Электронная библиотека » Татьяна Черниговская » » онлайн чтение - страница 7


  • Текст добавлен: 19 апреля 2022, 00:48


Автор книги: Татьяна Черниговская


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 36 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

Существенное значение имеют работы по моделированию звукопроизводящего аппарата ископаемых антропоидов и синтезированию звуков, которые могли быть этим аппаратом произнесены; важно также сопоставление этих данных с общим когнитивным уровнем древних людей и данными антропологии о развитии определенных зон мозга [Lieberman, 1976; Бунак, 1980; Wind, 1976; Leiner, Leiner, 1991]. Полезная для обсуждаемой темы информация содержится в работах по нейролингвистике, касающихся языковых функций в связи с механизмами работы мозга [Прибрам, 1975; Лурия, 1979; Балонов, Деглин, Черниговская, 1985; Chernigovskaya, 1992].

Термины биологической эволюции в последнее время пытаются приложить к развитию языка: говорят о педоморфизме, неотении, рекапитуляции, гибридизации языков, моногенезе и полигенезе и т. д. Наиболее существенным вкладом в этот аспект проблемы являются работы Бишакджана [Bichakjian, 1988, 1991]. В этой статье будут кратко рассмотрены лишь сведения по эволюции языка на примере наиболее изученных – индоевропейских.

Как отмечалось выше, интерес представляет сопоставление естественных и искусственных языков. Языки программирования, в отличие от естественных, предназначены для общения между человеком и вычислительной машиной. По сравнению с физиологическими системами эволюция языков программирования очень коротка по времени и берет свое начало с конца 1950-х годов. Теоретическую основу языков программирования составляет концепция Хомского о формальных грамматических структурах. В данной работе остановимся только на языке BASIC [Кетков, 1988], который на начальном этапе своего развития почти не признавался профессионалами – программистами и считался языком для начинающих. Расцвет языка BASIC связан с широким распространением персональных компьютеров. Современные версии BASIC почти достигли возможностей языков высокого уровня, как PL-1, PASCAL, СИ, что делает рассмотрение эволюции этого языка особенно интересным.

В языке программирования как в эволюционирующей функциональной системе можно выделить следующие структурные уровни: идентификатор, оператор, процедура и программа. Простейший элемент языка – символ – выделять в качестве эволюционирующей единицы нет смысла, так как набор символов практически не меняется и больше связан с устройствами ввода-вывода, чем с конструкцией языка программирования. Идентификатор, точнее, имя идентификатора [Баррон, 1980] – это уже название некоторого объекта, связанного ссылкой с некоторой областью памяти вычислительной машины. Оператор уже способен к некоторой элементарной переработке информации. Например, простейший оператор присваивания пересылает значение некоторого объекта в новую область памяти и придает ему новое имя. Следующий структурный уровень – процедура, которая способна к выполнению достаточно сложных действий и обладает определенной степенью замкнутости и автономности. Программа целиком служит для выполнения какой-то определенной вычислительной или информационной задачи.

Аналогия между гомеостатической системой и программой на языке BASIC заключается в том, что идентификаторы подобно специализированным клеткам являются элементами функциональной системы, способными к выполнению элементарных действий, но не функций всей системы. Следующий уровень – нефрон и оператор уже способны к выполнению определенных преобразований вещества или информации. Орган, например почка, как и процедура, обладает определенной морфологической и функциональной обособленностью и автономией.

В ходе дальнейшего изложения будут рассмотрены принципы эволюции функций, характерных для всех четырех уровней раздельно для каждой из трех анализируемых нами систем.

* * *
Эволюция функций на клеточном уровне

Выделительные органы у Metazoa состоят из специализированных клеток, которые в разной степени способны к ультрафильтрации веществ из крови или внеклеточной жидкости; клетка этих органов осуществляет обратное всасывание профильтровавшихся веществ, секретирует ряд веществ из крови в просвет канальца, осуществляет синтез новых соединений, необходимых для более эффективного удаления веществ из организма; почки участвуют также в осуществлении инкреторной, эндокринной функции. Выполнение клетками всех перечисленных функций, очевидно, связано с необходимостью направленного транспорта веществ (в самой общей форме из крови в мочу или из канальцевой жидкости в кровь), с секрецией веществ из клетки в кровь или мочу. Первичным актом в происхождении выделительного органа была специализация исходных клеток, основанная на возникновении полярной, асимметричной клетки, способной к направленному транспорту веществ. Это было связано с формированием разных свойств апикальной и базальной плазматических мембран, распределением в одной из них преимущественно ионных каналов, в другой – ионных насосов, рецепторов для гормонов и медиаторов, с изменением расположения внутри клетки митохондрий [Наточин, 1976]. Следовательно, в основе эволюции клетки выделительного органа лежит образование асимметричной клетки, то есть специализация клетки.

В основе эволюции функций почки позвоночных, особенно у эндотермных по сравнению с эктотермными, лежит увеличение энерготрат, энергетического обмена, кровотока. Это находит отражение в увеличении интенсивности процессов транспорта веществ в клетке, усилении трансцеллюлярных транспортных потоков.

В конечном счете важным принципом эволюции функций клетки служит интенсификация ее функций, что находит отражение в увеличении числа митохондрий, повышении потребления кислорода, большей активности ферментов окислительного метаболизма и т. п.

При сопоставлении в гомологичном ряду нефронов почки у представителей различных классов позвоночных от миксин до млекопитающих очевидно возрастание числа морфологически и функционально различных типов клеток, иначе говоря, эволюция функций связана с дифференцировкой клеток нефрона. Это может быть связано с упрощением ряда функций клетки, повышением (или утратой) только отдельных форм исходной активности клетки, например способности к всасыванию аминокислот, моносахаров.

Эволюция функций клетки сопровождается увеличением ее способности воспринимать и реагировать на внешние воздействия, точнее выполнять свои функции в организме. Это находит отражение в возрастании количества специфических рецепторов для разного типа гормонов и медиаторов и систем внутриклеточной реализации сигналов.

Эволюция функций клеток в целостной системе связана не только с эффективностью дистантно действующих регуляторов (гормонов, медиаторов), но и с межклеточными взаимодействиями, что сопровождается специализацией зон клеточных контактов. Изменение характера проницаемости стенки нефрона для отдельных типов ионов, например С1 в начальной и конечной частях проксимального сегмента, осмотической проницаемости разных участков дистального сегмента и собирательных трубок сыграло важную роль в эволюции почки и формировании системы осмотического концентрирования мочи.

Эволюция функций фонемы

Фонема – это минимальная звуковая единица языка, дающая возможность различать значения разных слов и морфем.

Звуковая система протоязыка содержала очень мало гласных звуков; наиболее часто встречался звук «e», реже «a», еще реже «i» и «u». Существовали ларингальные h-подобные звуки, позднее отпавшие (олигомеризация, регресс звуков, регресс фонем), и развитие языка привело к увеличению числа гласных звуков «i», «e», «a», «o», «u», организованных в два подкласса – долгие и краткие (полимеризация и смена качества).

Впоследствии возникают разные варианты произношения того же кардинального, как это принято называть, набора гласных с тенденцией к все большей дифференциации – назальные, среднего, переднего ряда и т. д. Об этой же черте говорит и отход от «сложных», «грязных» звуков с тенденцией к формированию «простых» звуков, более четко артикулируемых, к избавлению от коартикуляций. Это хорошо видно на примере согласных звуков, развитие которых шло от комплексных, смешанных к «разнообразию отдельных», покрывающему все пространство возможных артикуляций – от смычных до фрикативов. Несомненно, происходит нарастание интенсификации функций фонем, специализации типов контактов и увеличение числа форм функционирования. Это находит выражение в разрешении сочетания с определенными звуками и запрете на сочетания с другими, что ярко проявляется при сопоставлении разных языков.

Изменение гласных приводило и к изменению качества соседних согласных звуков, например их озвончению или оглушению. Такая черта, как олигомеризация, может быть отмечена на примере слияния индоевропейских звуков «c», «o», «a» разных тембров в единое санскритское «a». Регресс проявляется и в исчезновении глоттализации, в деградации или замене другими звуками, например фрикативными, – аспирации. Можно отметить деление «двойного» звука на два разных класса: например, лабиовелярные звуки в процессе эволюции исчезают, заменяясь на лабиальные и велярные. Один и тот же новый тип звука мог иметь разное происхождение: например, глухие придыхательные согласные в санскрите могли иметь истоком либо глухие непридыхательные плюс «h», либо звонкие придыхательные согласные. Долгий гласный звук в санскрите в качестве предшественника имел в индоевропейском краткий согласный плюс «h» (пример замещения функций).

Итак, общая тенденция развития звуков речи направлена в сторону все большей дифференциации фонем.

Эволюция идентификаторов

Изменение формы идентификаторов в языке BASIC, начиная с первой версии, появившейся в 1964 году, происходило по пути как увеличения числа символов (в первоначальном варианте языка только одна буква и одна цифра, в дальнейшем почти без ограничений), так и появления специальных символов на конце идентификатора (%, $,! #), обозначающих тип переменной. В этом легко заметить аналог специализации клетки.

Интенсификация функционирования идентификаторов связана с переходом языка BASIC от режима интерпретации к режиму трансляции, при этом вместо поиска соответствия между идентификатором и ячейкой памяти, где хранится переменная, каждый раз при обращении к данному идентификатору в программе этот поиск осуществляется только один раз в начале работы программы, что заметно ускоряет ее работу.

Полимеризация объектов, описываемых идентификаторами, выражается в появлении одномерных и многомерных массивов, а также в появлении переменной, задаваемой пользователем.

Идентификатор в процессе эволюции языка начал расширять свои функции, появились идентификаторы меток, процедур, графического примитива и музыкальной фразы, тем самым происходит дифференциация идентификаторов.

Специализация символов, образующих идентификатор, заключается в использовании первого символа в качестве описателя типа величины. Это свойство особенно характерно для языка FORTRAN-IV. В современных версиях BASIC допускается произвольная спецификация типа пользователем по первому символу (DEFINT, DEFSNG, DEFSTR). Это аналогично возрастанию специфических рецепторов, если использовать физиологическую терминологию.

* * *
Эволюция функций нефронов

Нефрон является основной морфофункциональной единицей почки. В каждой почке у человека их около одного миллиона. Однако это не означает, что все нефроны одинаковы. В почке у млекопитающих различают до восьми популяций, групп нефронов (суперфициальные, интракортикальные, юкстамедуллярные). Возрастание гетерогенности нефронов может рассматриваться как одна из черт эволюции функций, в почке у низших позвоночных нет такого разнообразия вариантов нефронов, отсутствует ряд функций, появившихся в почке у млекопитающих.

Увеличение дифференцировки на отделы характеризует нефроны у млекопитающих и птиц, оно у них значительно выше, чем у низших позвоночных. Большая эффективность почки проявляется в сохранении постоянства состава и объема жидкостей внутренней среды.

Одной из особенностей эволюции функций нефронов является возрастание интенсивности реабсорбции и секреции у теплокровных по сравнению с холоднокровными позвоночными. Это обусловлено как интенсификацией работы клеток, так и реорганизацией зон клеточных контактов в различных частях нефрона, что создает предпосылки для всасывания больших количеств органических и неорганических веществ, воды.

В процессе эволюции почки происходит образование новых морфофункциональных комплексов. В этой связи можно упомянуть юкстагломерулярный аппарат, отсутствующий у круглоротых, комплекс прямых сосудов и петель Генле у теплокровных. В первом случае это служит предпосылкой создания структуры для анализа содержимого канальца и информации об этом артериол клубочка, гломерулярного аппарата, обеспечивающей начальный этап процесса образования мочи, во втором случае это элементы системы, образование которой способствует формированию новой функции почки, связанной с осмотическим концентрированием мочи.

Увеличение гетерогенности и дифференцировки нефронов, возрастание интенсивности работы начальных структур нефрона – гломерулярной фильтрации и реабсорбции, образование единых комплексов с участием канальцев, интерстициальных клеток – все это способствует регуляции функций почки на качественно новом уровне, а тем самым большей эффективности поддержания физико-химических констант внутренней среды. При недостаточной степени реабсорбции ионов в проксимальном канальце эту функцию может обеспечить толстое восходящее колено петли Генле; вырабатываемые клетками внутреннего мозгового вещества почки аутакоиды участвуют в регуляции транспорта ряда веществ клетками канальцев. Тем самым у млекопитающих по сравнению с низшими позвоночными становятся шире возможности регуляции функциональной активности.

Эволюция функций морфемы

Морфема в лингвистике – элемент (часть слова), далее не делимый без потери смысла. Имеется несколько типов морфем – корневые, аффиксальные, суффиксальные, деривационные (словообразовательные) и др. Структура языка претерпела ряд изменений от протоязыка к современному состоянию [Bichakjian, 1988]. Это относится как к изменению грамматических черт, так и к способу их маркирования.

Увеличение дифференциации проявляется в формировании все большего разграничения ролей элементов: флексии становятся частицами с конкретными фрагментарными значениями. Происходит сужение функций: морфемы, ранее входившие в состав слов, становятся отдельными единицами, словами с четкими грамматическими функциями, древний абсолютный (неопределенный) падеж распадается на разные падежи. Редукция или полный регресс функций наблюдается, например, в уменьшении количества категорий: чисел с 3-х до 2-х, родов с 3-го до 2-го, возможна полная элиминация падежей; отмечается тенденция к отходу от склонений. Это компенсируется интенсификацией (нарастанием), развитием роли предлогов, появлением артиклей, сдвигом в сторону более экономного алгоритма – от синтетических к более аналитическим формам. Это обеспечивается усилением регуляции, в частности появлением синтаксически релевантного порядка элементов, более жесткой системой согласований элементов друг с другом. Все это ведет к образованию своего рода морфофункциональных комплексов, обеспечивающих новые функции за счет слияния двух или нескольких форм с иными значениями.

Отмечается увеличение количества единиц одного класса с разными значениями каждой из них (например, предлоги), появление нового класса (артикли), что требуется для обеспечения новой функции – аналитичности. Смена функций морфем выражается в появлении новых качеств у уже имеющихся единиц с возможным регрессом ранее существовавших в языке, возникновение будущего времени и сослагательного наклонения из трех архаических видовых форм – аспектов, что произошло после распада единого индоевропейского праязыка.

Примером может служить превращение видовых (аспектных) и модальных форм во временные – три видовые формы (present, aorist, perfect) в индоевропейском языке становятся в анатолийских языках двумя временами (present, preterite) и двумя наклонениями (imperative и indicative). Вид perfect превращается во временную форму, из субъективной модальности формируется объективное будущее время.

В целом отмечается сужение ролей элементов от полифункциональных форм в сторону специализации с установкой на фрагментарность, независимость выражения тех или иных функций, то есть прослеживается тенденция к переходу от тяжелых синтетических форм, подобных русскому синтаксису, к легким аналитическим конструкциям типа английских. Можно отметить и возрастающую гетерогенность, когда появляется многозначность одного и того же элемента в зависимости от его положения в целостной структуре.

Эволюция функций операторов

Увеличение дифференциации операторов заключалось в появлении нескольких типов операторов цикла вместо одного, в развитии операторов IF…THEN путем добавления ELSE и переходе к операторам типа CASE, в появлении графических операторов, интерактивных операторов связи с клавиатурой, джойстиком, световым пером.

Гетерогенность, неоднородность структуры операторов растет в процессе эволюции языка; так появились достаточно сложные формы операторов для работы с файлами (OPEN…FOR…ACCESS… AS…LEN) или оператор рисования окружности, эллипса или их частей (CIRCLE), имеющий большой набор управляющих параметров.

Увеличение интенсивности работы операторов в процессе эволюции языка хорошо иллюстрируется переходом к матричным операторам (например, в языке BASIC для вычислительной машины Искра-226). Образование морфофункциональных комплексов можно иллюстрировать появлением операторов DRAW или PLAY, которые могут нарисовать несложную картину или выдать через звукогенератор музыкальную фразу.

Усложнение механизмов регулирования работы операторов очевидно на примере эволюции оператора CLS. В первых версиях языка этого оператора не было вовсе, затем он появился для очистки экрана CLS, развившись в дальнейшем в CLSO, CLS1, CLS2, очищая весь экран либо только графические окна (или только текстовые окна).

* * *
Эволюция функций почки

Очевидно, что не следует специально декларировать тезис о взаимосвязи структуры и функции, их зависимость отчетливее выявляется, когда речь идет о принципах эволюции функций органов. В то же время некоторые принципы в большей степени отражают эволюцию структуры органа (например, олигомеризация), другие, напротив, эволюцию его функций (например, увеличение числа функций). Целесообразно представить воедино принципы морфофункциональной эволюции, поскольку они дают возможность полнее оценить принципы развития как структуры, так и функции исследуемых физиологических систем.

Возрастание мультифункциональности следует отнести к одной из характерных черт эволюции почки. Почка миксин обеспечивает регуляцию объема жидкостей тела, ионную регуляцию. Возможность приспособления к пресным водам была связана с появлением в почке миног новой функции – способности к осморегуляции. У высших позвоночных почки выполняют не только экскреторную функцию, но и инкреторную, вырабатывая ряд гормонов, аутакоидов, участвуют в регуляции метаболизма органических веществ, выполняют ряд иных функций.

Процессы, лежащие в основе мочеобразования (гломерулярная фильтрация, реабсорбция веществ), при расчете на 1 грамм массы почки протекают в 10–100 раз интенсивнее у млекопитающих по сравнению с низшими позвоночными. Следовательно, поскольку относительная масса почки не растет в ходе эволюции позвоночных, интенсификация процессов, лежащих в основе деятельности почки, является одним из характерных принципов эволюции их функций.

Качественно новым в эволюции функций почек у птиц и млекопитающих является появление способности к регуляции осмотического гомеостаза в условиях дефицита воды, иначе говоря, способность к осмотическому концентрированию мочи. Развитие этой новой функции в почке обусловлено формированием в ней новой структуры – мозгового вещества. Это обусловлено разделением почки на два слоя – корковое и мозговое вещество. Благодаря надстройке новой структуры – мозгового вещества – стало возможным осуществление новой функции, связанной с образованием гиперосмотической мочи. Следовательно, принцип надстройки можно рассматривать как один из основных в эволюции функций органов, в том числе и почки.

Смена функций относится к числу существенных принципов эволюции функций. Почка костистых рыб является не только экскреторным, но и кроветворным органом, у высших позвоночных она теряет функцию кроветворения, но становится органом, участвующим в регуляции кроветворения.

Принцип субституции органа или его функций может быть в случае почки проиллюстрирован рядом примеров. У рыб в выделении, кроме почки, важное значение имеют жабры; солевые железы несут основную нагрузку в гипоосмотической регуляции в орган из эласмобранхий, морских рептилий и птиц. Экскрецию солей для опреснения обеспечивают солевые железы разного происхождения, только у млекопитающих основным органом в системе осморегуляции становятся почки.

Олигомеризация органов и полимеризация функциональных единиц имеют значение для повышения роли почки как важнейшего гомеостатического органа. Метамерно расположенные многочисленные метанефридии сменяются на парные выделительные органы у моллюсков, ракообразных, позвоночных. В то же время в едином органе, например в почке, имеются многочисленные функциональные единицы – нефроны. Для эффективности выполнения осморегулирующей и волюморегулирующей функций почки имеет значение участие не только многочисленных, но и дифференцированных групп нефронов, относящихся к разным популяциям.

Выше шла речь о принципах эволюции функций, характеризующих прогрессивную эволюцию почки; это касается таких сторон ее развития, как мультифункциональность, интенсификация деятельности и т. п. Но процесс развития может сопровождаться регрессом функций, во всяком случае ряда функций. Примерами регресса функций может служить потеря способности к образованию гипоосмотической мочи у морских костистых рыб, редукция гломерулярного аппарата и клубочковой фильтрации у некоторых видов морских костистых рыб, рептилий, адаптирующихся к жизни в засушливых районах.

Необратимость регрессивной эволюции почки может быть проиллюстрирована на примере водяных полевок, утративших способность к значительному осмотическому концентрированию мочи, а вместе с тем и способность обеспечивать осморегуляцию при дефиците воды. Миграция в морскую воду морских костистых рыб привела к необратимым изменениям в ряде систем, в том числе и в почке, что лишает их возможности к гиперосмотической регуляции. При анадромной миграции у лососей (горбуша) уже через несколько десятков минут после захода в реку из моря исключается возможность возврата в море из-за функционального переключения системы осморегуляции и необратимого регресса системы гипоосмотической регуляции.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации