Автор книги: Саймон Кинг
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Молния
Насколько горяча молния?
Вряд ли вы видите молнии очень часто, поэтому, вероятно, удивитесь, узнав, что в среднем во всем мире каждую секунду поверхность Земли поражает около сотни ударов молнии. Большая часть этих ударов молнии приходится на тропики – на регионы, известные как «горячие камины» (hot chimneys), где достаточно тепловой энергии для регулярного образования больших грозовых облаков, а следовательно, и грозовых ливней. Наша атмосфера имеет электрический заряд, и даже в хорошую погоду его можно измерить у поверхности земли. При образовании грозовых туч заряд растет, и в землю начинают бить молнии. Как нам известно, в грозовых облаках действует множество нисходящих и восходящих потоков. Смесь водяных капелек и льда в облаке испытывает значительную турбулентность, столкновения частичек порождают трение, а оно, в свою очередь, приводит к образованию в облаке статического заряда. Это означает присутствие как положительно, так и отрицательно заряженных частиц, и они, естественно, отталкивают друг друга. Положительно заряженные частицы собираются в верхней части облака, а отрицательные устремляются вниз – как батарейка с плюсом и минусом. Когда накапливается достаточный заряд, атмосфера стремится к его выравниванию, так что следует мощный и быстрый удар молнии от отрицательного полюса в положительный. По большей части удар направлен снизу вверх – это так называемая внутриоблачная молния. Земная поверхность тоже имеет положительный заряд, так что если электрический потенциал достаточен, то удар молнии направляется на Землю, такая молния называется «облако – земля». Технически у самой молнии нет температуры, поскольку это просто поток электрических зарядов. Однако когда молния проходит сквозь воздух или другой материал, она нагревает этот материал. Воздух после этого становится очень горячим: температура в долю секунды поднимается почти до 27 500 °C. Это почти в пять раз горячее, чем поверхность Солнца (5500 °C). Именно в ходе этого процесса во время грозы образуется звук грома. Создается канал, который в сочетании с сильным мгновенным нагревом сразу же сжимает окружающий воздух, отчего образуются ударные волны. Именно эти сильнейшие вибрации окружающего воздуха докатываются до нашего уха и порождают звук. Если удар молнии случился неподалеку, мы словно слышим удар кнута. Если молния ударила далеко, то звук успевает исказиться и доходит до нас уже как глухое продолжительное ворчание.
Может ли молния служить человечеству?
Числа впечатляют: в одном ударе молнии около миллиарда джоулей энергии – этого достаточно для снабжения электричеством целого дома в течение месяца. Так что теоретически овладеть этой энергией и использовать ее как возобновляемый источник – великолепная идея. Однако это не сработает, и вот почему. Во-первых, хотя энергия одного удара молнии действительно огромна, она расходуется за долю секунды. У нас пока нет инженерных методик, которые могли бы помочь захватить такое огромное количество энергии в краткий промежуток времени, сохранить его и затем распределять в течение более длительного периода. Во-вторых, молния совершенно непредсказуема, так что практически невозможно указать место, куда она ударит. По большей части молнии случаются в тропических широтах, где плотность населения невелика. Но даже если бы нам удалось овладеть энергией молний, бьющих по всей Земле, то, по подсчетам специалистов, ее хватило бы для обеспечения всего лишь около 8 % домохозяйств США.
Куда молния бьет неоднократно?
Чаще всего молнии наблюдаются в тропических районах, поскольку там больше тепловой энергии, а следовательно, и конвекции, необходимой для образования мощных грозовых облаков: источников гроз, грома и молнии. Больше всего ударов молний приходится на Центральную Африку, Центральную Америку и Юго-Восточную Азию. В этих районах они чаще всего случаются в гористой местности. Гористый ландшафт обеспечивает восходящие потоки воздуха, что способствует дополнительной конвекции. Если прибавить к этому еще и озеро, то избыточная влажность легко переносится вверх, способствуя грохоту гроз и ярким вспышкам молний. В Венесуэле, где река Кататумбо впадает в озеро Маракаибо, в год случается в среднем 250 ударов молний на квадратный километр – около 28 вспышек в минуту. Еще одно место с сильным электрическим зарядом – горная деревушка Кифука в Демократической Республике Конго, где на квадратный километр ежегодно приходится 158 ударов.
