Электронная библиотека » Роберт Сапольски » » онлайн чтение - страница 14

Текст книги "Психология стресса"


  • Текст добавлен: 12 марта 2018, 19:40


Автор книги: Роберт Сапольски


Жанр: Психотерапия и консультирование, Книги по психологии


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 14 (всего у книги 53 страниц) [доступный отрывок для чтения: 15 страниц]

Шрифт:
- 100% +
Насколько стресс разрушителен для женской репродуктивной системы?

Как мы видели, существует великое множество механизмов, приводящих к нарушениям репродуктивной системы у самок, испытывающих стресс, – снижение количества жира; выработка эндорфинов, пролактина и глюкокортикоидов, действующих на мозг, гипофиз и яичники; нехватка прогестерона; чрезмерное количество пролактина, действующего на матку. Кроме того, блокировка имплантации в матку оплодотворенной яйцеклетки и изменения кровоснабжения эмбриона создают множество проблем, уменьшающих шансы на нормальное течение и успешное завершение беременности. Учитывая все эти разнообразные механизмы, может показаться, что даже самый слабый стрессор способен полностью «отключить» репродуктивную систему. Как ни странно, это не так; даже если все эти механизмы действуют одновременно, они не так уж эффективны.

Чтобы в этом убедиться, можно исследовать влияние на репродуктивную систему хронического, но небольшого стресса. Возьмем традиционное незападное земледельческое сообщество, в котором отмечаются высокий уровень заболеваний (скажем, сезонная малярия), высокий уровень зараженности паразитами и небольшое сезонное недоедание, – например, фермеров Кении. Прежде чем в моду вошло планирование семьи, кенийская женщина в среднем рожала восьмерых детей.

Сравним это сообщество с фермерской общиной гуттеритов, проживающей в США. Эти люди не используют механизированный труд, и их образ жизни напоминает традиции амишей. Гуттериты не испытывают ни одного из хронических стрессоров, которым подвергаются кенийские фермеры, не используют противозачаточных средств и имеют почти такой же уровень рождаемости: в среднем по девять детей на женщину. (Количественное сравнение этих двух популяций провести трудно. Гуттериты, например, вступают в брак довольно поздно, что снижает уровень рождаемости, а кенийские фермеры традиционно вступают в брак очень рано. И наоборот, кенийские женщины, как правило, кормят ребенка грудью в течение по крайней мере года, что снижает уровень рождаемости, а гуттериты отнимают детей от груди намного раньше. Но самое главное, что даже при такой разнице в образе жизни уровень рождаемости у этих двух сообществ почти одинаковый.)

Как же ведет себя репродуктивная система во время очень сильного стресса? Этот вопрос активно обсуждается в литературе и всегда ставит перед нами этическую проблему: как описать научное открытие, если его авторы были бессердечными монстрами? Например, есть известное исследование женщин – узниц концентрационных лагерей Третьего рейха, проведенное нацистскими врачами. (Существует специальная конвенция, запрещающая называть имена этих врачей и предписывающая всегда отмечать преступность их экспериментов.) Исследование узниц концлагеря Терезиенштадт показало, что у 54 % женщин репродуктивного возраста прекратились менструации. Это едва ли удивительно; голод, рабский труд и ужасающее психологическое насилие нарушают функционирование репродуктивной системы.

Среди тех женщин, у которых прекратились менструации, у большинства это случилось в первый месяц нахождения в концлагере, еще до того, как голод и тяжелый труд снизили количество жира в организме до критического уровня. Многие исследователи считают, что это подтверждает, насколько разрушительным для репродуктивной системы может быть один лишь психологический стресс.

А я думаю, что удивительно как раз обратное. Несмотря на голод, изнурительный труд и ежедневный ужас от осознания того, что этот день может оказаться последним, менструации прекратились только у 54 % женщин. Почти у половины из них репродуктивные механизмы продолжали действовать (хотя, возможно, овуляция происходила не у всех). И я готов поспорить, что, несмотря на ужас ситуации, у многих мужчин – узников концлагерей репродуктивная система тоже работала нормально. Мне кажется невероятным тот факт, что в таких условиях репродуктивная система продолжала действовать, пусть даже только у некоторых людей.

Репродуктивная система представляет собой обширную иерархию поведенческих и физиологических феноменов, которые значительно отличаются между собой по уровню тонкости. Некоторые ее аспекты являются базовыми и наиболее важными – овуляция, перенаправление кровотока к пенису. Другие очень деликатны, такие как строка стихотворения, волнующая душу, или легкий аромат, исходящий от любимого человека и вызывающий прилив желания. Не все эти феномены одинаково чувствительны к стрессу. У многих людей базовый репродуктивный механизм может быть удивительно устойчив к стрессу, как показывает опыт холокоста. Размножение – один из самых сильных биологических рефлексов. Об этом знают любой лосось, выпрыгивающий из воды, поднимаясь против течения, чтобы отложить икру, самцы самых разных видов животных, рискующие жизнью и здоровьем, чтобы получить доступ к самкам, и подросток с безумным взглядом, затуманенным стероидами.

Но когда дело доходит до пируэтов и изысканных па сексуальности, стресс может все разрушить. Возможно, для голодающих беженцев или для животных в разгар засухи это не так уж важно. Но очень важно для нас, с нашей культурой множественного оргазма, коротких периодов воздержания и океанов либидо. Над нашей одержимостью сексом можно смеяться, но тонкие нюансы сексуальности, глянцевые журналы и прочие приметы нашего избалованного века имеют смысл. Они дарят нам такие прекрасные, но такие хрупкие и мимолетные радости бытия.

Глава 8. Иммунитет, стресс и болезни

Конференц-залы научных институтов сегодня полны ученых новой породы – психонейроиммунологов. Эти люди зарабатывают на жизнь исследованиями, основанными на том невероятном факте, что происходящее в нашей голове может влиять на работу нашей иммунной системы. Когда-то считалось, что две эти сферы никак между собой не связаны – иммунная система уничтожает бактерии, продуцирует антитела, охотится на опухоли; мозг помогает нам танцевать, изобретать колесо и смотреть любимые телесериалы. Но идея о независимости иммунной и нервной систем оказалась ошибочной. Автономная нервная система пронизывает нервами ткани организма, которые формируют или хранят клетки иммунной системы. Затем эти клетки поступают в кровь. Кроме того, ткани иммунной системы, оказывается, чувствительны (то есть обладают рецепторами) ко всем тем интересным гормонам, которые вырабатываются гипофизом по команде мозга. Поэтому, как оказалось, мозг постоянно сует свой нос в дела иммунной системы.

Доказательства влияния мозга на иммунную систему начали появляться как минимум 100 лет назад начиная с первой демонстрации: если перед носом человека, страдающего аллергией на розы, помахать искусственной розой (при условии, что он не знает, что роза фальшивая), у него случится аллергическая реакция. А вот очаровательная и более свежая демонстрация того, что мозг влияет на иммунную систему: возьмем две группы профессиональных актеров. Попросим первую группу целый день репетировать мрачную, депрессивную сцену, а вторую – оптимистичный, радостный этюд. У актеров из первой группы ослабеет реакция иммунной системы, а у актеров второй группы она усилится. (Как вы думаете, где было проведено это исследование? Конечно же, в Калифорнийском университете в Лос-Анджелесе.) Но наиболее явно на связь между мозгом и иммунной системой указало исследование, основанное на парадигме, получившей название «условное подавление иммунитета».

Введите животному препарат, подавляющий иммунную систему. После этого проведите эксперименты в стиле Павлова с «условными стимулами», например давайте животному ароматизированный напиток, который оно может связать с подавляющим иммунитет препаратом. Несколько дней спустя дайте животному только условный стимул, вызывающий реакцию, – и иммунитет упадет. В 1982 году был опубликован отчет об эксперименте, основанном на одном из вариантов этой парадигмы и проведенном двумя новаторами в этой области, Робертом Адером и Николасом Коэном из Рочестерского университета. Результаты ошеломили ученых. В экспериментах на мышах животные неожиданно начали болеть из-за избыточной активности иммунной системы. Обычно болезнь контролируют, давая мышам иммунодепрессанты. Адер и Коэн показали, что при использовании техники обусловливания препарат можно заменить условным стимулом – и это оказывает влияние на иммунитет животных в такой степени, что может продлить им жизнь.

Подобные исследования убедили ученых, что существует прочная связь между нервной и иммунной системами. Вполне очевидно, что раз искусственная роза или вкус ароматизированного напитка могут изменить иммунную функцию, то стресс тоже может это делать. В первой части этой главы мы обсудим влияние стресса на иммунитет и чем оно может быть полезно в стрессовых ситуациях. Во второй части главы мы поговорим о том, может ли длительный стресс из-за хронического подавления иммунитета ослаблять способность организма бороться с инфекционными заболеваниями. Это очень интересный вопрос, и ответить на него можно лишь с большой осмотрительностью и множеством оговорок. Появляются доказательства того, что стрессогенное подавление иммунитета действительно может увеличивать риск развития некоторых заболеваний и их серьезность. Но эта связь, похоже, не очень выражена и ее важность часто преувеличивают.

Чтобы оценить современные достижения в этой сложной, но важной области знаний, нужно начать с азов – с того, как вообще работает иммунная система.

Как действует иммунная система

Основная задача иммунной системы – защищать организм от возбудителей инфекций, например от вирусов, бактерий, грибков и паразитов. Этот процесс невероятно сложен. С одной стороны, иммунная система должна различать нормальные клетки и клетки-агрессоры – на жаргоне иммунологов, отличать «своих» от «чужих». Каким-то образом иммунная система помнит, как выглядит каждая клетка в нашем теле, и атакует любые клетки, где нет нашей индивидуальной «клеточной подписи» (например, бактерии). Кроме того, сталкиваясь с новым захватчиком, иммунная система способна даже создавать иммунологическую «запись» о том, на что похож этот возбудитель инфекции. Это позволяет ей подготовиться к его вторжениям в будущем. На этой способности основан принцип действия вакцинации: нам вводят небольшое количество ослабленного возбудителя инфекции, и это готовит иммунную систему к реальному нападению.

Иммунную защиту приводит в действие сложный комплекс клеток, циркулирующих в крови. Они называются лимфоцитами и моноцитами (все вместе иммунные клетки называются лейкоцитами; «циты» – это «клетки»). Есть два класса лимфоцитов: T-клетки и В-клетки. И те и другие формируются в костном мозге, но Т-клетки мигрируют в тимус (вилочковую железу) и достигают зрелости уже там (поэтому они и называются «T-клетками»). В-клетки вызревают в костном мозге. B-клетки производят преимущественно антитела. Существует несколько видов Т-клеток (T-хелперы, T-супрессоры, цитотоксичные Т-киллеры и т. д.).

T-клетки и B-клетки атакуют возбудителей инфекции по-разному. T-клетки создают клеточный иммунитет (рис. 25). Когда возбудитель инфекции вторгается в организм, его распознает моноцит, который называют макрофагом. Он сообщает о чуждой частице клетке T-хелперу. Включается тревожная сирена, и в ответ на вторжение «чужака» Т-клетки начинают рассредоточиваться по организму. Эта система сигнализации приводит к активации и быстрому распространению цитотоксичных Т-киллеров. В соответствии со своим названием они атакуют возбудителей инфекции и уничтожают их. Кстати, вирус СПИДа убивает как раз Т-клетки иммунной системы.

B-клетки действуют иначе. Они поддерживают иммунитет путем создания антител (рис. 26). Если макрофаги и Т-хелперы начали действовать, они стимулируют распространение B-клеток. Основная задача В-клеток – дифференцировать и производить антитела – большие белки, распознающие те или иные особенности вторгшегося возбудителя инфекции (как правило, его специфический белок) и присоединяющиеся к нему. Такая избирательность очень важна – форма образующегося антитела точно «подходит» к форме того или иного отличительного признака захватчика, как ключ к замку. Таким образом, антитела присоединяются к клеткам возбудителя инфекции, блокируют их и готовят к уничтожению.


Рис. 25. Каскад клеточного иммунитета. (1) Возбудителя инфекции атакует моноцит особого типа, который называется макрофагом. (2) Макрофаг сообщает о возбудителе инфекции клетке Т-хелперу (тип лейкоцита) и вырабатывает интерлейкин-1 (IL-1), стимулирующий активность Т-хелпера. (3) Затем T-хелпер вырабатывает интерлейкин-2 (IL-2), который запускает распространение T-клеток. (4) Это приводит к распространению лейкоцитов другого типа, цитотоксичных Т-киллеров, и они уничтожают возбудителя инфекции


Рис. 26. Иммунный каскад на основании антител. (1) Возбудитель инфекции сталкивается с макрофагом. (2) Макрофаг сообщает о возбудителе инфекции клеткам T-хелперам, и они вырабатывают интерлейкин-1 (IL-1), стимулирующий активность T-хелперов. (3) T-хелперы вырабатывают фактор роста B-клеток, и это запускает дифференциацию и быстрое распространение лейкоцитов другого типа, B-клеток. (4) B-клетки вырабатывают специфические антитела, которые присоединяются к белкам возбудителя инфекции, подготавливая его к уничтожению многочисленной группой белков, циркулирующих в крови, которые называются комплементом


У иммунной системы есть еще один интересный аспект. Например, если разные части печени должны скоординировать ту или иную активность, у них есть преимущество соседства. Но клетки иммунной системы свободно циркулируют в крови. Чтобы тревожную иммунную сирену услышали во всех частях этой обширной системы, организм создал химические посредники (цитокины). Они также циркулируют в крови и переносят сообщения между иммунными клетками разных типов. Например, когда макрофаги впервые распознают возбудителя инфекции, они вырабатывают посредника, который называется интерлейкин-1. Он побуждает T-хелперы вырабатывать интерлейкин-2, который стимулирует рост T-клеток (чтобы еще больше усложнить эту схему, есть как минимум штук пять дополнительных интерлейкинов с более узкими функциями). На фронте антител T-клетки также вырабатывают фактор роста В-клеток. Другие классы посредников, например интерфероны, активируют разные типы лимфоцитов.

Процесс сортировки, когда иммунная система проводит разграничение между «своими» и «чужими», обычно довольно эффективен (хотя некоторые коварные тропические паразиты, например возбудители шистосомоза, научились обманывать иммунную систему, присваивая «подпись» собственных клеток организма). Иммунная система постоянно занята отделением «своих» от «чужих»: эритроциты – это мое. Брови – мои. Вирус – гадость, атакуем. Мышечные клетки – наши ребята… (рис. 27).


Рис. 27. Микрофотоснимок неспецифической клетки Т-киллера, атакующей клетку опухоли


Но что, если в процессе иммунной сортировки случится сбой? Один очевидный тип ошибки – когда иммунная система не может распознать инфекцию-захватчика; конечно, это очень плохо. Не менее опасно, если иммунная система по ошибке признает вредным захватчиком того, кто на самом деле им не является. Например, какое-то совершенно безвредное вещество вызывает реакцию аварийного сигнала. Это может быть что-то съедобное, скажем арахис или моллюски, или что-то распыленное в воздухе и безвредное, вроде цветочной пыльцы. Но иммунная система по ошибке решила, что это не только «чужое», но и опасное, и начала активно с этим бороться. В таком случае возникает аллергия.

При втором типе гиперреакции иммунной системы за возбудителя инфекции принимается нормальная часть нашего собственного тела, и в результате она подвергается атаке. Когда иммунная система по ошибке нападает на нормальную часть тела, это может привести к самым разным и очень неприятным «аутоиммунным» заболеваниям. Например, при рассеянном склерозе нападению подвергается нервная система; при ювенильном диабете – клетки поджелудочной железы, обычно вырабатывающие инсулин. Как мы скоро увидим, стресс, как ни странно, влияет на течение аутоиммунных заболеваний.

До сих пор в этом кратком обзоре иммунной системы мы говорили о приобретенном иммунитете. Предположим, что вы в первый раз подвергаетесь действию некоего нового, опасного болезнетворного микроорганизма, назовем его патогеном X. У приобретенного иммунитета есть три особенности. Во-первых, он позволяет «научиться» атаковать именно патоген X с помощью специфических антител и иммунных клеток, способных распознавать именно этот патоген. Это дает важное преимущество: у нас появляется «маркер», на котором написано название патогена X. Во-вторых, для создания такого иммунитета нужно время: когда мы впервые сталкиваемся с патогеном X, нужно выяснить, какие антитела лучше всего ему соответствуют, и создать миллионы его копий. После этого мы можем выявлять и уничтожать патоген X в течение многих лет, и если эта специфическая защита уже есть, повторное воздействие патогена X будет только укреплять эту защиту.

Такой приобретенный иммунитет – весьма необычное изобретение, и он есть только у позвоночных животных. Но у нас есть еще и более простой, более древний механизм иммунной системы, такой же, как у живых существ совсем другого вида – у насекомых. Он называется врожденным иммунитетом. Он не предусматривает средств защиты, предназначенных специально для патогена X и особых антител, которые отличаются от тех, которые предназначены, скажем, для патогена Y. Но когда какой-то патоген поражает нас во второй раз, эта неспецифическая иммунная реакция тоже вступает в действие.

Такая общая иммунная реакция чаще всего возникает на переднем крае, где патоген завоевывает первый плацдарм, например в коже либо в ткани слизистой оболочки во рту или в носу. Как только это произошло, антитела, содержащиеся в слюне, атакуют любые «чужие» микробы. Это неспецифическая реакция, не отличающая захватчиков друг от друга. Такие антитела вырабатываются в слизистой оболочке и покрывают ее антисептическим слоем. Кроме того, в месте инфекции расширяются капилляры и иммунные клетки могут свободно поступать сюда из крови, пропитывая область инфекции. Среди этих клеток – макрофаги, нейтрофилы и неспецифические клетки-киллеры, атакующие вредоносных микробов. Расширение капилляров также увеличивает приток жидкости, содержащей белки, препятствующие попаданию агрессивных микробов в кровь. Что происходит в результате? Белки борются с микробами, а жидкость вызывает отек. Так действует врожденная иммунная система: она вызывает воспаление[57]57
  Как мы только что сказали, врожденная иммунная реакция основана на том, что в зараженную область проникают белки. Среди белков, которые борются с микробами, есть один, о котором мы говорили в главе 3, С-реактивный белок крови. Думаю, вы помните, что клейкие частицы, например холестерин, создают атеросклеротические бляшки только в тех местах, где повреждены кровеносные сосуды. Поэтому степень повреждения и сила воспаления кровеносных сосудов – хороший прогностический фактор риска атеросклероза. С-реактивный белок, как мы уже знаем, – самый надежный индикатор такого воспаления.


[Закрыть]
.

Итак, теперь у нас есть общее представление о том, как функционирует иммунная система. Пришло время рассмотреть, как стресс влияет на иммунитет. Естественно, этот процесс намного сложнее, чем может показаться.

Как стресс угнетает иммунную функцию?

С тех пор как Селье обнаружил первые доказательства того, что стресс способен подавлять иммунитет, прошло почти 60 лет. Селье обнаружил, что у крыс, подвергавшихся воздействию различных неприятных факторов, могут атрофироваться иммунные ткани, например тимус. С тех пор ученые намного больше узнали об иммунной системе, и оказалось, что стресс нарушает очень многие иммунные функции.

Стресс подавляет формирование лимфоцитов, замедляет их циркуляцию в крови и сокращает время, в течение которого лимфоциты, уже находящиеся в крови, в ней остаются. Это угнетает производство новых антител в ответ на возбудителя инфекции и нарушает коммуникацию между лимфоцитами, уменьшая выработку соответствующих посредников. А это подавляет врожденную иммунную реакцию, поэтому воспаления не возникает. Так действуют самые разные стрессоры – физические и психологические, у приматов, крыс, птиц и даже рыб. И конечно, у человека.

Лучше всего такой процесс подавления иммунитета виден на примере глюкокортикоидов. Например, глюкокортикоиды могут вызывать уменьшение размеров тимуса; этот факт установлен вполне надежно. В былые времена (около 1960 года), когда мы еще не умели напрямую измерять количество глюкокортикоидов в крови, для этого использовали один косвенный способ: диагностику размеров тимуса. Чем меньше тимус, тем больше в крови глюкокортикоидов. Глюкокортикоиды угнетают формирование в тимусе новых лимфоцитов, а ведь ткань тимуса состоит преимущественно из этих новых клеток, готовых выйти в кровь. Глюкокортикоиды подавляют выработку посредников – интерлейкинов и интерферонов – и поэтому снижают чувствительность лимфоцитов к сигналу тревоги при возникновении инфекции.

Глюкокортикоиды, кроме того, вымывают лимфоциты из крови и заставляют их возвращаться в «хранилища» в иммунных тканях. Такое действие глюкокортикоидов угнетает в первую очередь Т-клетки, а не В-клетки. Это значит, что оно больше вредит клеточному иммунитету, а не иммунитету антител. И что самое интересное, глюкокортикоиды могут уничтожать лимфоциты. Это одна из самых горячих тем в медицине, получившая название запрограммированной гибели клеток[58]58
  Еще один модный термин в этой области – апоптоз (от греческого apoptosis, означающего что-то вроде «отпадание», например «отпадание» осенью листьев на деревьях как их запрограммированная смерть). Ведутся большие споры о том, можно ли сказать, что апоптоз – это и есть запрограммированная гибель клеток, или он является только ее подтипом (я поддерживаю вторую гипотезу), а также, как ни странно, о том, нужно ли произносить в этом слове вторую «п» (я это делаю – мне нравится иной раз щегольнуть плебейским акцентом «человека с улицы»).


[Закрыть]
. Клетки запрограммированы на то, чтобы иногда совершать самоубийство. Например, если клетка начинает превращаться в злокачественную, в ней активируется функция самоуничтожения, нейтрализующая ее до того, как она начнет процесс неконтролируемого деления; несколько типов раковых образований связаны с нарушением функции запрограммированной гибели клеток. Оказывается, что глюкокортикоиды с помощью нескольких механизмов способны запускать программу самоуничтожения у лимфоцитов.

Гормоны симпатической нервной системы, бета-эндорфин и КРГ в мозге также принимают участие в подавлении иммунитета во время стресса. В отличие от воздействия на иммунитет глюкокортикоидов механизмы такого влияния пока мало изучены. Эти гормоны традиционно считались менее важными, чем глюкокортикоиды. Однако множество экспериментов показывают, что стрессоры способны подавлять иммунитет независимо от секреции глюкокортикоидов с помощью других механизмов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации