Электронная библиотека » Скотт Бембенек » » онлайн чтение - страница 6


  • Текст добавлен: 13 января 2020, 11:00


Автор книги: Скотт Бембенек


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

«Я был болен в течение долгого времени, и болезнь протекала тяжело. У меня было воспаление легких, сопровождаемое скарлатиной. (Возможно, ты знаешь, какая это ужасная болезнь.) Я должен был оставаться в постели двенадцать дней, без сна или еды, не имея возможности заняться хоть чем-то…»

Скарлатина в конечном счете распространилась на его мозг, после чего в августе он заразился холерой и умер через несколько часов. Ему было только тридцать шесть лет. Как это всегда было с жертвами холеры, его одежда, его личные вещи и почти все его бумаги были сожжены. Из уцелевших бумаг можно увидеть, что Карно начинал понимать ошибочность тепловой теории, поскольку осознал ее неотъемлемые вызовы в свете работ Румфорда (мы частично обсуждали их в части 1).

В 1834 году Эмиль Клапейрон (1799–1864), бывший одноклассник Карно, опубликовал его работу в «Журнале Политехнической школы» (Journal de l’École). Публикация, в которой работу Карно изложили с четкими и понятными математическими формулами и рисунками обратимого теплового двигателя Карно (его модель все еще преподают сегодня в каждой хорошей школе на уроках химии), наконец впервые за 10 лет привлекла к работе Карно внимание инженеров, химиков и физиков. Версия Клапейрона была самой известной среди ученых того времени, включая Уильяма Томсона[52]52
  Очевидно, Томсон безуспешно искал в парижских книжных магазинах копию оригинальной работы Карно.


[Закрыть]
, недавнего выпускника Кембриджа, и молодого немецкого студента Университета Халле, Рудольфа Клаузиуса (1822–1888).

Карно учился в Политехнической школе, где был окружен известными физиками, химиками и математиками. Тем не менее он никогда не был выдающимся учеником, и его важную работу никто не отметил. Независимо от этого, вклад Карно в знание о термодинамике неоспорим и делает его одним из величайших исследователей в этой области.

Глава 6
Рассеивание
Взаимоотношения тепла и работы

Открытие первого начала около 1850 года дало ясное объяснение способности энергии переходить из одной формы в другую, не возникая из ниоткуда и не исчезая окончательно. Таким образом, энергия всегда сохраняется. Это утверждение было основано на вере в то, что природа старается объединить кажущиеся разными части одной сущности[53]53
  Объединение по каким-либо признакам тех или иных природных явлений всегда было важнейшей темой в науке. Физика долгое время пыталась объединить четыре фундаментальных вида взаимодействия силы: электромагнетизм, сильное ядерное взаимодействие, слабое ядерное взаимодействие, а также силу гравитации. Объединение электрических и магнитных сил привело к появлению понятия электромагнетизма, а последующее объединение электромагнетизма со слабым взаимодействием – к электрослабому воздействию.


[Закрыть]
, и стало результатом грандиозных усилий множества ученых из разных стран. В процессе этих исследований было установлено еще несколько фактов.

Большинство ученых теперь считало тепло движением фундаментальных частиц, из которых состоит все вещество (позже мы их назовем атомами и молекулами). Это был грандиозный шаг вперед – к пониманию не только тепла, но и сущности вещества. Пытаясь разобраться с природой энергии и тепла, мы многое узнали о веществе. Эксперименты Джоуля доказали большинству людей, что определенное количество работы произведет соответствующее количество теплоты. Более того, Джоуль доказал, что то же самое количество теплоты произведет эквивалентное количество работы; тепло может быть использовано для производства работы. Близились к концу те дни, когда тепло считалось невесомой «текучей жидкостью», которая, согласно теплородной теории, всегда сохраняется.

Проблема тепла и работы

Талант Уильяма Томсона проявился во многих сферах: в физике, инженерном деле, преподавании и даже в политике. У него был особый дар – находить правильные решения, особенно в математике. К моменту окончания своего обучения в Кембридже он уже опубликовал 12 работ по чистой и прикладной математике. В течение всей своей жизни он усердно трудился и издавал различные научные работы. В период с 1841 по 1908 год он ежегодно публиковал по крайней мере два труда, а иногда до двадцати пяти. В целом он написал 661 работу и получил патенты на 69 изобретений.

Всего в 16 лет Томсон прочитал «Аналитическую теорию тепла» Жозефа Фурье (1768–1830), опубликованную в 1822 году. Когда мы изучали тепловой двигатель Карно, мы говорили, что тепло переходит из нагревателя в холодильник. В теории Фурье тепло проходит через объект (постепенно) благодаря разнице (градиенту) температур в этом объекте; в каком-то смысле у объекта есть участки с нагревателем и холодильником.

Но теория Фурье полностью игнорирует физическую природу тепла, фокусируясь в первую очередь на особенностях его «поведения». Будь это теплород или движение частиц вещества, причины возникновения тепла Фурье в своей теории не рассматривал[54]54
  Теория, подобная теории Фурье, в которой учитывается поведение рассматриваемого объекта (тепла), но при этом остаются вопросы о причинах этого поведения, известна как феноменологическая теория.


[Закрыть]
.

Итоговое уравнение, выведенное Фурье (точнее – дифференциальное уравнение), точно выражало его мысль: оно правильно описывало наблюдаемое «поведение» тепла, которым управляли фундаментальные законы природы, но без деталей в отношении того, что вызывало такое поведение. Красота этого подхода[55]55
  Мы уже знакомы с этим подходом – мы встречали его, когда исследовали обратимый тепловой двигатель Карно. Вспомните, что Карно устранил основные детали из своей модели теплового двигателя, такие как рабочее тело, механическую конструкцию и материалы, используемые в строительстве. Подход такого типа часто используется в физике.


[Закрыть]
в том, что он позволяет двигаться вперед, хотя еще не все детали пазла встали на свои места, так сказать. Фурье так описывал свою задачу:

«Основополагающие причины нам неизвестны; но они являются предметом простых и постоянных законов, которые могут быть открыты путем наблюдения, а их изучение – объект натуралистической философии.

Тепло, как и гравитация, проникает во все уголки Вселенной, и его лучи пронизывают все в пространстве. Цель нашей работы – выявить математические законы, которым подчиняются эти элементы. Теория тепла сформирует один из самых важных разделов общей физики».

Конечно, тепловые теории Фурье и Карно ощутимо отличаются. Карно учил нас думать о тепле (о теплороде, как он его называл) как о водопаде, движущемся от высокой температуры к низкой, что позволяет производить работу. Фурье просто говорил, что, независимо от того, чем является тепло, его природа такова, что оно распространяется по объекту в результате мельчайших температурных отличий. И ничего не сообщал о возможности тепла производить работу, о чем говорил Карно; даже фактически утверждал, что в этом процессе какая-либо работа не требуется.

Все это тревожило Томсона. С одной стороны, была теплородная теория Карно с ее обратимым тепловым двигателем, который совершал работу за счет разницы температур. С другой стороны, теория Фурье утверждала, что тепло может переходить из горячего в холодный резервуар, не совершая вообще никакой работы. Безусловно, каждую из этих теорий подтверждали экспериментальные наблюдения, и обе, казалось, были верны. Однако для Томсона их отличие было явным, и он понимал, что нечто, должно быть, упускает, сравнивая теории Карно и Фурье. Тем не менее Томсон не мог найти какие-либо несоответствия между этими двумя теориями. И, как будто этой путаницы Томсону было недостаточно, сложности вскоре усугубились.

В 1847 году на встрече Британской ассоциации для продвижения науки Томсон знакомится с Джоулем. Джоуль выступал с докладом о своих исследованиях механического эквивалента тепла, объясняя, что данный объем работы произведет данное количество тепла (мы частично обсуждали это в части 1). Кроме того, Джоуль был убежден, что это преобразование может происходить в обратном порядке: данное количество тепла может произвести данный объем работы, как в тепловом двигателе. Теперь перед Томсоном возникли уже три теории: обратимый тепловой двигатель Карно, теплопроводность Фурье, «не выполняющая работу», и преобразование тепла в работу Джоуля («тепловой эквивалент работы»).

Томсона взволновало заявление Джоуля, что тепловой двигатель преобразует тепло в работу. Вспомните заявление Карно, что можно произвести работу при помощи теплового двигателя в результате «падения» температуры. В представлении Карно, тепло не используется для выполнения работы; при помощи определенного количества тепла производится работа, после чего то же самое количество тепла возвращается в окружающую среду; нет никакого преобразования тепла в работу. Карно был убежден, что работа производится именно так, и, будучи сторонником теплородной теории, считал, что это тепло было ранее «законсервировано». Хотя Томсон уже был готов отказаться от части теплородной теории – той части, которая описывала тепло как множество частиц, перемещающихся как неуловимая жидкость, – он не был готов отказаться от теплородной теории в целом. Карно вывел идею теплового сохранения, основываясь на теплородной теории, и Томсон также не видел оснований, чтобы немедленно и полностью отказаться от нее.

Томсон чувствовал, что идеи Джоуля также противоречили теории теплопроводности Фурье. Эксперименты Джоуля продемонстрировали, что работу можно преобразовать в тепло. Далее Джоуль заявил, что, согласно его исследованиям, тепло можно преобразовать в работу. Однако теория Фурье правильно описывала теплопроводность, поскольку тепло свободно проходит через те или иные объекты. Томсон задался вопросом о «полезной мощности», которую Джоуль наблюдал в своих экспериментах. По мнению Томсона, этот эффект как будто бы был потерян.

В 1849 году Томсон опубликовал одну из первых работ о теории тепла и показал, что никакая полезная мощность не наблюдается, когда тепло свободно проходит (проводится) через твердый объект:

«Когда “тепловая сила” тратится, проходя через твердое тело и создавая тепло, что происходит с механическим эффектом, который это тепло могло произвести? В природе ничто не исчезает бесследно – никакая энергия[56]56
  Использование Томсоном слова «энергия» было первым шагом к пониманию его значения в сегодняшнем смысле. Это было важным событием, потому что у понятия энергии была долгая история, в которой ее часто использовали крайне двусмысленно (и неправильно), часто наравне со словом «сила».


[Закрыть]
не может быть уничтожена. Какое воздействие происходит вместо механического эффекта? Тепловая теория требует ответа на этот вопрос; но современная наука не может дать на него ответ».

В то время как Томсон ясно определял фундаментальные проблемы понимания тепла и работы, он пока не мог дать на них ответов. Даже обращение к экспериментам не приносило, казалось бы, никаких результатов. Однако ответы были практически у него под носом.

Работа, полученная из тепла: Джоуль против Карно

В 1847 году Томсон пытался соотнести тепловой двигатель Карно, который работал при условии сохранения тепла (количество теплоты, покинувшее горячий резервуар, всегда равняется количеству теплоты, перешедшему в холодный резервуар) и выполнение работы с механическим эквивалентом тепла Джоуля, которое требовало поглощения тепла для производства работы тепловым двигателем. Тем не менее Джоуль и Карно были единогласны в том, что тепловой двигатель мог преобразовывать тепло в работу. Однако их точки зрения на то, что в это время происходило с теплом, отличались. Будучи сторонником теплородной теории, Карно считал, что тепло сохраняется, в то время как Джоуль думал строго наоборот, а именно – что тепло превращается в работу и таким образом исчезает, а не сохраняется в процессе работы. Подобно Карно, Томсон тогда был не готов отказаться от мысли о том, что тепло сохраняется.

В 1824 году Карно открыл обратимый (идеальный) тепловой двигатель и, основываясь на этом, получил много новых сведений. Безусловно, Карно был первооткрывателем, который использовал оригинальную математическую модель. Ее результатом стали удивительные открытия, хотя они и основывались на ошибочной теплородной теории. Однако в 1850 году изменилось общее направление термодинамики, и дни теплородной теории были сочтены, поскольку было открыто первое начало, гласившее, что энергия – нечто большее, чем просто тепло, и она сохраняется, – что нашло отражение в работах Майера, Джоуля и Гельмгольца. Отчасти именно это позволило Рудольфу Клаузиусу разрешить противоречия между тепловыми теориями Карно и Джоуля.

Клаузиус родился в 1822 году в Кёслине, Пруссия (ныне Кошалин, Польша), и был младшим из 18 детей. Он получил начальное образование в маленькой частной школе, директором которой был его отец. Изначально он интересовался историей, но позже получил степень кандидата наук по математической физике в Университете Галле в 1847 году. Он интересовался электричеством и магнетизмом и даже разрабатывал, ссылаясь на Уильямсона, теорию о заряженных атомах в растворах (электролитах), которую часто называют теорией Уильямсона – Клаузиуса (что кажется несправедливым, учитывая, что Уильямсон никогда не рассматривал подобные типы растворов). Он также сделал вклад в кинетическую теорию, введя понятие средней длины свободного пробега – среднего расстояния, которое проходит частица (молекула или атом) при свободном движении в жидкости, прежде чем «столкнуться» с другой частицей. Однако его самые значимые работы касаются именно термодинамики, а именно теоретических аспектов механического эквивалента тепла, первого начала и открытия энтропии (несомненно, его ключевой труд)[57]57
  Большую часть работы Клазиус написал до 1870 года, в котором произошли два, вероятно, главных события в его жизни. В 1870 году, во время Франко-прусской войны, когда он служил в корпусе медиков, его сильно ранили в колено, и всю жизнь он страдал от боли из-за этой травмы. Кроме того, его жена трагически умерла при родах, и он принял на себя ответственность за воспитание шести маленьких детей. Позже, когда ему уже было около шестидесяти, он женился снова.


[Закрыть]
.

В 1850 году Клаузиус опубликовал мемуары, в которых он «примирил» работы Джоуля и Карно. Не имея возможности найти оригинал работы Карно, Клаузиус, как и Томсон, изучал теорию Карно по статье Клапейрона, опубликованной через два года после смерти Карно. И Карно, и Клапейрон ошибочно полагались на теплородную теорию, согласно которой тепло не пропадает, что препятствует его поглощению тепловым двигателем во время производства работы. Они считали, что работа производится при «падении» температуры с высокой к низкой, и количество тепла никогда не меняется.

Клаузиус рассматривал тепло с точки зрения двух фундаментальных процессов: проводимости и преобразования. В случае с тепловым двигателем Клаузиус полагал, что часть тепла, покидающая нагреватель, преобразовывалась в работу, в то время как оставшаяся (не используемая для работы) свободно переходила из нагревателя в холодильник; это количество теплоты и есть результат работы двигателя.

Клаузиус считал, что эксперименты Джоуля совершенно четко установили соотношение между теплом и работой. Более того, он утверждал, что «основополагающий принцип» теории Карно заключался в том, что тепло переходит от высокой температуры к низкой, за счет чего производится работа. Поэтому вместо того, чтобы выбирать из двух теорий верную, Клаузиус вывел из них одну, более цельную. Вот что он говорил по этому поводу:

«Похоже, что, когда речь идет о работе, обе теории могут быть верны; определенное количество теплоты может быть поглощено, а другая его часть передана от теплого тела холодному; и та, и другая части могут так или иначе влиять на количество производимой работы».

К 1850 году Томсон начал приходить к тем же выводам, что и Клаузиус. Он наконец-то отказался от теплородной теории и ее основного принципа сохранения тепла, таким образом начиная признавать, что тепло может быть преобразовано в работу, как утверждал Джоуль. Это позволило Томсону, как и Клаузиусу, сходным образом объединить теории Карно и Джоуля. К своему облегчению, Томсон обнаружил, что исключение сохранения тепла из теории Карно сохраняет математические уравнения, которые он вывел изначально. В 1851 году, через год после работы Клаузиуса, Томсон опубликовал «Динамическую теорию тепла», где он совмещает теории Карно и Джоуля, признавая, что первым это сделал Клаузиус.

Энергия, работа и тепло

Основным вкладом Томсона в Динамическую теорию тепла, возможно, было его исследование энергии системы. Он снял акцент с тепла и работы, на котором фокусировался Карно, а вслед за ним – и Джоуль с Клаузиусом, и вместо этого переместил его на энергию.

Томсон определил энергию как неотъемлемое свойство системы; все системы изначально обладают энергией. Кроме того, он заявил, что энергия системы может измениться только через взаимодействия с ее окружением. Поэтому, если система полностью изолирована от своей среды, ее энергия не может измениться, она сохраняется.

Заметьте, что это утверждение не учитывает того, что содержит система; и при этом оно не учитывает того, что происходит внутри нее, поскольку это не имеет значения. Пока система изолирована от окружения, в природе не найдется силы, чтобы как-то изменить ее; энергия всегда будет сохраняться. Это действительно очень сильное заявление. Это освободило Томсона от необходимости размышлять о природе вещества внутри системы[58]58
  Как мы узнали из первой части, природа материи затрудняла понимание энергии, в частности тепла. Когда Томсон написал «Динамическую теорию тепла» в 1850 году, многие исследователи, такие как Джоуль, Майер, Гельмгольц и Клаузиус, начинали принимать тот факт, что материя состоит из меньших частиц (которые мы сегодня называем атомами), но никто из них не был готов свести это воедино, подкрепив теоретическими формулировками.


[Закрыть]
.

Из части 1 мы узнали о различных системах, а именно – о тех, которые изучал Галилео (например, шар, катящийся по наклонной плоскости). Тогда мы не говорили о том, что же на самом деле составляет систему и среду. Поэтому давайте проясним это теперь.

Под изолированной системой мы подразумеваем такую систему, в которую ничто не может вмешаться и из которой ничто не может выйти: внутри такой системы не могут производиться ни тепло, ни работа – и на такую систему ими нельзя воздействовать. Представьте себе наклонную плоскость с шаром наверху, готовым скатиться вниз при небольшом толчке. Теперь возьмем наклонную плоскость, шар и меня – и поместим все это внутрь здания. Как только все будет внутри, дверь закрывается с внешней стороны. Наша система состоит из всего, что есть в здании. Очевидно, никакое вещество не может покинуть здание или проникнуть в него[59]59
  Для полноты картины предположите, что воздух не может покинуть здание или войти в него; как видите, я хорошо все продумал.


[Закрыть]
. Далее предположите, что стены были полностью изолированы таким образом, чтобы никакое тепло не могло попасть внутрь или наружу. Таким образом мы гарантируем, что ни тепло, ни какой-либо объект не смогут войти в нашу систему или покинуть ее.

Что же насчет работы? В части 1 мы выяснили, что работа производится благодаря приложению сил к объекту, чтобы переместить его на определенное расстояние[60]60
  Здесь мы говорили о работе с точки зрения теплового двигателя, который преобразовывает тепло в работу. Обратите внимание, что здесь мы все еще применяем наше оригинальное определение работы. В тепловом двигателе рабочее тело поглощает тепло, которое заставляет его расширяться. В результате этого рабочее тело воздействует на объект, таким образом заставляя его отодвинуться на определенное расстояние; рабочее тело действует на объект с силой, чтобы переместить его.


[Закрыть]
. Если какая-либо внешняя сила получала бы энергию из-за пределов системы, из окружения, тогда, возможно, она могла бы воздействовать на нашу систему. Например, если бы шар, находящийся на вершине наклонной плоскости, был сделан из магнитного материала вроде железа, сильное магнитное поле, воздействующее на него из-за пределов системы, заставило бы шар прийти в движение и скатиться вниз по наклонной плоскости. В этом случае окружающая среда проделала бы работу с системой.

Кроме того, в сходном сценарии вы можете вообразить силу внутри системы (в здании), которая бы произвела работу, меняя окружающую среду; в этом случае мы скажем, что работа была произведена системой над окружением. Однако мы исключили эту возможность и поместили нашу систему (наклонную плоскость, шар и меня) в границы здания, полностью изолировав ее от окружения. Согласно Томсону, энергия системы должна теперь быть сохранена независимо от того, что происходит внутри. Давайте проверим эту идею.