Облака
Откуда появляются облака?
Каждый день облака движутся по небу, величественно плывут и куда-то исчезают. Их вечно меняющаяся форма и продолжительность существования обусловлена влиянием Солнца, суши и моря. Но не любой слой земной атмосферы может быть местом образования облаков. Выделяют семь различных слоев атмосферы, каждый из которых обладает уникальными свойствами, позволяющими защищать нашу планету. Самый нижний слой переносит воду между сушей и морем во всех ее агрегатных состояниях, поддерживая богатство и разнообразие жизни.
Тропосфера, нижний слой атмосферы, содержит кислород, активизирующий жизненные процессы, множество азота и небольшое количество крайне необходимой смеси из углекислого газа, водяного пара и других парниковых газов. Именно здесь идет постоянная работа погодной машины: тепло и вода распределяются по всему земному шару. Самое важное – то, что воздух охлаждается по мере набора высоты. Уже этот фактор приводит к конвекции, адвекции и конденсации – основным инструментам образования облаков. Оно происходит на всех уровнях тропосферы: взаимодействие, смешивание, подъем вверх и растворение в океанах.
Состав облаков
Спросите группу пятилеток, из чего состоят облака, и минимум один из них выкрикнет: «Из пуха!» В общем, так они и выглядят. Однако белое вещество, которое плывет в воздухе, образовано миллиардами микроскопических облачных капелек, которые борются между собой за пространство. В итоге они сливаются воедино и становятся белым пушистым облаком.
Если оставить в покое пух, то вообще-то основные составные части облака – водяной пар и тепловая энергия. Под действием тепла воздух, наполненный водяным паром, переносится в более холодную среду посредством адвекции или конвекции, а затем конденсация преобразует водяной пар в мельчайшие водяные или ледяные капельки. Ядра конденсации, такие как соль и пыль, тоже служат ключевым компонентом образования облачных капелек. Мельчайшие конденсированные молекулы воды собираются воедино, примыкая к аэрозолям большего размера. Ядра конденсации имеют размер около одного микрона, а молекулы воды – примерно 0,0001 микрона. По мере того как к ядру конденсации прилипает все больше водяных молекул, начинают образовываться облачные капельки, каждая вокруг своей аэрозольной частицы. Легкость облачных капелек позволяет им оставаться во взвешенном состоянии и образовывать облако, пока продолжается приток водяного пара.
Процесс образования облаков
Конвекция – подъем воздуха при нагревании
Адвекция – горизонтальный перенос тепла с движением воздуха
Конденсация – охлаждение водяного пара (газа) и его преобразование в воду (жидкость)
Подъем и спуск – Солнце разогревает Землю с разной интенсивностью. Поток воздуха сначала поднимается, затем опускается, образуя зоны высокого (опускающийся воздух) и низкого (поднимающийся воздух) давления. Эти потоки воздуха переносят воду и тепло. Это идеальная энергетическая система, которая позволяет избежать экстремального холода и жары, сухости и влажности. Дождевые леса, пустыни, тундра, полярные шапки и покрытые зеленью средние широты существуют благодаря погодной системе Земли, которая обеспечивает планету яркой палитрой голубых, зеленых, белых, коричневых и всех остальных красок.
Парад облаков
Обычно на небе происходит следующий погодный сценарий: сначала движется теплый фронт (на метеорологических картах он обозначен красными полукружиями на красной линии), а за ним – холодный (синие треугольники на синей линии). Каждый этап этого процесса характеризуется своим типом облаков, которые могут подсказать наблюдателю, какой именно фронт движется сейчас на небе. Воздушные массы неодинаковы по плотности – холодные плотнее, теплые легче, – и они не просто сливаются воедино – более теплый воздух оказывается поверх более холодного. Изначально между ними есть отчетливые границы, но затем они начинают смешиваться. Это можно видеть по изменению структуры облаков. Сначала формируются слоистые облака, затем – очень нестабильные кучевые.
• Перистые облака – высокая вуаль, сквозь которую проходят солнечные лучи. Первоначально теплый воздух огибает области холодного воздуха, примерно как ветер, который огибает ледяную глыбу. Первое смешивание происходит в верхней части тропосферы, о чем говорят тянущиеся по небу перистые облака. Эти тонкие клочковатые облака состоят из ледяных кристаллов, они могут быть сигналом того, что облака будут и дальше затягивать небо, и вскоре пойдет дождь.
• Высокослоистые облака, заслоняющие Солнце, находятся на средней высоте. Теплый воздух медленно проникает внутрь холодной воздушной массы, и в небе протягивается вереница облаков. Высокослоистые облака не меняют погоду – это предшественники более низких облаков, которые впоследствии прольются дождем.
• Слоисто-дождевые облака: из названия следует, что это облака, которые состоят из нескольких слоев и вызывают дождь. На этом этапе толстый слой из облака и влаги начинает доминировать в атмосфере, поднимаясь снизу вверх. Это именно дождевые облака, они висят в небе тяжело и низко, следуют за более высокими облаками и свидетельствуют о наступлении дождливой погоды и плохой видимости: зафиксированный теплый воздух смешивается с нижними слоями атмосферы. Эту влажную умеренную зону мы именуем теплым сектором.
• Кучевые облака: когда слоисто-дождевые облака уходят, небо очищается, говоря о том, что теплые воздушные массы сменяются более холодным и чистым воздухом. На этом этапе воздух нестабилен, и в небе начинают формироваться кучевые облака. Они свидетельствуют о приходе холодного фронта или о возвращении холодного воздуха. Их форма значительно четче очерчена, именно присутствие этих обособленных облаков приводит к прогнозу «облачно с прояснениями». Когда кучевые облака становятся крупнее – от «плоских» до «средних» и «мощных», – могут пойти ливневые дожди. Начинает дуть шквальный ветер, меняющий направление по часовой стрелке – лишнее свидетельство перехода от теплого фронта к холодному. Кучевые облака не всегда образуются низко над землей – они могут формироваться и в верхней части тропосферы, где воздух столь же неустойчив. Такие облака называются высококучевыми, если они образуются в среднем слое тропосферы, и перисто-кучевыми – если формируются в самом верхнем ее слое.
Образование, развитие и движение этого семейства облаков прекрасно фиксируют спутниковые снимки. На них можно увидеть вихри, закручивающиеся к центру низкого давления и простирающиеся на сотни километров. На подобных изображениях легко распознать гладкие формы облачного слоя и неплотные неравномерные, все в мелких волнах узоры кучевых облаков, что тоже свидетельствует об изменениях воздушных масс.
Проще говоря, эти крупные погодные системы – результат противостояния различных воздушных масс. Представьте себе огромную массу холодного воздуха, направляющуюся на юг из ледяного северного царства, и массу теплого, наполненного тропической влагой воздуха, пробивающую себе путь на восток. В какой-то момент они сталкиваются над океаном – два огромных массива воздуха, каждый со своими характеристиками. Это битва севера и юга, холода и тепла, полюса и тропиков. Слоистые облака, возможно, не приводят в восхищение тех, кто фотографирует и рисует небо или просто любит на него смотреть, но их взаимодействие с кучевыми облаками в некотором отношении можно считать окончанием рассказа о развитии облаков. Их совместный марш по небу – это нечто мощное и необозримое. Это объединение двух крайностей – тропиков и полюсов. Низкое давление и связанные с ним системы погодных фронтов необходимы для перераспределения тепла и воды по земному шару. Каждое облако вносит свой вклад: от тонких перистых облаков – первого признака того, что воздушные массы начинают смешиваться и погода меняется – до самых мощных кучевых, появляющихся в арьергарде и знаменующих собой переход от дождя к ливню и более чистому и холодному воздуху.
В какой момент облака проливаются дождем?
Возможно, вопрос о том, как дождь удерживается в облаке, еще сложнее, чем вопрос о том, из чего состоят сами облака. Эти чудесные переносчики воды по небу буквально окружены вопросительными знаками.
Мы знаем, однако, что в результате столкновений между облачными капельками образуются более крупные капли. Этот процесс называется коалесценцией (слипанием). Еще немного столкновений – и облачные капли преобразуются в дождевые. Пока еще сила локальных потоков внутри облака, вопреки силе тяжести, удерживает капли во взвешенном состоянии, и от нее зависит, будет ли дождь, и в какой именно момент он начнется. Когда капли достигают определенной массы, они становятся слишком тяжелыми для восходящих потоков, после чего сила тяжести одерживает победу.
Почему кажется, что нижние кромки всех облаков находятся на одной высоте?
По мере набора высоты воздух охлаждается, а при охлаждении наступает пороговое состояние: водяной пар больше не может оставаться газообразным, он начинает конденсироваться с образованием облаков. Это называется уровнем конденсации кромки облаков. В этот момент воздух становится достаточно холодным, чтобы содержащаяся в нем влага начала формировать мельчайшие капельки жидкой воды, из которых, в свою очередь, образуются облака. Эта температура называется точкой росы и изменяется от местности к местности, но в одном районе воздух обычно имеет примерно одинаковые свойства, уровень конденсации тоже почти одинаков, так что облака в одном районе формируются примерно на одной высоте.
Сколько времени живут облака?
Облака живут, пока существуют достаточные внутренние потоки, чтобы поддерживать конвекцию, конденсацию и коалесценцию, и пока существует постоянный приток в облака тепла и водяного пара. Этот постоянный процесс – одна из причин, по которым все водяные капли не падают в одно и то же время. Еще одно соображение, которое нужно принять во внимание – смешивание с более сухим воздухом и испарение воды из облака. Облака могут нагреваться солнечными лучами и длинноволновым излучением поверхности Земли. Туман или слоистые облака, образующиеся прохладным утром, часто исчезают к восходу Солнца: кажется, будто оно «сжигает» облако, которое просто испаряется. Когда приток водяного пара ослабевает, облака уменьшаются и исчезают. У некоторых облаков это происходит, когда дневная температура падает на закате (теряется конвекция). У других – после смешивания двух разных масс воздуха с нейтрализацией их энергий (теряется адвекция).
Все дело в конвекции
Хотя невооруженным глазом заметить это трудно, воздух в солнечный день живет активной жизнью. Энергия солнечного света впитывается земной поверхностью. Часть ее отражается обратно в нижние слои атмосферы в виде инфракрасногоизлучения – тепла. Когда воздух становится теплее своего окружения, восходящие потоки теплого воздуха (лучшие друзья планеристов) медленно поднимаются вверх. Солнце продолжает прогревать поверхность, и температура нижних слоев воздуха продолжает расти. Этот процесс называется конвекцией и состоит в переносе тепла в такой среде, как воздух: более теплый воздух поднимается вверх и тем самым становится менее плотным, чем его окружение. Локальное восхождение тепла действительно важно, но самым важным топливом для облака, жизненно необходимым для его образования и развития, служит влага. Проходя над водой, воздух накапливает запасы водяного пара, притом, что интересно, чем выше температура, тем больше объем водяного пара, который может содержать в себе воздух. Когда горячий воздух восходит с поверхности и присоединяется на высоте к более холодному, завязка драматических событий заканчивается. Наблюдая за разыгрывающейся в небесах пьесой, метеорологи, любители следить за погодой и охотники за торнадо, нередко употребляют короткую и выразительную аббревиатуру – КДПЭ (САРЕ). Она расшифровывается как конвективная доступная потенциальная энергия (Convective Available Potential Energy) – это показатель количества энергии, доступного для формирования бури. Он говорит о том, насколько плотной будет буря, и насколько велика вероятность образования торнадо.
Как понять, что гроза близко?
Прогноз погоды может сообщать о вероятности гроз в течение дня, но нередко грозы так и не случаются. Хотя синоптики могут предсказать наличие подходящих атмосферных условий для формирования грозовых облаков и, соответственно, гроз, гораздо сложнее предсказать, где именно эти облака образуются. Вы словно следите за кукурузой, которая жарится на сковороде: условия идеальны для того, чтобы зерна кукурузы начали взрываться, но нет никакой возможности угадать, какое именно зерно и в какой части сковородки взорвется первым. В день, когда предсказаны грозы, можно по определенным признакам понять, затронет ли гроза именно вас.
Первое, что вы замечаете, – это образование кучевого облака, типичного летнего пушистого облака в небе. Если в атмосфере достаточно тепла и влажности, кучевые облака превращаются в мощнокучевые. Они становятся все более плотными и темными. На следующей стадии облака развиваются в грозовые. Если слышен гром, то вы понимаете, что гроза на подходе. Когда она приближается, иногда перед звуком грома видны молнии – чаще это происходит ночью, когда вспышки более заметны. Дело в том, что свет движется быстрее звука, так что, если гроза все еще находится на определенном расстоянии, вы увидите молнию раньше, чем до вас докатится звук грома.
Возможно, в детстве вы считали время между вспышкой молнии и звуком грома, чтобы понять, насколько близко подошла гроза. В целом это довольно хороший способ определения расстояния до грозы. Для более точных математических вычислений сосчитайте секунды, прошедшие от молнии до грома, и разделите это время на пять – вы получите мили[14]14
Одна сухопутная миля – 1,61 километра.
[Закрыть], которые отделяют вас от грозы. Разумеется, если за вспышкой молнии сразу же следует гром, то эпицентр грозы прямо над вами.
Все вышеописанное рассказывает о случаях, когда грозы формируются локально, но они могут образовываться и иными способами, и выглядит это более драматично. Во время «испанского шлейфа[15]15
Испанский шлейф – модель погоды, при котором шлейф теплого воздуха движется от Иберийского плато или Сахары до северо-запада Европы, где случаются сильные грозы. Эта метеорологическая картина может привести к экстремально высоким температурам и интенсивным дождям в летние месяцы, наводнениям, разрушительным градам, штормам и торнадо.
[Закрыть]» теплый влажный воздух движется с Кастильского плоскогорья на север, через Францию к Великобритании. Если это происходит в то же время, когда прохладный воздух Атлантики проходит Великобританией с запада, в атмосфере создается значительная нестабильность. Воздух с поверхности легко поднимается в атмосферу, образуя грозовые облака. Предсказать подобные события можно по наличию в небе так называемых башенковидных облаков, которые метеорологи порой любовно называют «медузами». В слове «любовно» нет иронии: это довольно красивые облака, которые закручиваются высоко в небе завитками и спиралями – зрелище не самое частое. Это верный признак того, что в средних слоях атмосферы наступает нестабильность, и если нижняя часть атмосферы тоже становится нестабильной из-за повышения температуры у поверхности, то это может привести к быстрой дестабилизации всей атмосферы и образованию мрачно нависающих грозовых туч.
Некоторые утверждают, что могут почуять наступление грозы. И это довольно странно: когда Саймон работал метеорологом на военных базах, он проводил довольно много времени снаружи, глядя в небо и наблюдая за погодой. И он определенно уверен, что мог «почуять», когда начнется гроза (впрочем, у него было преимущество в виде других собранных данных). Однако мнение науки по поводу такого чутья довольно неоднозначно, и хотя некоторые исследователи верят, что в нашем организме при наступлении грозы что-то происходит, большая часть вопросов пока не получили ответа. Существующие теории указывают на сильное падение давления перед грозой, на что реагируют жидкости нашего организма – особенно у тех, кто страдает артритом. Если у вас достаточно чувствительное обоняние, то приближение грозы можно и унюхать. В разделе о том, чем пахнет дождь, вы узнали, что запах дождя называется петрикором. Иногда этот запах может разноситься порывистыми ветрами на многие километры задолго до дождя. При увеличении электрической активности грозы и ударах молнии образуется озон. Это слово происходит от латинского[16]16
На самом деле древнегреческого. – Прим. пер.
[Закрыть] слова со значением «пахнуть» – и действительно, этот газ обладает отчетливым запахом, который знаком нам по работающему ксероксу. Чем больше озона вырабатывается и разносится по ветру перед грозой, тем больше вероятность почувствовать ее приближение собственным носом.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?