Электронная библиотека » Ольга Решетняк » » онлайн чтение - страница 2


  • Текст добавлен: 26 мая 2022, 18:26


Автор книги: Ольга Решетняк


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

3. Методы химического анализа поверхностных вод

Изменчивость химического состава воды любого водотока, водоема или отдельных участков водных объектов во времени обусловлена действием различных факторов (физических, химических, биологических и т.д.), физико-географическими условиями бассейна и антропогенным воздействием (зависит также от степени антропогенного воздействия на водный объект, в частности, от объема, химического состава, концентрации и частоты сброса загрязнителей, интенсивности обработки водосборной площади). Изменчивость проявляется в виде многолетних, сезонных и суточных колебаний концентрации компонентов химического состава и показателей физических свойств воды, уровня загрязненности воды, стока химических веществ, изменении процессов загрязнения и самоочищения водных объектов (Никаноров, 2008).

Химический состав природных вод – это сложный комплекс растворенных газов, органических и неорганических веществ, находящихся в ионной, молекулярной, коллоидной и взвешенной формах. В природных водах растворены почти все известные на земле химические элементы в виде простых и сложных ионов, комплексных соединений, растворенных или газообразных молекул, стабильных и радиоактивных изотопов (Никаноров, 2008). Химический состав водной среды играет существенную роль в жизни гидробионтов. Он влияет на рост, развитие, размножение гидробионтов, структуру, устойчивость, их продуктивность и т.д.

Химические параметры позволяют охарактеризовать качество вод, классифицировать их по минерализации, составу, оценить обеспеченность водных объектов питательными веществами, необходимыми для развития водной флоры и фауны; установить степень загрязненности воды (включая случаи резкого повышения при авариях); выявить источники загрязнения, определить соответствие воды требованиям конкретных водопользователей.

Содержание (концентрации) различных компонентов и химических веществ в природных водах позволяют оценить разнообразные методы химического анализа, такие как химические (весовые и объемные), электрохимические, спектрохимические и хроматографические. Это основные группы методов, которые будут рассмотрены ниже. Существуют также современные аналитические методы: методы элементного анализа (рентгеноспектральный анализ, рентгено-флуоресцентный, нейтронно-активационный анализ и др.), аналитическая атомная спектрометрия, капиллярный электрофорез, ядерный магнитный резонанс, электронный парамагнитный резонанс и другие.

3.1. Химические методы анализа

В основе химических методов анализа лежит проведение химической реакции с образованием соединения (или продуктов реакции) постоянного состава с последующим количественным определением содержания образующихся продуктов реакции. В настоящее время это в основном методы объемного анализа. Распространенные ранее весовые методы из-за их трудоемкости и длительности используются изредка в качестве арбитражных, когда возникают разногласия, например, при определении сульфатов, высоких концентраций нефтепродуктов, жиров.

Методы объемного анализа предусматривают взаимодействие исследуемого компонента с реактивом, который добавляется в виде раствора определенной концентрации (титрующий раствор) до того момента, когда количество прибавленного реактива не станет эквивалентно количеству определяемого компонента в растворе. Этот процесс называется титрованием, а момент окончания титрования – точкой эквивалентности. Конец титрования обычно устанавливают по изменению цвета индикатора, то есть вещества, которое изменяет свою окраску при концентрациях реагирующих веществ, близких к точке эквивалентности. Индикатор и условия титрования выбирают так, чтобы точка титрования индикатора совпадала с точкой эквивалентности или была возможно ближе к ней (Никаноров, 2008; Харитонов и др., 2012).

Чувствительность методов объемного анализа 10–3–10–4% (массовая доля), погрешность определения 0,5–1,5 %. Основным преимуществом объемного анализа являются простота, быстрота определения, а также широкие возможности использования разнообразных химических свойств веществ. Благодаря этим достоинствам методы объемного анализа в настоящее время являются основными при определении макрокомпонентов природных вод (Предеина, Решетняк, 2012).

В зависимости от типа реакций методы объемного анализа делятся на методы кислотно-основного титрования, окислительно-восстановительное титрование, осадительное титрование и титрование с образованием комплексов.

При кислотно-основном титровании в качестве титрованных растворов обычно применяют кислоты и щелочи. В гидрохимии этим методом определяют диоксид углерода и гидрокарбонаты (Руководство … 2009).

Метод определения диоксида углерода основан на количественном переводе угольной кислоты в ионы НСО-3 при титровании пробы щелочью (рН 8,2–8,4) в присутствии индикатора фенолфталеина:




Для определения гидрокарбонатных и карбонатных ионов используется их взаимодействие с сильной кислотой, в результате чего образуется Н2СО3, которая распадается на СО2 и Н2О:




Метод предусматривает добавление избытка соляной кислоты (до рН~3), удаление образующегося диоксида углерода и последующее оттитровывание избытка кислоты раствором буры Na2B4O7 в присутствии смешанного индикатора метилового красного – метиленового голубого.

Титрование окислителями и восстановителями применяется в основном при определении растворенного кислорода и окисляемости. Определение растворенного кислорода основано на взаимодействии гидроксида марганца с растворенным в воде кислородом, в результате чего образуется нерастворимое соединение четырехвалентного марганца коричневого цвета. При подкислении раствора в присутствии избытка йодистого калия образуется йод, количество которого эквивалентно содержанию растворенного кислорода и учитывается титрованием раствора тиосульфата (Никаноров, 2008; Руководство … 2009):






Определение бихроматной окисляемости основано на окислении органических веществ бихроматом калия в кислой среде (в присутствии катализатора), избыток которого титруют раствором железо-аммонийных квасцов.



Методы осаждения используются при определении сульфатов и хлоридов. Метод определения сульфатов основан на их взаимодействии с солями свинца, в результате чего образуется слаборастворимый осадок PbSО4 в присутствии индикатора дитизона. В эквивалентной точке окраска индикатора изменяется из сине-зеленой в красно-фиолетовую (Никаноров, 2008; Руководство … 2009).

Метод определения хлоридов основан на малой растворимости хлорида серебра AgCl, который выпадает из раствора при добавлении нитрата серебра AgNO3 к воде, содержащей хлоридные ионы:



После полного осаждения хлоридов избыток ионов серебра вступает в реакцию с ионами хромовой кислоты, которую добавляют как индикатор. При этом образуется осадок хромата серебра красного цвета.

Примерами титрования с образованием комплексов могут служить реакции взаимодействия ионов кальция и магния с трилоном Б, с которым этим ионы образуют малодиссоциированные комплексы.

Таким образом, химические методы анализа (весовые и объемные аналитические методы) широко используются в мониторинге качества поверхностных вод. Весовой или гравиметрический метод анализа основан на выделении исследуемого компонента из водной среды с последующим взвешиванием на аналитических весах. Метод отличается высокой точностью, однако характеризуется длительностью и большой трудоемкостью. Используется для определения содержания взвешенных веществ в воде, нефтепродуктов при их высоком содержании. В качестве арбитражного метода применяется в анализе сульфатов. Объемный или титрометрический метод анализа природных вод является основным при определении макрокомпонентов природных вод. Основные преимущества объемного анализа: простота, быстрота определения, широкие возможности использования разнообразных химических свойств веществ (Никаноров, 2008).

3.2. Электрохимические методы анализа

Электрохимические методы анализа химического состава воды основаны на измерении электрохимических свойств компонентов – окислительно-восстановительного потенциала, электрической проводимости, силы полярографического тока. Простота определений, легкость автоматизации, высокая чувствительность делают эти методы весьма перспективными. Чувствительность методов 10–5–10–7% (массовая доля), погрешность 0,5–5 %. Электрохимические методы делятся на 3 группы: потенциометрические, кондуктометрические и полярографические методы анализа (Никаноров, 2008; Руководство … 2009).

Потенциометрический метод анализа основан на измерении потенциала электрода, изменяющегося в результате химических реакций и зависящего от температуры и концентрации анализируемого раствора. Использование ионселективных электродов, выпускаемых отечественной промышленностью, позволило значительно расширить возможности практического применения метода в аналитическом контроле состава природных вод (для определения рН воды, концентраций ионов натрия, кальция, магния, хлоридов, аммония, фторидов, нитратов и т.д.).

Метод титрования, при котором точку эквивалентности устанавливают по резкому скачку потенциала электрода, погруженного в анализируемый раствор, называют потенциометрическим титрованием. Этот метод преследует чисто прикладную цель количественного определения данного вещества в растворе путем его титрования стандартным раствором соответствующего реагента. При титровании в исследуемый раствор опускают индикаторный электрод, возникновение потенциала на котором обусловливается определяемым веществом непосредственно (если оно электроактивно) или косвенно (если оно неэлектроактивно) в результате химической реакции. В процессе данного взаимодействия за изменением концентрации определяемого вещества следят по изменению потенциала индикаторного электрода.

Для обнаружения скачка потенциала в конечной точке титрования применяются расчетные и графические способы. Первый способ основан на проведении ориентировочного титрования равномерными большими порциями стандартного раствора. Второй способ заключается в построении кривой титрования и нахождении точки перегиба (Никаноров, 2008; Руководство … 2009).

Метод потенциометрического титрования используется при определении широкого круга ионов, входящих в состав природных вод в относительно высоких концентрациях: гидрокарбонатов, сульфатов, органических кислот и др. Анализ можно проводить в окрашенных и мутных водах.

Преимущества потенциометрических методов: быстрота и простота; используя электроды, можно определять компоненты в очень маленьких по объему пробах, до десятых долей миллиметра; возможность проводить анализы в мутных и окрашенных растворах, вязких пастах, исключая процедуры фильтрования и перегонки; проба остается неиспорченной и пригодна для других анализов; возможность полной и частичной автоматизации.

Кондуктометрический метод анализа основан на измерении электропроводимости анализируемых растворов электролитов, обусловленной движением ионов под действием электрического тока. Значение электрической проводимости зависит от природы электролита, его температуры и концентрации раствора. В гидрохимии кондуктометрический метод используется при определении общей минерализации (Никаноров, 2008; Руководство … 2009).

Электрическая проводимость природной воды – показатель, характеризующий способность воды проводить электрический ток. Значение электрической проводимости растворов зависит в основном от концентрации растворенных минеральных солей и температуры. По значениям электрической проводимости водной среды можно ориентировочно оценить значение минерализации воды по предварительно установленной зависимости между электрической проводимостью и минерализацией воды.

При этом изучается зависимость между электрической проводимостью раствора и концентрацией ионов. Электрическая проводимость является результатом диссоциации вещества на ионы и миграции ионов под действием внешнего источника электрического напряжения.

Различают удельную, эквивалентную и относительную электрическую проводимость. Удельная электрическая проводимость χ – проводимость 1 м3 раствора, помещенного между электродами площадью 1 м2 на расстоянии 1 м (См/м).

Эквивалентная электрическая проводимость ν – это электрическая проводимость раствора, содержащего 1 моль эквивалента вещества, измеренная на расстоянии 1 см.

Относительная электрическая проводимость R – это отношение удельной электрической проводимости раствора к удельной электрической проводимости стандартного раствора (Предеина, Решетняк, 2012).

Кондуктометрический метод может быть реализован в варианте прямой кондуктометрии или кондуктометрического титрования.

Прямая кондуктометрия – определение удельной электрической проводимости как оценки минерализации вод, которую определяют главные ионы – кальция, магния, калия, натрия, гидрокарбонатов, хлоридов, сульфатов.

Кондуктометрическое титрование основано на применении химических реакций, в результате которых изменяется электрическая проводимость раствора.

Достоинства метода: быстрота, удобство и возможность определения ионов в мутных и окрашенных растворах, недостаток – электрическую проводимость раствора можно измерить с высокой точностью только в разбавленных растворах.

Полярографический метод анализа основан на измерении тока, изменяющегося в зависимости от напряжения в процессе электролиза, в условиях, когда один из электродов (катод) имеет очень малую поверхность (поляризующийся электрод), а другой (анод) – большую (неполяризующийся электрод). Поляризующимся катодом в классическом варианте являются капли ртути, вытекающие из тонкого отверстия капиллярной трубки. В настоящее время широкое распространение получили катоды: платиновый (вращающийся), графитовый, серебряный, стеклоуглеродный и др. Неполяризующимся анодом являются «донная» ртуть или стандартные электроды сравнения с большой поверхностью. Ток, при котором достигается полный разряд всех ионов анализируемого вещества, поступающих в приэлектродное пространство вследствие диффузии, называется предельным диффузионным током.

Полярография заключается в расшифровке вольт-амперных кривых – полярограмм (рис. 2а), выражающих зависимость силы тока (I) от приложенного к электролитической ячейке постоянного напряжения (E) (Никаноров, 2008).

При достижении разности потенциалов, необходимой для протекания на электроде электрохимической реакции, сила тока резко возрастает (рис. 2a, участок BC). При дальнейшем увеличении разности потенциалов вследствие установления подвижного равновесия, при котором количество восстановленных ионов равно количеству ионов, продиффундировавших из раствора к электроду, сила тока заметно не изменится (рис. 2a, участок CD). Эту силу тока называют предельным диффузионным током (определяется высотой волны h).


