики вдруг обнаружили, что могут заглянуть непосредственно в атом, подробно исследовать волны, из которых состоят его электронные оболочки, и точно предсказать их энергетические уровни.
Но оставался еще один вопрос, который не дает физикам покоя даже сегодня. Если электрон описывается как волна, то что же в нем колеблется? Ответ на этот вопрос дал физик Макс Борн; он сказал, что эти волны представляют собой не что иное, как волны вероятности. Они сообщают только о том, с какой вероятностью вы обнаружите конкретный электрон в определенное время в определенной точке. Другими словами, электрон – это частица, но вероятность обнаружить эту частицу задается волной Шрёдингера. И чем выше волна, тем больше шансов обнаружить частицу именно в этой точке.
Получается, что внезапно в самом сердце физики – науки, которая прежде давала нам точные предсказания и подробные траектории любых объектов, начиная с планет и комет и кончая пушечными ядрами, – оказались понятия шанса и вероятности.
Гейзенберг сумел формализовать этот факт, предложив принцип неопределенности – постулат о том, что невозможно знать точную скорость и точное положение электрона в один и тот же момент. Невозможно точно определить и его энергию в заданный промежуток времени. На квантовом уровне нарушаются все фундаментальные законы здравого смысла: электроны могут исчезать и вновь возникать в другом месте, а также находиться одновременно в нескольких местах.
(По иронии судьбы и Эйнштейн, крестный отец квантовой теории, принимавший участие в революционных преобразованиях 1905 г., и Шрёдингер, автор волнового уравнения, пришли в ужас от появления случайных процессов в фундаментальной физике. Эйнштейн писал: «Квантовая механика вызывает огромное уважение. Но внутренний голос подсказывает мне, что это не то, что нужно. Эта теория многое объясняет, но едва ли приближает нас хоть сколько-то к тайне Бога. По крайней мере о себе могу сказать точно: я убежден, что Он не играет в кости».)
Теория Гейзенберга была революционной и противоречивой, но работала. С ее помощью физикам удалось одним махом объяснить огромное число загадочных явлений, включая законы химии. Объясняя своим аспирантам странность и причудливость квантовой теории, я иногда прошу их рассчитать вероятность того, что атомы их тел вдруг разбегутся и соберутся заново по другую сторону кирпичной стены. Подобная телепортация запрещена в ньютоновской физике, но никак не противоречит законам квантовой механики. Ответ, однако, заключается в том, что такого события пришлось бы ждать до конца жизни вселенной и даже дольше. (Если бы вы при помощи компьютера построили график шрёдингеровой волновой функции для собственного тела, то выяснилось бы, что она очень сильно напоминает само тело, но выглядит как бы чуть-чуть лохматой, так как некоторые из ваших волн расползаются за его пределы во всех направлениях. Некоторые из них достигают даже отдаленных звезд. Поэтому существует все же крошечная вероятность того, что однажды вы вдруг проснетесь на далекой чужой планете.)
Тот факт, что электроны, по-видимому, могут находиться во многих местах одновременно, составляет фундамент всей химии. Мы думаем, что электроны обращаются вокруг ядра атома, как тела миниатюрной Солнечной системы. Но между атомом и Солнечной системой есть принципиальные различия. При столкновении в космосе двух Солнечных систем они неизбежно развалятся, планеты при этом отбросит в разных направлениях. Атомы же, сталкиваясь, часто делятся друг с другом электронами и образуют вполне стабильные молекулы. В старших классах школы учитель часто говорит ученикам про «размазанный электрон», напоминающий продолговатый мяч для регби; он соединяет два атома между собой.
Но вот о чем учителя химии почти никогда не рассказывают ученикам. Электрон, о котором идет речь, вовсе не «размазан» между двумя атомами. На самом деле этот «мяч для регби» представляет вероятность того, что электрон находится одновременно во множестве мест внутри данного объема. Другими словами, вся химия, изучающая и объясняющая строение молекул, из которых состоят наши тела, основана на представлении о том, что электроны могут находиться одновременно в нескольких местах; именно такое «совместное владение» электронами, которые умудряются одновременно принадлежать двум атомам, удерживает на месте атомы в молекулах нашего тела. Без квантовой теории наши молекулы и атомы распались бы в мгновение ока.
Этим причудливым, но принципиальным свойством квантовой теории (тем фактом, что существует ненулевая вероятность даже самых странных событий) воспользовался Дуглас Адамс в своем веселом романе «Автостопом по галактике». Автору нужен был удобный способ носиться по всей галактике, поэтому он придумал «двигатель бесконечной невероятности», «чудесный новый способ преодоления громадных межзвездных расстояний за ничтожнейшую долю секунды без нудного блуждания в гиперпространстве». Его машина позволяет произвольно менять вероятность любого квантового события, так что даже чрезвычайно маловероятные события становятся обычными и привычными. В общем, если хотите отправиться в ближайшую звездную систему, нужно просто изменить вероятность вашей рематериализации именно там, и все! Дело сделано! Вы мгновенно телепортируетесь в нужное место.
На самом деле квантовые «скачки», столь обычные внутри атома, невозможно легко перенести на крупные объекты вроде людей, состоящие из триллионов и триллионов атомов. Даже если электроны в нашем теле прыгают и скачут с места на место в своем фантастическом путешествии вокруг ядра, их так много, что прыжки усредняются и сглаживаются. Именно поэтому, говоря упрощенно, на нашем уровне вещества представляются твердыми и неизменными.
Итак, хотя на атомном уровне телепортация разрешена, чтобы дождаться подобного странного события на макроскопическом уровне, придется ждать до гибели нашей Вселенной и даже дольше. Но можно ли воспользоваться законами квантовой теории и создать машину для телепортации объектов по требованию, как происходит в научно-фантастических произведениях? Как ни удивительно, ответ однозначен: да, можно.
Эксперимент ЭПРКлюч к квантовой телепортации кроется в знаменитой работе 1935 г. Альберта Эйнштейна и его коллег Бориса Подольского и Натана Розена. По иронии судьбы трое ученых ставили своей целью раз и навсегда покончить с присутствием вероятности в физике, предложив с этой целью мысленный эксперимент, получивший название эксперимент ЭПР по первым буквам фамилий авторов. (Сокрушаясь по поводу бесспорного экспериментального успеха квантовой теории, Эйнштейн писал: «Чем больший успех имеет квантовая теория, тем глупее она выглядит».)
Если два электрона первоначально колеблются в унисон (такое состояние называется когерентным), то они способны сохранить волновую синхронизацию даже на большом расстоянии друг от друга. Даже если эти электроны окажутся разделены световыми годами, невидимая шрёдингерова волна все равно будет связывать их между собой подобно пуповине. Если с одним из электронов что-то произойдет, то какая-то часть информации об этом событии будет немедленно передана второму. Это явление называется квантовой запутанностью и основано на концепции о том, что когерентные частицы обладают какой-то глубинной связью.
Возьмем (мысленно, разумеется) два когерентных электрона; раз они когерентны, значит, колеблются в унисон. Затем позволим этим электронам разлететься в противоположных направлениях. Каждый электрон подобен вертящемуся волчку, причем его вращение (спин) может быть направлено вверх или вниз. Пусть полный спин системы равняется нулю, так что если известно, что спин одного электрона направлен вверх, то спин другого точно направлен вниз. Согласно квантовой теории перед измерением спин электрона не направлен ни вверх, ни вниз; электрон находится в неопределенном состоянии, он как бы вращается вверх и вниз одновременно. (Стоит вам произвести наблюдение, как волновая функция «схлопывается», оставляя частицу в одном конкретном состоянии из всех возможных.)
Далее измерим спин одного электрона. Скажем, он вращается вверх. Значит, мы мгновенно узнаем, что другой электрон вращается вниз. Даже если электроны разделены в пространстве многими световыми годами, мы будем мгновенно знать спин второго из них, как только измерим спин первого. Мало того, мы получим эту информацию быстрее, чем со скоростью света! Поскольку два наши электрона «запутаны», т. е. их волновые функции колеблются в унисон, эти самые волновые функции связаны невидимой «нитью» или пуповиной. Все, что происходит с одной частицей, автоматически отражается на другой. (В каком-то смысле это означает, что все, что происходит с нами, автоматически и мгновенно влияет на события, происходящие в отдаленных уголках вселенной, ведь наши волновые функции, вероятно, «запутаны» еще с начала времен. В каком-то смысле можно сказать, что существует паутина «запутанности», которая связывает отдаленные уголки вселенной, включая и нас с вами.) Эйнштейн иронически называл это явление призрачным дальнодействием и «доказывал» с его помощью, что квантовая теория неверна, поскольку ничто не может переноситься с места на место быстрее, чем со скоростью света.
Первоначально Эйнштейн считал мысленный эксперимент ЭПР похоронным звоном по квантовой теории. Но в 1980-х гг. Алан Аспект с коллегами провел во Франции реальный эксперимент с двумя детекторами, расположенными на расстоянии 13 м друг от друга. Он измерял спины фотонов, испускаемых атомами кальция, и полученные результаты в точности совпали с положениями квантовой теории. Очевидно, Господь все же играет в кости с нашей Вселенной.
Действительно ли информация в этом случае передается быстрее, чем со скоростью света? Неужели Эйнштейн ошибся и скорость света не является предельной скоростью нашей Вселенной? На самом деле все обстоит не совсем так. Да, информация действительно передается быстрее света, но информация эта случайна, а потому бесполезна. Методом, описанным в эксперименте ЭПР, невозможно передать настоящее послание, скажем, азбукой Морзе, с какой бы скоростью ни передавалась информация.
Знание о том, что некий электрон на другом конце вселенной вращается вниз, бесполезно. Этим методом невозможно передать свежую информацию о биржевых котировках. Приведем наглядный пример. Предположим, что один из наших приятелей всегда носит разноцветные носки, красный и зеленый, не обращая внимания на то, какой цвет окажется на какой ноге. Скажем, мы осматриваем одну ногу и выясняем, что на ней красный носок. Значит, мы узнаем быстрее, чем со скоростью света, что на другой ноге зеленый носок. Информация действительно дошла до нас быстрее света, но она совершенно бесполезна. Этим методом невозможно передать сигнал, который содержал бы неслучайную информацию.
Много лет эксперимент ЭПР приводили как яркий пример торжества квантовой теории, но торжество получалось бесплодным и не давало никакой практической выгоды. До недавнего времени.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?