Текст книги "Эволюция разума, или Бесконечные возможности человеческого мозга, основанные на распознавании образов"
Автор книги: Рэй Курцвейл
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Недавние исследования подтверждают наблюдение, что распознающие модули связываются в зависимости от того, какие образы им приходится распознавать. Например, нейробиолог Йи Зуо и ее коллеги следили за тем, как новые дендритные шипики образовывали связи между нервными клетками по мере того, как мыши обучались новому навыку (пролезать в щель, чтобы достать корм)[57]57
Min Fu, Xinzhu Yu, Ju Lu, Yi Zuo. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature, 2012; Nature 483, 92–95.
[Закрыть]. Исследователи из Института Солка в Калифорнии выяснили, что это самовозбуждение модулей новой коры, по-видимому, контролируется лишь несколькими генами. И эти гены, и сам способ самовозбуждения тоже одинаковы во всей новой коре[58]58
Dario Bonanomi et al., Ret Is a Multifunctional Coreceptor that Integrates Diffusible– and Contact-Axon Guidance Signals, Cell, 2012,148(3): 568–582.
[Закрыть].
Эти свойства новой коры описаны и во многих других исследованиях, так что давайте суммируем то, что мы узнали из литературы и из наших собственных мысленных экспериментов. Основная функциональная единица новой коры – ансамбль (модуль) нейронов, которых, по моим оценкам, в каждом модуле содержится около сотни. Модули сплетены между собой и образуют колонки, так что отдельные модули практически неразличимы. Направление связей и сила синаптических взаимодействий в каждом модуле достаточно стабильны. Обучение происходит при изменении направления и силы взаимодействий между модулями.
В новой коре насчитывается порядка квадрильона (1015) связей, но при этом в геноме содержится лишь около 25 млн байт соответствующей структурной информации (после сжатия без потерь), так что эти связи не могут быть предопределены генетически. Возможно, до некоторой степени обучение является результатом «общения» новой коры со старым мозгом, но и это позволяет объяснить происхождение лишь части информации. В целом связи между модулями формируются на основании опыта («воспитание сильнее природы»).
Головной мозг не обладает достаточной гибкостью для того, чтобы каждый распознающий модуль мог просто связываться с любым другим модулем (в отличие от легко программируемого компьютера или Интернета), – требуется осуществить реальное физическое соединение с участием аксона и дендрита. Как показало исследование Ван Видена, эти связи организованы повторяющимся и в высшей степени упорядоченным образом. Окончательное связывание с ожидающими аксонами происходит в результате распознавания образов каждым соответствующим распознающим модулем. Неиспользуемые связи в итоге удаляются. Все эти связи организованы иерархическим образом, что отражает естественное иерархическое устройство реальности. В этом и заключается ключевая способность новой коры.
Основной алгоритм действия распознающих модулей одинаков как для модулей «низшего порядка», имеющих дело с самыми примитивными сенсорными образами, так и для модулей «высшего порядка», распознающих более сложные понятия. Многочисленные доказательства пластичности и взаимозаменяемости разных отделов новой коры являются лучшим подтверждением этого важного наблюдения. Участки коры в некоторой степени оптимизированы для обработки образов определенного типа, но это вторичное явление; основной алгоритм универсален.
Передача сигналов по иерархической лестнице происходит как снизу вверх, так и сверху вниз. Восходящий сигнал означает: «Я обнаружил образ». Нисходящий сигнал гласит: «Я ожидаю ваш образ» и имеет предсказательное значение. И восходящий, и нисходящий сигналы могут быть как возбуждающими, так и ингибирующими.
Каждый образ воспринимается в определенном порядке, и обратить его непросто. Даже если образ многомерный, он представляется в виде последовательности одномерных образов более низкого порядка. Образ – это упорядоченная последовательность других образов, так что процесс распознавания по своей природе является рекурсивным. Эта иерархия может иметь множество уровней.
Образы, которые мы учимся распознавать, особенно наиболее важные из них, отличаются высокой степенью избыточности. Распознавание образов (таких как обычные предметы и лица) происходит по тому же механизму, что и воспоминание, которое как раз и представляет собой воспроизведение уже знакомого образа. Воспоминания тоже хранятся в виде последовательностей образов, обычно в виде текстов. Тот же механизм используется и для обучения движениям и их воспроизведению. Избыточность образов позволяет нам распознавать предметы, людей и идеи даже в измененном виде и в разном контексте. Величина и вариабельность величины поступающих сигналов также позволяют новой коре кодировать изменения амплитуды в разных измерениях (длительность в случае звука). Один из способов кодирования этих параметров состоит в записи множества образов с различающимися входными сигналами. Например, это могут быть образы произнесенного слова steep с разными вариантами длительности звука [E], каждый из которых характеризуется параметрами значимости, указывающими, что длительность этого [E] может быть различной. Этот подход не является математическим эквивалентом точному указанию параметров величины сигнала и на практике реализуется гораздо хуже, тем не менее это одна из возможностей записи амплитуды параметра. Самое весомое доказательство важности данных параметров заключается в том, что без них системы искусственного интеллекта не могут достичь такой же эффективности распознавания, как живой человек.
Все эти выводы следуют из приведенных мной выше примеров исследований и мысленных экспериментов. Я повторяю, что представленная мной модель является единственной, которая удовлетворительным образом соответствует всем условиям, определяемым данными практическими и мысленными экспериментами.
Наконец, существует еще одно доказательство справедливости описанной модели. Созданные нами за последние десятилетия системы искусственного интеллекта для распознавания и обработки проявлений реальной жизни (таких как человеческая устная и письменная речь), а также для понимания природы языка, как выясняется, в математическом плане очень похожи на описанную мной модель. Они также являются примером теории мысленного распознавания образов. Создатели искусственного интеллекта не пытаются воспроизвести человеческий мозг в буквальном смысле, однако неизбежно приходят к тем же самым принципам.
Глава пятая
Старый мозг
У меня старый мозг, но великолепная память.
Искусственный интеллект Льюис
И теперь мы стоим посреди этого нового мира с нашим примитивным мозгом, настроенным на простую пещерную жизнь, и имеем в своем распоряжении невероятные возможности, которые вполне способны реализовать, однако не можем предугадать последствий.
Старый мозг – тот, который имели наши предки еще до того, как стали млекопитающими, – никуда не исчез. Он по-прежнему решает многие задачи, такие как стремление к удовольствию и уход от опасности. Однако эти задачи модулируются новой корой, которая у человека является доминирующей частью мозга как по массе, так и по активности.
Животные жили и выживали, не имея новой коры, причем не млекопитающие и сегодня без нее обходятся. Мы можем воспринимать новую кору в качестве мощного сублиматора: наше примитивное желание избежать встречи с опасным хищником сегодня трансформируется новой корой в стремление решить поставленную задачу так, чтобы угодить начальству. Охота, возможно, подменяется написанием книг (например, о мозге), а задача воспроизводства – стремлением к популярности или страстью к оформлению домашнего интерьера (впрочем, последнее обычно не скрывают).
Новая кора способна помочь нам решить эти проблемы по той причине, что прекрасно моделирует окружающий мир, отражая его истинно иерархическую природу. Но задачи перед нами ставит старый мозг. Конечно, как любой умный чиновник, новая кора часто переформулирует проблемы, прежде чем их решать. Учитывая это, давайте все же рассмотрим процессы обработки информации, происходящие в старом мозге.
Сенсорное восприятие
Каждый из нас живет во вселенной – или в тюрьме – собственного мозга. От него отходят миллионы хрупких чувствительных нервных волокон, которые образуют группы, уникальным образом адаптированные для определения энергетического состояния окружающего нас мира: тепла, света, силы и химического состава. Только это нам и известно из непосредственного опыта; все остальное – логические измышления.
Хотя нам кажется, что глаза воспринимают изображение с высоким разрешением, на самом деле зрительный нерв посылает в мозг лишь набор очертаний и указаний относительно объектов, попадающих в поле нашего зрения. А затем мы воображаем себе окружающий мир на основании воспоминаний, хранящихся в новой коре, которая с очень низкой скоростью интерпретирует серию образов, поступающих по параллельным каналам. Профессор молекулярной и клеточной биологии из Калифорнийского университета в Беркли Фрэнк С. Верблин и докторант Ботон Роска опубликовали в журнале Nature статью, где показали, что зрительный нерв содержит от 10 до 12 выходных каналов, через каждый из которых проходит лишь небольшое количество информации о конкретной ситуации[62]62
B. Roska and F. Werblin, Vertical Interactions Across Ten Parallel, Stacked Representations in the Mammalian Retina, Nature 2001, 410: 583–87; Журнал Университета Калифорнии, Беркли, Eye Strips Images of All But Bare Essentials Before Sending Visual Information to Brain, UC Berkeley Research Shows, March 28, 2001, www.berkeley.edu/news/media/releases/2001/03/28_wers1.html.
[Закрыть].
Зрительная система человека
Так называемые ганглионарные клетки посылают информацию лишь о контурах предметов (контраст). Другая группа клеток детектирует только протяженные области одинакового цвета, а третья группа воспринимает исключительно фон за интересующим нас предметом.
Семь из двенадцати изображений низкого порядка, которые зрительный нерв направляет в мозг
«Хотя нам кажется, что мы видим мир во всем объеме, на самом деле мы получаем лишь подсказки, контуры в пространстве и времени, – говорит Верблин. – Эти 12 изображений мира составляют всю информацию о том, что нас окружает, и на основании этих 12 изображений, что чрезвычайно мало, мы воссоздаем все богатство видимого мира. Мне любопытно, почему природа отобрала эти 12 простых картинок и как их может быть достаточно, чтобы снабдить нас всей информацией, в которой мы нуждаемся».
Такой способ передачи информации в области искусственного интеллекта называют разреженным кодированием. При создании искусственных систем мы обнаружили, что наилучшие результаты получаются, если отбросить бо́льшую часть поступающей информации и оставить лишь самые заметные детали. В противном случае новая кора (биологическая или искусственная) не справляется с обработкой информации.
Слуховая система человека
Ллойд Уатт и его исследовательская группа из компании Audience Inc.[63]63
Lloyd Watts, Reverse-Engineering the Human Auditory Pathway.J. Liu et. Al. (eds.), 47–59, 2012, Springer-Verlag, Berlin.
Другие статьи можно найти на сайте http://www.lloydwatts.com/publications.html.
[Закрыть] тщательно смоделировали процессы обработки звуковой информации, поступающей от улитки человеческого внутреннего уха через подкорку в отделы новой коры. Ученые разработали технологию, позволяющую разложить звук на 600 частотных полос (60 на октаву). Это уже близко к значению 3000 полос – именно так оценивается способность человеческого уха (для сравнения: коммерческие звукораспознающие системы используют от 16 до 32 полос). Применяя два микрофона, а также детальную (и обладающую высоким спектральным разрешением) модель обработки звуковой информации, ученые создали коммерческую технологию (с чуть более низким спектральным разрешением, чем в лабораторной модели), которая эффективно удаляет фоновые шумы при разговоре. Эта система теперь широко применяется во многих мобильных телефонах и является впечатляющим примером коммерческого продукта, основанного на понимании способности человеческого слухового аппарата фокусироваться на одном конкретном источнике звука.
Упрощенная схема обработки слуховой информации в подкорке и новой коре (модель AUudience, Inc., рисунок (с модификациями) взят из статьи L. Watts, Reverse-Engineering the Human Auditory Pathway, in J. Liu et al. (eds.), WCCI 2012; Berlin: Springer-Verlag, 2012, p.49)
Входные сигналы от собственного тела человека (по оценкам – сотни мегабит в секунду), включая сигналы от нервных клеток кожи, мышц, внутренних органов и других зон, направляются в верхнюю часть спинного мозга. Это не только тактильная информация, но и данные о температуре, уровне кислотности (например, о содержании молочной кислоты в мышцах), перемещении пищи по пищеварительному тракту и о многом другом. Эта информация обрабатывается стволом мозга и средним мозгом. Важнейшие клетки, называемые нейронами первого слоя, создают карту тела, отражающую его текущее состояние; ее можно сравнить с дисплеем, на котором авиадиспетчеры отслеживают движение самолетов. Отсюда информация поступает в загадочный отдел мозга, называемый таламусом. И это тема нашего следующего раздела.
Таламус
Каждый знает, что такое внимание. Это сосредоточение мыслительного процесса, в четкой и яркой форме, на одном из нескольких одновременно существующих объектов или цепочек мыслей. Ключевые элементы этого процесса – локализация, концентрация и осознание. Процесс состоит в удалении одних вещей для более эффективного обдумывания других…
Уильям Джемс
От среднего мозга сенсорная информация далее проходит через заднее вентромедиальное ядро таламуса (ВМЯ; участок мозга размером с лесной орех), в котором формируются сложные реакции организма, такие как «какой ужасный вкус», «что за вонь» или «это прикосновение возбуждает». Постепенно обработанная информация собирается в двух отделах новой коры, называемых островками мозга. Эти структуры размером с небольшой палец локализованы на правой и левой стороне коры. Артур Крейг из Неврологического института Барроу в Финиксе (Аризона) определяет ВМЯ и островки как «систему, представляющую меня в материальном мире»[64]64
Sandra Blakeslee, Humanity? Maybe It’s All in the Wiring, The New York Times, December 11, 2003, http://www.nytimes.com/2003/12/09/science/09BRAI.html.
[Закрыть].
Таламус выполняет множество функций, в частности считается местом, откуда предварительно обработанная сенсорная информация направляется в новую кору. Кроме тактильной информации, поступающей через ВМЯ, обработанная информация от зрительного нерва (которая, как было сказано выше, уже подверглась существенной трансформации) направляется в участок таламуса, называемый латеральным коленчатым ядром, откуда поступает в зону VI новой коры. Звуковая информация идет через медиальное коленчатое ядро таламуса, а затем достигает первичной слуховой коры. Вся сенсорная информация (возможно, за исключением обонятельной информации, которая передается через обонятельные луковицы) проходит через специфические участки таламуса.
Проведение тактильного сигнала в теле человека
Однако наиболее важная функция таламуса заключается в непрерывном контакте с новой корой. Распознающие модули новой коры посылают в таламус предварительные данные и получают ответы главным образом в виде возбуждающих и ингибирующих сигналов от шестого уровня каждого модуля. Мы помним, что это не беспроводная система коммуникаций и между всеми участками коры и таламусом действительно возбуждается огромное число аксонов. Если учесть широту поля деятельности (в виде физической массы необходимых связей), то становится понятно, что таламус постоянно проверяет информацию от сотен миллионов распознающих модулей новой коры[65]65
T. E. J. Behrens, H. Johnsen-Berg, M. W. Woolrich, S. M. Smith, C. A. M. Wheeler-Kingshott, P. A. Boulby, G. J. Barker, E. L. Sillery, K. Sheehan, O. Ciccarelli, A. J. Thompson, J. M. Brady and P. M. Matthews, Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, vol. 6 (7), 2003.
[Закрыть].
О чем же эти сотни миллионов модулей сообщают таламусу? Судя по всему, это важная информация, поскольку серьезные двусторонние повреждения основных участков таламуса могут приводить к длительной потере сознания. У человека с повреждением таламуса новая кора по-прежнему может функционировать, и самовозбуждающаяся система ассоциативного мышления продолжает работать. Но направленное мышление (заставляющее нас вылезать из постели, садиться в машину или за рабочий стол) без таламуса не работает. Известен случай 21-летней Карен Энн Куинлан, которая после перенесенного сердечного приступа и остановки дыхания на протяжении десяти лет находилась в вегетативном состоянии, не реагируя на окружающий мир. Произведенное после смерти вскрытие показало, что ее новая кора работала нормально, но таламус был разрушен.
Ключевая роль таламуса в сосредоточении внимания связана с использованием данных, структурированных в новой коре. Таламус применяет хранящийся в новой коре список, позволяющий нам думать в определенном направлении или следовать определенному плану действий. Как показали исследования нейробиологов из Института обучения и памяти имени Пиковера при Массачусетском технологическом институте, наша рабочая память способна одновременно удерживать четыре вопроса – по два в каждой полусфере мозга. Пока еще неясно, руководит ли таламус новой корой или наоборот, но для нормального функционирования нужны оба отдела.
Гиппокамп
В каждом полушарии мозга содержится гиппокамп – маленькая структура в форме подковы, расположенная в медиальных височных отделах мозга. Его основная функция состоит в запоминании новых событий. Поскольку сенсорная информация проходит через новую кору, именно она решает, что данная информация является новой и ее нужно представить гиппокампу. Это происходит в том случае, если новая кора не может распознать определенный набор черт (например, новое лицо) или если уже знакомая ситуация приобрела новые характеристики (например, если на лице вашей жены появились накладные усы).
Гиппокамп запоминает эти ситуации, хотя, по-видимому, делает это с помощью отсылок к новой коре. Таким образом, сохраняемые в гиппокампе воспоминания также фиксируются в новой коре в виде образов низкого порядка. У животных, не имеющих новой коры, при модуляции чувственного опыта гиппокамп просто запоминает поступающую сенсорную информацию, которая, однако, подвергается предварительной обработке (например, в зрительном нерве).
Хотя гиппокамп использует новую кору (если она есть) в качестве сверхоперативной памяти, его собственная память (отсылки к новой коре) не имеет иерархического строения. Таким образом, животные, не имеющие новой коры, также могут запоминать информацию с помощью гиппокампа, но их воспоминания не являются иерархическими.
Емкость гиппокампа ограничена, поэтому хранящиеся в нем воспоминания недолговечны. Гиппокамп отсылает определенные последовательности образов на долгосрочное хранение, вновь и вновь переправляя их в новую кору. Таким образом, гиппокамп нужен нам для запоминания новых данных и нового опыта (хотя исключительно моторные функции, по-видимому, усваиваются другим путем). Человек с двусторонними повреждениями гиппокампа сохранит имеющиеся воспоминания, но не сможет усваивать новый материал.
Нейробиолог Теодор Бергер и его коллеги из Университета Южной Калифорнии создали модель гиппокампа крысы и успешно провели эксперименты по имплантации искусственного гиппокампа. В статье, опубликованной в 2011 г., они описали блокирование определенных навыков крыс с помощью лекарственных препаратов. Используя искусственный гиппокамп, крысы быстро вновь обучались утерянным навыкам. Описывая возможность контроля имплантированного органа, Бергер писал: «Когда переключатель включен, крысы вспоминают; когда он выключен, они забывают». В другом эксперименте искусственный гиппокамп работал одновременно с настоящим. В результате повысилась способность крыс воспринимать новую информацию. Бергер писал: «Эти комплексные экспериментальные модели впервые показали, что… нейронные имплантаты способны в реальном времени идентифицировать процесс кодирования и манипулировать им, восстанавливая и даже улучшая когнитивные мнемонические процессы»[66]66
Theodore W. Berger, Robert E. Hampson, Don Song, Anushka Goonawardena, Vasilis Z. Marmarelis and Sam A. Deadwyler, A cortical neural prosthesis for restoring and enhancing memory, Journal of Neural Engineering, 2011, vol. 8 (4).
[Закрыть]. Гиппокамп – из тех отделов мозга, которые в первую очередь повреждаются при болезни Альцгеймера, поэтому одна из целей данного исследования заключается в создании нейронных имплантатов, которые могли бы сглаживать первую фазу повреждений в ходе развития заболевания.
Мозжечок
Есть два способа поймать летящий мяч. Можно одновременно решить комплекс уравнений, описывающих поведение мяча, наклон вашего тела в соответствии с положением мяча и движения вашего тела, плеча и руки в пространстве и во времени.
Головной мозг использует другой подход. Он упрощает проблему, сводя множество уравнений к простой экспериментальной модели, исследуя лишь пространство, в котором мяч оказывается в поле нашего зрения, и скорость его перемещения. Тем же способом он контролирует и движение руки, делая в основном линейные предсказания относительно положения мяча и руки. Цель заключается в том, чтобы рука и мяч встретились в какое-то время в каком-то месте. Если кажется, что мяч движется слишком быстро, а рука чересчур медленно, мозг заставит руку двигаться быстрее навстречу мячу. Такое разрешение Гордиева узла сложных математических проблем называют «основными функциями» мозга, и происходит этот процесс в мозжечке – области мозга размером с кулак, расположенной в основании ствола мозга[67]67
Базисные функции – это нелинейные функции, которые можно комбинировать линейным способом (путем суммирования нескольких функций) для аппроксимации любой нелинейной функции.
Pouget and Snyder, Computational approaches to sensorimotor transformations, Nature Neuroscience 2000, 3 (11): 1192–1198.
[Закрыть].
Мозжечок – отдел старого мозга, который когда-то контролировал практически все движения гоминидов. Он по-прежнему содержит половину всех нейронов мозга, но поскольку основная часть из них – сравнительно небольшие нейроны, на мозжечок приходится лишь около 10 % всей массы мозга. Это еще один отдел, характеризующийся повторяемостью своих структур. Мы мало знаем о том, как строение мозжечка закодировано в геноме, поскольку он представляет собой сочетание нескольких нейронов, повторяющихся миллиарды раз. Подобно новой коре, мозжечок имеет равномерную структуру[68]68
Bloedel, J. R. Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav. Brain Sci. 1992, vol. 15, 666–678.
[Закрыть].
Со временем новая кора взяла под свой контроль бо́льшую часть нашей мышечной деятельности, используя тот же алгоритм распознавания образов, который она применяет для узнавания и обучения. Функцию новой коры при выполнении движений мы вправе называть реализацией образов. Новая кора использует хранящиеся в мозжечке воспоминания для записи тонких набросков движений, таких как подпись или характерные элементы художественной манеры в музыке или танце. Изучение роли мозжечка в обучении детей письму показало, что клетки Пуркинье в мозжечке контролируют последовательность движений, причем каждая клетка чувствительна к определенной последовательности[69]69
S. Grossberg and R. W. Paine, A Neural Model of Cortico-Cerebellar Interactions During Attentive Imitation and Predictive Learning of Sequential Handwriting Movements, Neural Networks, 2000, 13(8–9): 999–1046.
[Закрыть]. Поскольку бо́льшая часть наших движений теперь контролируется новой корой, даже довольно серьезные повреждения мозжечка приводят лишь к незначительной неловкости или неточности движений.
Новая кора также может обращаться к мозжечку за помощью для расчета основных функций в реальном времени, чтобы предсказать результат действий, которые мы никогда не делали, но собираемся совершить, а также реальных или возможных действий других людей. Это еще один пример врожденной предсказательной способности мозга.
Ученые достигли значительных успехов в моделировании поведения мозжечка, а именно его способности динамическим образом реагировать на сенсорные стимулы, используя те основные функции, о которых я говорил выше, как в восходящих (биохимических) моделях, так и в нисходящих моделях, основанных на математических расчетах функции всех повторяющихся единиц мозжечка[70]70
Javier F. Medina and Michael D. Mauk, Computer simulation of cerebellar information processing. Nature Neuroscience Supplement. Volume 3, November 2000.
[Закрыть].
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?