Рис. 2. Пример вольтамперометрической кривой (а – однокомпонентная система, б – раствор соединений тяжелых металлов)


Потенциал, соответствующий середине полярографической волны, называется потенциалом полуволны E1/2. Oн не зависит от концентрации иона в растворе, a определяется его природой и является качественной характеристикой иона. Если в растворе присутствует несколько электроактивных веществ, каждое из них будет давать собственную характерную волну и на полярограмме получится ступенчатая кривая (рис. 2б), которую называют полярографическим спектром.

Применение полярографического метода анализа достаточно широко. Он используется для определения примесей в металлах, сплавах, полупроводниках, химических реактивах; для контроля чистоты воздуха, воды, пищевых продуктов и медицинских препаратов; при проведении биохимических исследований; для изучения электродных, абсорбционных, окислительно-восстановительных процессов в химии комплексных соединений (Никаноров, 2008; Руководство … 2009). Различные варианты полярографического метода нашли широкое распространение, главным образом в определении содержания ряда металлов (Сu, Zn, Pb, Cd, Ni и др.) в природных водах при их совместном присутствии (рис. 2б).

Достоинства метода: исследование широкого ряда электродных процессов; возможность снятия полярограмм в виде удобном для последующей обработки; возможность сопряжения с ЭВМ для обработки результатов анализа.

3.3. Оптические методы анализа

В основе оптических методов анализа природных вод лежит способность всех веществ поглощать лучистую энергию в виде квантов, соответствующих определенным длинам волн. Для количественной оценки концентрации веществ используются линии, или полосы, поглощения, располагающиеся в ультрафиолетовой, видимой или инфракрасной областях спектра (Харитонов и др., 2012).

Спектрофотометрия

Спектрофотометрические методы анализа основаны на законе Бугера – Ламберта – Бера, устанавливающем зависимость между оптической плотностью раствора (D) исследуемого вещества, его концентрацией и толщиной слоя раствора вещества (Предеина, Решетняк, 2012):



где I – интенсивность света, прошедшего через раствор;

Iо – интенсивность падающего на раствор света;

ε – молярный коэффициент поглощения;

С – концентрация поглощающего вещества, моль/л;

l – толщина светопоглощающего раствора, см.

Графическое выражение закона Бугера – Ламберта – Бера дано на рисунке 3.


Рис. 3. Графическое выражение основного оптического закона (Предеина, Решетняк, 2012)


Выполнение измерения данным методом включает в себя две основные процедуры: переведение исследуемого вещества или компонента в комплексное соединение, поглощающее свет, и нахождение концентрации окрашенного соединения путем измерения оптической плотности (светопоглощения) раствора. В зависимости от технических условий концентрацию искомого вещества в растворе можно определять (Никаноров, 2008):

а) визуально – путем сравнения цвета и интенсивности окраски исследуемого раствора с цветом и интенсивностью окраски стандартного раствора; этот способ называется колориметрическим и в настоящее время применяется крайне редко;

б) с помощью прибора, который снабжен фотоприемниками (фотоэлектроколориметрами), превращающими световую энергию в электрическую, и светофильтрами, выделяющими определенную узкую область спектра; этот способ имеет существенные преимущества перед колориметрическим, поскольку является объективным и не зависит от особенностей зрения наблюдателя, проводящего визуальное сравнение;

в) спектрофотометрически – с помощью прибора, когда измерения проводят при оптимальной длине волны; в этом случае значительно повышается чувствительность определения.

Спектрофотометрический метод включает измерение светопоглощения по спектру падающего излучения в ультрафиолетовой, видимой и инфракрасной областях спектра при строго определенной длине волны, которая соответствует максимуму кривой поглощения исследуемого вещества. Фотометрический метод анализа основан на определении спектра поглощения или измерении светопоглощения в видимом участке спектра. В отличие от светофотометрического, в фотометрическом методе используют световое излучение, пропущенное через широкополосные светофильтры (Никаноров, 2008).

Концентрацию искомого вещества при фотометрическом или спектрофотометрическом определении находят с использованием градуировочного графика.

Достоинствами методов являются их низкие пределы обнаружения вещества (массовая доля 10–5–10–8%), возможность использования для определения большого перечня веществ. Однако погрешность метода существенна и составляет 15–20 %.

Условия выполнения фотометрических методов анализа веществ

Фотометрическое определение выполняют при оптимальных условиях, которые обеспечивают полноту образования аналитической формы вещества и минимальные отклонения от закона Бугера – Ламберта – Бера (Предеина, Решетняк, 2012):

– определенный рН раствора;

– достаточный избыток реагента;

– избирательность аналитической реакции;

– выбор наилучших условий измерения поглощения.

При фотометрии необходимо использовать истинные растворы. Они должны быть прозрачными, не содержать взвеси и опалесценции.

В настоящее время фотометрические и спектрофотометрические методы анализа широко используются при определении в водной среде соединений биогенных элементов (нитратов, нитритов, фосфатов), а также основных загрязняющих веществ, таких как фенолы, нефтепродукты, СПАВ, жиры, ксантогенаты, сероводород, фториды и другие специфические соединения (Никаноров, 2008).

Люминесценция

Люминесцентный метод основан на способности некоторых веществ при определенных условиях поглощать энергию и при переходе из возбужденного состояния в нормальное отдавать часть ее в виде лучистой энергии. Для возбуждения люминесценции обычно используют ультрафиолетовую или фиолетовую часть спектра. Определение концентрации веществ основано на измерении интенсивности люминесценции (свечения). Интенсивность люминесценции прямо пропорциональна концентрации вещества. Виды люминесценции: флуоресценция – свечение, прекращающееся сразу же после прекращения действия источника возбуждения; длительность послесвечения равна 10–6–10–9 с; фосфоресценция – свечение, продолжающееся некоторое время после прекращения действия источника возбуждения; длительность послесвечения составляет 10–2–10–3 с.

Преимуществом люминесцентного метода является его очень низкий предел обнаружения (массовая доля 10–15%), быстрота определения, широкий круг анализируемых веществ (Предеина, Решетняк, 2012).

Флуоресценция свойственна в основном органическим веществам. Из неорганических соединений способностью к флуоресценции обладают редкоземельные элементы и уран. В анализе природных вод люминесцентный метод используется для определения смолистых компонентов нефти, полициклических ароматических углеводородов, органических кислот, гумусовых веществ и других веществ естественного происхождения.

Спектральный анализ природных вод

Совокупность методов, основанных на исследовании эмиссионных спектров, которые образуют различные вещества при нагревании их в пламени электрической дуги, искры. В гидрохимии наибольшее распространение получили методы эмиссионной пламенной фотометрии, использующие фотометрическую регистрацию спектров излучения, и атомно-абсорбционной спектрометрии, основанные на фотометрической регистрации спектров поглощения, которые применяются для определения химических элементов в природных водах (Никаноров, 2008).

Эмиссионный спектральный анализ: если анализируемой системе сообщить достаточную энергию, то электроны атомов переходят в возбужденное состояние, а затем через очень короткий промежуток времени (доли секунды) вновь возвращаются спонтанно на нижележащие энергетические уровни. При этом освобождается избыточная энергия в виде излучения, характерного для каждого атома в различных областях спектра – видимой, ультрафиолетовой, рентгеновской. Это явление называют иначе эмиссией избыточной энергии.

Эмиссионный спектральный анализ основан на изучении спектров испускания возбужденных атомов, находящихся в состоянии «атомного пара».

Виды эмиссионного спектрального анализа

1. Визуальный. Спектры испускания проектируются на экран. Служит для качественного анализа элементного состава вещества.

2. Фотографический. Спектры испускания получают на фотографической пластинке. Служит для качественного и количественного анализа элементного состава вещества. Приборы для фотографического спектрального анализа называются спектрографами.

3. Эмиссионная пламенная фотометрия. Служит для количественного анализа элементного состава вещества. Приборы для эмиссионного спектрального анализа называются спектрометрами.

Для группового определения тяжелых металлов в водах до сих пор в ряде случаев используется эмиссионный спектральный анализ. Метод основан на концентрировании и извлечении металлов хлороформом в виде их комплексов с диэтилдитиокарбаматом и 8-оксихинолином и последующем спектрографическом определении. Обычно сжигание проводится в электрической дуге спектрографа, последующая расшифровка спектров – на микрофотометре (Никаноров, 2008).

Метод пламенной фотометрии – частный случай эмиссионной спектроскопии – заключается в следующем. Исследуемая проба с помощью распылителя вводится в виде мелких брызг в пламя горелки, которая работает на смеси горючих газов. В пламени атомы металлов, содержащихся в пробе, возбуждаются, а затем, переходя обратно из возбужденного в нормальное состояние, излучают свет определенных длин волн. Для каждого металла выделяются так называемые аналитические линии, по интенсивности которых судят о концентрациях исследуемых металлов. В гидрохимии этот метод наиболее часто применяют для определения натрия и калия, используя аналитические линии соответственно 589 и 768 нм.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации