Текст книги "Звездочёты. 100 научных сказок"
Автор книги: Николай Горькавый
Жанр: Книги для детей: прочее, Детские книги
Возрастные ограничения: +6
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
Сказка о фермере, открывшем во время чумы законы неба
– Жил-был в Англии, на ферме Вулсторп, молодой человек двадцати с небольшим лет. На его ферме было пастбище с овцами, коровник и яблоневый сад. Молодой английский фермер любил сидеть на лавочке под раскидистой яблоней. Фермер из молодого человека, нужно признаться, был никудышный – за обширным хозяйством присматривала мать. А сам юный фермер читал книги и смотрел на солнечные лучи, играющие в яблоневой листве.
В свободное качание листьев на ветерке и в жужжащее мельтешение пчёл часто вмешивалось движение падающих яблок. Они вели себя деловито и одинаково – быстрый полёт к земле и глухой стук. Видно, что они не могли отвлекаться на всякие легкомысленные глупости – у них был приказ, и они его беспрекословно выполняли.
Кто отдаёт им приказ о падении? Ясно, что земной шар с силой притягивает оторвавшиеся от ветки увесистые яблоки. Но как далеко простирается притягивающая воля Земли?
Над яблоневым садом в вечернем небе висит бледная Луна. Притягивает ли Земля Луну на таком расстоянии?
Вот такие странные вопросы задавал себе молодой фермер.
Галилей, чьи книги лежали у фермера на столе, считал, что Земля притягивает яблоки на любых расстояниях и с одинаковой силой. Великий итальянец вычислил, что с высоты Луны яблоко будет падать до Земли три часа и двадцать минут. Но он считал, что Земля не действует на Луну, и наш спутник движется по своим законам. Фермеру эта теория не нравилась – в конце концов, что такое Луна, как не Очень Большое Яблоко? В предположении, что притягивающая сила Земли без ослабления простирается до орбиты Луны, фермер тоже сомневался: ведь воздействие тела – например, магнита – обычно падает с расстоянием.
Вокруг фермы простиралось поле – или пастбище, – сочная трава которого так притягивала соседских коров. Фермер предположил, что вокруг Земли тоже простирается особое поле, которое воздействует на соседние тела. Фермер назвал его гравитационным полем, или полем притяжения, которое действует и на яблоки, и на Луну.
Молодой фермер понимал, что движение Луны сбалансировано (ведь она не падает!), значит, сила притяжения Земли должна уравновешиваться центробежной силой.
Фермер разработал специальный метод математического исчисления и сумел найти выражение для центробежного ускорения Луны – оно оказалось равно квадрату скорости Луны, делённому на радиус лунной орбиты.
Эта простенькая формула для центробежной силы, известная сейчас любому школьнику, была получена английским фермером как раз для движения Луны.
Сегодня сказку детям рассказывала королева Никки, а она не стеснялась в выражениях, особенно – в математических. Рассказывая, она набрасывала на специальной пластине формулы:
– Фермер приравнял центробежную силу к гравитационной – и у него получилась формула, которая вычисляла притяжение Земли по скорости движения и радиусу орбиты Луны.
Кеплер уже давно установил соотношение между периодом обращения тел и радиусами их орбит. Поэтому фермер взял формулу Кеплера, выразил период обращения через скорость движения по орбите и получил третий кеплеровский закон в таком виде:
Квадрат скорости орбитального движения спутника падает с ростом радиуса орбиты (математики говорят – обратно пропорционален). То есть, чем больше радиус орбиты спутника, тем медленнее он движется по орбите.
С помощью формулы Кеплера фермер исключил квадрат скоростей из своего уравнения для гравитационной силы.
Никки обратилась к детям:
– Вы знаете третий закон Кеплера и сами легко можете проделать это исключение. У фермера в результате получилось, что притяжение планеты падает с расстоянием как квадрат радиуса орбиты спутника: когда расстояние от планеты вырастает в два раза, сила её притяжения падает в четыре.
Значит, если Луна располагается от центра Земли в 60 раз дальше яблока, то притяжение Луны к Земле должно быть слабее в 60 х 60 = 3600 раз. Фермер сравнил известное ускорение, с которым двигалась Луна по орбите (0,272 см/сек2) с ускорением падения яблока возле поверхности Земли (981 см/сек2) и с восхищением понял, что они действительно отличаются в 3600 раз!
Английский фермер был поражён красотой и могуществом закона гравитации, который описывал притяжение Солнца и Земли и подчинял себе движение яблока, Луны и всех планет.
Так молодой фермер открыл знаменитый закон всемирного тяготения.
Ещё он понял, что если бросить яблоко с большой скоростью параллельно Земле, то оно облетит вокруг Земли как маленький спутник. Тем самым английский фермер заложил основы будущей космонавтики.
За два года сельской жизни фермер не только основал теорию гравитации и небесную механику, но и разработал новый раздел математики – дифференциальное и интегральное исчисление, а также открыл сокровенную тайну солнечного света, разложив его белый луч на разноцветную радугу.
Молодой фермер открывал одну за другой тайны природы, не думая о публикациях и соперниках, о карьере или инквизиции. Он был беззаботен и увлечён, как мальчик, играющий на берегу океана с красивыми раковинами.
– Что же это за фермер такой, который открывал новые законы один за другим? – спросила удивлённая Галатея.
– Сейчас расскажу о нём подробнее, – Никки хитро улыбнулась. – Его звали Исаак Ньютон, он был сыном фермера и родился в тот год, когда умер Галилей.
Ньютон был нелюдимым, молчаливым мальчиком и в школе учился не очень хорошо, но любил конструировать сложные механизмы, особенно мельницы: водяные, ветряные и даже такие, в которых работали мыши. Но с одной девочкой Ньютон всё-таки подружился. У той было двое хулиганистых братьев, которые ходили в один класс с Ньютоном. После очередной стычки с этими братцами Ньютон решил отомстить и стать им назло самым лучшим учеником класса.
И он добился своей цели!
Благодаря этому в девятнадцать лет Ньютон сумел поступить в колледж в Кембридже и за четыре года обучения стал очень образованным и умным молодым человеком.
В колледже Ньютон увлечённо занимался оптикой, астрономией и математикой, забывая про сон и часто оставляя еду на своей тарелке, поэтому молодой Ньютон был очень худым, а его кошка – очень упитанной.
Студент Ньютон составил себе список из сорока пяти нерешённых проблем в науке и готовился штурмовать их.
Но после получения степени бакалавра Ньютон не стал учёным или преподавателем. Помешала эпидемия чумы, поразившая Лондон. Кембридж попросту закрыли до лучших времен.
23-летнему Ньютону пришлось уехать в деревню, на свою родительскую ферму Вулсторп и стать обычным фермером.
Ферма приносила доход, достаточный для жизни, и оказалась отличным местом для занятий наукой. За два года, проведённых в сельской глуши, очень молодой человек, только что закончивший колледж, совершил революцию в науке.
Открыв закон гравитации, Ньютон и не подумал опубликовать его – молодой Ньютон был слишком нелюдим и слишком мало заботился о славе.
– Тогда он – точно фермер! – решил Андрей.
– После чумы фермер Ньютон вернулся в Кембридж и стал профессором, обучающим студентов. Но и тогда он не подумал опубликовать результаты, полученные им в фермерские годы.
Прошло пятнадцать лет, и в 1682 году в небе появилась яркая комета. Она вызвала живейшие споры среди учёных. Особенно хорошо запомнил год кометы учёный Эдмунд Галлей – ведь его медовый месяц пришёлся как раз на этот год. Вскоре Галлей, размышляя о своей «свадебной» комете, пришёл к правильному выводу, что гравитация падает с расстоянием, но не смог вывести из этого закона эллиптичную форму орбит, которую Кеплер предложил для планет и комет.
Но до Галлея дошли слухи, что этими вопросами занимался Ньютон, и он отправился в Кембридж для встречи с ним.
И как же он был потрясён, узнав, что тот уже давным-давно решил эту задачу: вывел закон гравитации и согласовал его с кеплеровскими законами!
В отличие от нелюдимого Ньютона, Галлей был дипломатом. Он сумел уговорить учёного написать книгу о механике небесных тел.
Выпуск книги в те времена всё ещё оставался дорогостоящим делом, и Галлей собирался просить у Королевского научного общества денег на публикацию труда Ньютона.
Но Королевское общество только что выпустило «Историю рыб», которую никто не стал покупать. В результате научное общество осталось без денег.
Галлей был богат и уверен в важности труда Ньютона – и он вложил личные деньги в публикацию книги Ньютона. Королевское общество оказалось настолько бесцеремонным, что предложило Галлею компенсацию в виде пятидесяти экземпляров залежавшейся «Истории рыб»!
В 1687 году трёхтомник «Математические начала натуральной философии» Ньютона увидел свет.
С этой великой книги мировая наука начала новый отсчёт времени. Наступила эпоха математического описания природы. Уравнения пришли в механику и астрономию и превратили их из описательных наук – в точные.
Не только яблоки и планеты, но и кометы подчинились ньютоновской механике.
Ньютон собрал наблюдения о двух дюжинах комет и вычислил орбиту одной из них. Без компьютеров определение орбиты каждой кометы занимало шесть недель расчётов! И нетерпеливый Ньютон сказал Галлею:
– Эдмунд, забирай эти данные и вычисляй остальные орбиты сам!
Галлей был одним из первых астрономов, кто стал применять теорию Ньютона для описания движения небесных тел. Галлей провёл все необходимые расчёты и опубликовал орбиты всех двадцати четырёх комет. При этом он обратил внимание, что орбита кометы, которую он наблюдал вместе со свой молодой женой в 1682 году, очень похожа на орбиты комет, замеченных в 1531 и 1607 годах. Галлей предположил, что кометы 1531, 1607 и 1682 года – не три разные кометы, а одна и та же комета, периодически возвращающаяся к Солнцу. Значит, она должна появиться в следующий раз через 76 лет – в 1758 году.
Предсказание учёного блестяще подтвердилось:
комета вернулась в 1758 году, уже после смерти астронома, и была названа кометой Галлея. Её открытие стало триумфом ньютоновской теории тяготения, которая оказалась надёжным инструментом познания мира.
Вот только одну небесную проблему великий Ньютон не решил: он не смог рассчитать движение Луны, на которую действует притяжение не только Земли, но и Солнца.
Между прочим, проблема движения Луны вовсе не была скучной и академической проблемой: она волновала моряков, королей и даже придворных дам.
– Придворные дамы интересовались движением Луны? – удивилась Галатея.
– Да, но об этом вы узнаете из другой истории.
* * *
Катятся санки с горы, взлетают ракеты с космодромов, вращаются планеты вокруг Солнца – движение всех этих и миллионов других тел рассчитывается по уравнениям Ньютона, опубликованным им свыше трёхсот лет назад с помощью Галлея.
Ньютон прожил долгую и плодотворную жизнь учёного, был вознаграждён и научной славой, и высокими должностями. Но он всегда считал своими лучшими годами те, когда он был просто молодым фермером и открывал тайны природы беззаботно и увлечённо.
«Я не знаю, чем кажусь миру; мне же самому кажется, что я был только мальчиком, играющим на берегу моря и развлекающимся тем, что время от времени находил более гладкий камешек или более красивую раковину, чем обыкновенно, в то время как великий океан истины лежал передо мною совершенно неразгаданный».
Примечания для любопытных
Кембриджский университет – один из четырёх старейших университетов мира. Возник в 1209 году на основе собрания учёных города Кембриджа. Представляет собой сообщество многих колледжей. Ньютон учился в Тринити-колледже.
Исаак Ньютон (1642–1727) – великий английский физик, математик, астроном и философ. Его считают самым влиятельным учёным за всю историю земной цивилизации.
Эдмунд Галлей (1656–1742) – английский астроном, открывший периодичность кометы Галлея.
Дифференциальное исчисление – раздел математического анализа, где используется и изучается понятие производной, которое характеризует скорость изменения функции. Процесс вычисления производной называется дифференцированием.
Интегральное исчисление – раздел математического анализа, где используется и изучается понятие интеграла функции, который характеризует площадь, лежащую под графиком функции. Процесс нахождения интеграла называется интегрированием.
Сказка о том, как астрономы и часовщики спасали моряков
Сегодня сказку детям Дзинтары рассказывал Майкл, взрослый сын королевы Николь. Он приехал к Дзинтаре по делам, а Галатея с Андреем, привыкнув получать в каждый приезд королевы Николь новую сказку, бесцеремонно потребовали её у Майкла, хотя ещё было скорее утро, чем вечер. Гость покорно согласился, но – увы! – он сказок не помнил. Зато Майкл хорошо знал историю мореплавания, которая интереснее всяких сказок!
– Жили-были на свете трое мальчишек. Они были бедны, но, как и все другие подростки, мечтали о дальних путешествиях, славе и богатстве. Одного звали Клодсли, другого – Джон, третьего – Тобиас. У них не было денег на учёбу, и они рано начали работать. В четырнадцать лет Клодсли поступил юнгой на корабль, Джон начал помогать отцу-плотнику, а Тобиас стал подмастерьем у сапожника. Все парни были упорными и талантливыми самоучками.
Клодсли плавал на английских военных кораблях и скоро проявил себя смелым и умным моряком. Он участвовал во многих сражениях, воюя с врагами Англии и пиратами. Клодсли самостоятельно изучил морскую навигацию и сделал блестящую карьеру. Он стал знаменит и богат, пройдя путь от юнги – до адмирала, командующего флотом.
Однажды эскадра сэра Клодсли Шовелла, состоящая из восемнадцати кораблей, возвращалась на зимовку в Англию после тяжёлых сражений с французским флотом в Средиземном море. Все двенадцать дней пути от Гибралтара, британских моряков сопровождали штормы и частые туманы. Берегов не было видно, но по навигационным расчётам адмирала выходило, что флот держит курс в безопасную середину пролива Ла-Манш. Но расчёты сэра Шовелла были неточны – тогдашняя навигация ещё не знала надёжных способов определения координат корабля в море.
Тёмной октябрьской ночью 1707 года адмиральский флагман Клодсли Шовелла и ещё три корабля эскадры напоролись на рифы возле южной оконечности Англии.
Увидев буруны на скалах перед самым кораблём, адмирал приказал выстрелить из пушки, чтобы предупредить другие суда об опасности. Но четыре корабля разбились о камни и затонули, унеся с собой жизни адмирала Шовелла и двух тысяч матросов.
Ошибка в расчётах широты и долготы корабля обернулась настоящей трагедией. Смерть Клодсли и его матросов изменила жизни и Джона и Тобиаса.
Галатея не выдержала:
– Майкл, неужели адмиралу было так сложно понять, где находится его корабль?
В ответ на вопрос Галатеи Майкл вздохнул и сказал:
– Очень сложно. Когда корабль выходил из порта и оказывался в безбрежном океане, то главной проблемой морских путешественников становилась неизвестность их положения. На воде не оставишь меток; течения и ветер непредсказуемо сбивают корабль с курса. Как определить координаты корабля в открытом море?
Я сам опытный яхтсмен и люблю совершать далекие переходы на своей парусной лодке. Однажды я вышел из порта Сан-Диего и взял курс на Гавайи. Плавание должно было продолжаться около двух недель, и я решил испытать на себе навигационные трудности Средневековья. Поэтому я вооружился бумажной картой, старинным компасом и отключил на своей яхте спутниковую систему навигации. Я захватил с собой прибор для измерения высоты Солнца и звёзд и маятниковые морские часы, которые занял в одном из музеев.
Погода немедленно обрадовалась и ещё больше усложнила мою жизнь – на океан навалилась густая облачность – не стало видно ни солнца, ни звёзд. Я плыл только по карте и компасу, измеряя скорость яхты простым устройством и пытаясь учесть направления ветра и течений.
Прошли две недели. Я уже должен был увидеть какие-нибудь из островов Гавайского архипелага, но вокруг меня по-прежнему расстилалось пустынное море под серыми тучами.
Я включил навигационные приборы и обнаружил, что отклонился от маршрута на сто восемьдесят километров к югу! Хорошо ещё, что вокруг меня был просторный океан, а не туманный пролив с опасными рифами.
Так я на себе понял, какой непростой была жизнь штурманов Средневековья.
С широтой, которая определяет положение корабля относительно экватора или полюса, проще, – широту можно определить достаточно точно, зная календарную дату и измерив высоту подъёма звёзд или Солнца над горизонтом.
– Когда нет туч! – педантично уточнил Андрей.
– Верно. Но самого ясного неба недостаточно для определения долготы, показывающей расстояние корабля от Гринвичского меридиана, идущего с севера на юг и разделяющего земной шар на Западное и Восточное полушария.
Трудность определения долготы в открытом море настолько мешала мореплаванию, что ещё в шестнадцатом веке испанский король Филипп II назначил огромную награду за решение «проблемы долготы». Вознаграждение обещали также Голландия и Португалия, Венеция и Россия. За долготу брались учёные и изобретатели, моряки и купцы, но безуспешно.
В Англии тоже искали решение «проблемы долготы».
В этом приняла участие даже Луиза де Керуаль, фаворитка британского монарха Карла II, которая посоветовала ему привлечь астрономов для решения этой проблемы.
– Какая умная Луиза! – прищурился Андрей.
– Она покровительствовала молодому французскому астроному, который думал, что сумел решить «проблему долготы». По крайней мере он сумел убедить Луизу поговорить с королём.
Под давлением Луизы и других советчиков в 1674 году Карл II учредил Гринвичскую обсерваторию, которая должна была найти решение сложнейшей задачи – определение долготы в открытом море. Чтобы раздобыть денег, которых в казне монарха было мало, Карл II велел использовать для постройки обсерватории кирпичи от своего старого замка, а также продал сотню бочек испорченного пороха.
– Кому нужен испорченный порох? – удивился Андрей.
Майкл пояснил:
– Предприимчивый купец, купивший эти бочки, не остался внакладе – он высушил испорченный порох, восстановил его горючесть и снова продал правительству – но уже дороже.
Итак, первым королевским астрономом стал Джон Флемстид. Он приступил к наблюдению движения звёзд и Луны, но ещё не нашёл метод нахождения долготы, когда трагедия эскадры адмирала Шовелла потрясла всю нацию и привлекла общее внимание к задаче точного определения координат. Парламент назначил слушание по «проблеме долготы» и пригласил на него известных астрономов Ньютона и Галлея.
Ньютон в своём выступлении описал три наиболее реальных метода определения долготы.
Первый из них был придуман великим Галилеем, который открыл четыре крупных спутника Юпитера и решил использовать их как небесные часы. Наблюдая в небольшой телескоп за движением спутников вокруг Юпитера, можно было найти долготу места, откуда производится наблюдение. За разработку этого метода правительство Голландии наградило Галилея золотой цепью, но инквизиторы, державшие астронома под домашним арестом, не позволили учёному принять награду. Способ Галилея французские учёные успешно применили к сухопутным наблюдениям и получили в конце XVII века гораздо более точную, чем раньше, карту Франции. (Король Людовик XIV был недоволен новой картой, так как она значительно уменьшила площадь Франции. Он воскликнул: «Эти учёные отняли у меня земли больше, чем завоевала моя армия!»)
Но наблюдать за движением спутников Юпитера с качающегося корабля трудно, да и Юпитер виден на небе не во все месяцы.
Второй способ был основан на движении Луны. Она гораздо удобнее для наблюдений – если небо не затянуто тучами, то Луну можно видеть в любой день года.
Но Луна – очень капризные небесные часы. Сам Ньютон занимался теорией движения Луны, но понял, что использовать наше ночное светило в качестве ориентира для моряков можно только при сложных вычислениях на основе очень точных наблюдений Луны в течение десятков лет. Таких наблюдений в начале восемнадцатого века ещё не было.
Третий способ был прост сам по себе – сравнение времени местного полдня со временем на часах, показывающих полдень в точке с известной долготой, например Гринвичской обсерватории.
Но такой способ требовал, чтобы у моряков были на корабле очень точные часы, которые аккуратно «хранят» гринвичское время долгие месяцы. Насколько точные нужны были часы? Чем точнее, тем лучше: ошибка в одну секунду во времени давала ошибку в четыреста метров в координатах плывущего судна.
Проблема была в том, что во времена Ньютона корабельные часы были с маятником. В условиях морской качки такие хронометры могли отставать на десять минут в сутки. Если корабль находился в плавании долгие месяцы, то ошибка в показаниях часов накапливалась огромная.
Для «часового» метода определения долготы нужно было создать часы, которые выдерживали бы качку и перепад температур и аккуратно работали везде – от жарких океанских тропиков до морей, покрытых льдами.
Парламент выслушал доклад Ньютона, почесал затылки, вспотевшие под традиционными английскими париками, и постановил объявить награду в двадцать тысяч фунтов стерлингов за решение «проблемы долготы» в море с точностью в полградуса (или 56 километров). По тем временам это были огромные деньги – примерно пять миллионов нынешних долларов!
Рассмотрением предлагаемых методов и присуждением премии должно было заниматься Бюро долготы, которое было учреждено парламентом.
Новость о невероятной по размерам премии, которая получила название «долготная премия», быстро разнеслась по Англии и всему миру. Множество людей принялись ломать головы в поисках метода, который позволил бы морякам определить свое место в море.
* * *
В эти годы наш второй герой, Джон, был молодым йоркширским плотником, с удивительным хобби – он делал часы, причем свои первые часы умелец Джон сделал полностью из дерева.
– Что совершенно логично! – хихикнул Андрей.
– Узнав про огромную награду, обещанную парламентом, плотник Джон Харрисон решил построить точные морские часы новой конструкции.
Больше двадцати лет Джон конструировал свой хронометр, используя в нём не обычный маятник, сбивающийся с ритма при качке, а грузы на пружинах.
Первый морской хронометр плотника Харрисона был испытан во время путешествия в Лиссабон в 1736 году и показал отличный результат. Но эти часы весили 35 килограммов и достигали в высоту полутора метров! Парламентская комиссия дала деньги часовщику на изготовление более компактного хронометра. И ещё тридцать лет совершенствовал Джон свои часы, пока те не стали умещаться… в ладони.
Часовщик Джон Харрисон потратил всю свою длинную жизнь, чтобы создать точный хронометр, который спас жизнь многим морякам. После того как было подтверждено, что хронометр Харрисона можно копировать и делать серийно, английский парламент в 1773 году выдал часовщику заслуженную награду.
Первые морские хронометры были очень дорогими и стоили в треть от цены постройки целого военного корабля. Но вскоре они подешевели и стали доступны даже для небольших купеческих шхун.
* * *
В то время как первый громоздкий хронометр Харрисона уже проходил морские испытания, третий мальчишка – Тобиас Майер, живший в Германии, – был ещё подмастерьем и набивал кожаные подметки на прохудившиеся ботинки горожан. Но в бедняке Тобиасе жили мечта и упорство, роднившие его с Клодсли и Джоном. Тобиас поступает подмастерьем к картографу – и начинает самообразование в области математики и астрономии. Он сам изготавливает астрономические приборы и наблюдает звёзды и Луну. И конечно, Тобиас тоже знает о «долготной премии»…
Нужно сказать, что в глазах общества того времени «проблема долготы» стала синонимом неразрешимости. В вышедшем в то время «Путешествии Гулливера» Свифт высмеивал изобретателей методов определения долготы, считая это таким же нереальным делом, как создание вечного двигателя. Чтобы приняться за такую проблему, нужно было обладать независимым мышлением и смелостью.
Астрономы разных стран давно накапливали наблюдения Луны и усовершенствовали теорию её движения – так, чтобы любой штурман, измерив положение Луны относительно звёзд и сверившись с лунными таблицами, мог определять положение корабля в открытом океане.
Королевский астроном Флемстид в Англии сделал многое для решения проблемы долготы, но умер, не закончив дела. На посту его сменил Галлей. Новый наблюдатель Гринвичской обсерватории знал, что Луну нужно наблюдать, как минимум, восемнадцать лет, чтобы улучшить теорию её движения. Галлею было больше шестидесяти лет, и он понимал, что шансов закончить работу у него было немного, но взялся за неё с энтузиазмом. Звёзды были благосклонны к астроному: Галлей наблюдал Луну свыше двадцати лет, пока не умер в возрасте восьмидесяти шести лет, сидя в своём любимом кресле в Гринвичской обсерватории и держа в руке бокал красного вина.
Луной занимались и следующий королевский астроном Брэдли, и француз Клеро, и многие другие. Но это был крепкий орешек. Когда мальчишка Тобиас вырос, теория Луны всё ещё не была построена; штурманские лунные таблицы всё ещё не были созданы.
Тобиас Майер своим трудолюбием, талантом и точными астрономическими наблюдениями настолько быстро завоевал авторитет в научных кругах, что его, никогда не учившегося в университете, в возрасте двадцати восьми лет приглашают профессором математики в Геттинген!
Тобиас берётся за дело создания лунных таблиц для моряков. Он переписывается с великим математиком Эйлером, который живет в это время в Германии и занимается математической теорией движения Луны.
Молодому астроному-самоучке Тобиасу Майеру удаётся великое предприятие: основываясь на своих наблюдениях, на данных других астрономов, а также на формулах Эйлера, он создает самые точные в мире таблицы положения Луны и Солнца. Он не успевает отправить свою рукопись в английское Бюро долготы из-за внезапной кончины на сороковом году жизни. Перед смертью Тобиас просит свою жену отослать рукопись в Англию.
Жена выполнила его просьбу. Английское Бюро долготы получило рукопись и поручило астрономам проверить таблицы Тобиаса Майера.
Невил Маскелайн успешно испытал таблицы Майера в путешествии к острову Барбадос в Карибском море. После чего британский парламент премировал и Эйлера, и вдову Майера за астрономическое решение «проблемы долготы».
* * *
Маскелайну, который стал королевским астрономом в тридцать три года, повезло донести астрономическое решение «проблемы долготы» до каждого штурмана.
Основываясь на трудах Майера, молодой астроном задумал и издал в 1766 году «Морской альманах и астрономические эфемериды на 1767 год» – книгу таблиц, в которых предсказывалось положение Луны на год вперёд, с периодом через каждые три часа. Это позволило штурманам с помощью Луны всего за полчаса наблюдений и расчётов определять точное положение корабля в море.
Девяносто тысяч астрономических наблюдений сделал за свою жизнь Маскелайн. Он почти полвека, до самой смерти, выпускал ежегодный «Морской альманах». Этот альманах долгие годы верно служил морякам, спасая их от рифов и мелей, и издаётся до сих пор.
* * *
Так «проблему долготы» удалось решить и астрономам, и часовщикам. От этого соревнования выиграли все моряки мира. Отправляясь в 1768 году в своё первое кругосветное путешествие, капитан Кук взял и копию хронометра Джона Харрисона, и астрономические таблицы Тобиаса Майера. Кук успешно использовал оба способа определения координат. Плавание кораблей в океане стало намного безопаснее.
– Майкл! – воскликнул Андрей. – Как ты можешь говорить о безопасности, если капитана Кука в его третьем путешествии съели туземцы Гавайских островов?
– Ну, – сказал Майкл, – это была не научная, а…
э-э-э… дипломатическая проблема.
– Он неправильно себя повёл? – заинтересованно спросила Галатея.
Майкл пожал плечами и сказал:
– Астрономы и часовщики сделали так, чтобы моряки всегда знали, ГДЕ они находятся. ЧТО и КАК делать в этом месте – моряки должны решать сами.
– Астрономы за людоедов не отвечают! – согласилась Галатея. Потом она глубоко вздохнула, набралась смелости и выпалила: – Я не понимаю, как с помощью часов можно измерить долготу!
Андрей помедлил, а потом согласно кивнул головой.
(Между прочим, на признание в собственном непонимании у многих даже взрослых людей часто не хватает духу.)
В комнату зашла Дзинтара и позвала всех обедать. – Где накрыт стол? – поинтересовался Майкл.
– На веранде, – ответила принцесса.
– Отлично! – обрадовался чему-то Майкл и выглянул в окно. Солнце пыталось добраться до зенита.
* * *
Когда все уселись за круглый стол, в центре которого торчал длинный нераскрытый зонтик, Майкл сказал:
– Сейчас я покажу вам, как, имея часы, можно измерить свою широту и долготу.
– Как же? – заинтересовался Андрей, а Галатея, уже успевшая набить рот едой, лишь энергично закивала в знак того, что её это тоже очень интересует.
– Мы это сделаем с помощью зонтика и… – Майкл осмотрел стол, – ветки винограда!
Глаза детей немедленно загорелись. А Майкл оторвал виноградинку от фиолетово-дымчатой кисти и положил её на белую скатерть, на конец тени, которую отбрасывал зонтик. Потом он посмотрел на часы и сказал:
– 12 часов 18 минут. Пока мы обедаем, Солнце пройдёт высшую точку на своём пути. В этот момент тень будет самой короткой, и мы должны засечь это время. Будем измерять длину тени каждые четыре минуты.
Они принялись обедать, не забывая выкладывать по скатерти длинный ряд виноградин. Кое-где чашкам и тарелкам пришлось потесниться, но все, включая Дзинта-ру, энергично расчищали путь астрономическим ягодам, которые образовали плавную дугу, огибающую зонтик. Майкл прищурил глаз, потом поколдовал с ниткой, привязанной к основанию зонтика, используя её как циркуль, – и указал на одну из виноградин:
– Вот – она ближе всех к зонтику.
Он подсчитал номер этой виноградины от начала наблюдений – одиннадцатая – и заключил:
– Солнце достигло максимальной высоты в двенадцать часов и пятьдесят восемь минут.
– И что дальше? – спросила Галатея, доедая жаркое с картофельным пюре.
– А вот что, – сказал Майкл и взялся за телефон. – Я позвоню своему сыну, Роберту. Он сейчас в Лондоне и, думаю, не откажется нам помочь.
Роберт откликнулся почти сразу.
– Привет, сын, ты сейчас где?
– Гуляю с друзьями по Кембриджу.
– А не мог бы ты съездить в Гринвичскую обсерваторию. Это недалеко от тебя.
– Конечно, могу. А зачем?
– Я прошу тебя засечь время самой короткой тени от какой-нибудь заостренной длинной палки, а также измерить угол тени – вернее, отклонение Солнца от вертикали в этот момент. У нас время самой короткой тени было в 12 часов 58 минут.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?