Я толкну шар, заставляя его катиться по наклонной плоскости. Толчок передал шару определенный объем моей собственной энергии. Шар, катящийся вниз, изменяет свою потенциальную энергию на кинетическую. Шар катится по наклонной плоскости и, коснувшись поверхности, останавливается, но только после того, как он передаст всю свою кинетическую энергию этой поверхности. И хотя все это происходит внутри системы, «потери» энергии – например, когда я толкнул шар; потенциальная энергия, которую потерял шар при движении; кинетическая энергия, которую он потерял при остановке, – равняются ее приросту. Прирост складывается из энергии, которую шар получает при стартовом толчке; кинетической энергии шара в движении; кинетической энергии, полученной поверхностью от катящегося по наклонной плоскости шара, пока он не остановился.

Энергия всего лишь передается от одного объекта другому, в то время как ее общее количество остается прежним. Однако если мы снимем все эти ограничения, картина изменится. Предположим, что тепло может проникать сквозь стены. Далее мы позволим, чтобы работа проводилась на системе или самой системой таким способом, как было описано ранее. Теперь, когда система взаимодействует со своей средой через нагревание и работу, ее энергия изменится[61]61
  Важно понять, что мы не должны знать точный принцип, по которому происходит нагревание или работа, чтобы определить энергетическое изменение системы. Мы просто должны определить количество тепла или работы, которые приобретает или теряет система. Детали того, что продолжает происходить в границах системы не важны, пока мы не определим это количество.


[Закрыть]
. Еще раз, слепая приверженность формулам освобождает нас от точных деталей системы, у нас есть очень мощный инструмент, применимый к большому разнообразию систем.

Например, рассмотрим стакан воды с крышкой (благодаря которой молекулы воды не могут испаряться). Стакан и крышка формируют границы системы, и молекулы воды остаются внутри. Если стакан воды пришел в равновесие, теперь он сохраняет комнатную температуру, не теряя и не получая тепло, – помните, чтобы тепло могло переходить из одной области в другую (из горячей в холодную), необходима разница температур. Более того, если оно просто находится там, никакая работа не будет производиться[62]62
  Если бы вы, например, должны были размешать воду, для этого вы бы производили работу. Процесс помешивания изменит энергию, добавляя в воду кинетическую энергию.


[Закрыть]
. Другими словами, наш стакан воды становится изолированной системой, и мы предполагаем, что, как и в других системах, энергия внутри него будет неизменна.

Теперь, однако, у нас нет способа провести подробный анализ процессов, происходящих внутри. В конце концов, мы даже не можем видеть молекулы воды. Безусловно, молекулы воды обмениваются энергией, поскольку они врезаются друг в друга, все время сохраняя энергию, и «потери» и «прибыли» отлично уравновешивают друг друга.

Подобно Томсону, Клаузиус также признавал «энергетическую концепцию». Однако, когда в 1850 году он издал свою работу – чуть раньше Томсона, – ее физическое описание было неполным, и он просто не понимал главных идей так же хорошо, как Томсон. Таким образом, даже при том, что Клаузиус опередил Томсона почти на год, описание энергии системы и ее изменений при взаимодействиях с окружением у Томсона было намного более полным. Томсон первоначально назвал энергию системы механической энергией, но позже, в 1856 году, он выбрал более подходящее имя – действительная энергия. Позднее Гельмгольц назовет это внутренней энергией[63]63
  Внутренняя энергия (как считается сегодня) относится к кинетической и потенциальной энергии молекул, составляющих интересующую нас систему. Среднее значение их количеств и есть то, что мы называем внутренней энергией системы. Чтобы лучше понять, почему мы берем именно среднее значение, давайте еще раз рассмотрим наш стакан воды как систему. Стакан воды состоит из множества отдельных молекул воды, которые движутся при комнатной температуре. Мы не увидим этого невооруженным глазом, но можем проверить при помощи эксперимента. Поскольку молекулы перемещаются в стакане воды, их потенциальная энергия и кинетическая энергия изменятся, а общая энергия – нет, если система, как упоминалось, является закрытой. Но так как потенциальная и кинетическая энергии молекул со временем постоянно изменяются за счет их движения, то для определения внутренней энергии важно именно среднее значение (за некоторое время).


[Закрыть]
.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации