Электронная библиотека » Toira Abdusalyamova » » онлайн чтение - страница 2


  • Текст добавлен: 19 апреля 2023, 17:44


Автор книги: Toira Abdusalyamova


Жанр: Компьютеры: прочее, Компьютеры


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 2 страниц)

Шрифт:
- 100% +
Used literature

1. Hayes, Brian. The ups and downs of hailstone numbers. American. – 1984. – No. 3. – pp. 102-107.

2. Stewart, Ian. The greatest mathematical problems. – M.: Alpina non-fiction, 2015. – 460 p.

3. Jeff Lagarias. The 3x+1 and its generalizations. American Mathematical Monthly. – 1985. – Vol. 92. – P. 3—23.

GENERAL IDEA OF THE CONCEPT AND USE OF DIFFERENTIAL EQUATIONS IN THE DESCRIPTION OF SOME DYNAMIC PHENOMENA
Aliev Ibratjon Khatamovich
2nd year student of the Faculty of Mathematics and Computer Science of Fergana State University
Ferghana State University, Ferghana, Uzbekistan

Аннотация. Как некогда сказал Стивен Строгац: «Со времён Ньютона человечество пришло к осознанию того, что физики выражаются на языке дифференциальных уравнений». Разумеется, что данный язык используется далеко за пределами физики и талант использовать его, ровно, как и воспринимать, даёт новые краски при изучении окружающего мира. В настоящей работе описывается общее представление об этом методе и сам процесс его изучения.

Ключевые слова: дифференциальные уравнения, исчисления, алгоритмы, математическая физика.

Annotation. As Stephen Strogatz once said: «Since the time of Newton, mankind has come to realize that physicists are expressed in the language of differential equations.» Of course, this language is used far beyond physics and the talent to use it, exactly as to perceive it, gives new colors when studying the surrounding world. This paper describes a general idea of this method and the process of studying it.

Keywords: differential equations, calculus, algorithms, mathematical physics.

By themselves, differential equations arise every time it is easier to describe a change than absolute values. For example, it is easier to describe the nature of an increase or decrease in the growth or decline of the population or population of a particular species than to describe certain values at a certain point in time. In physics, more precisely in Newtonian mechanics, motion is described by force, and force is determined by constant mass and changing acceleration, which is a statement of change.

Differential equations are divided into 2 large categories – ordinary differential equations or ODES involving functions with one variable, most often in the face of time and partial differential equations with several variables. If partial differential equations describe more complex characteristics, for example, temperature changes at different points in space, then ordinary differential equations describe more static characteristics that change over time.

As a good example, we can consider the process of falling of an object. As you know, the gravitational acceleration is 9.81 m/s2, which means that if you analyze the position of the body at every second and translate this state into vectors, they will accumulate an additional downward acceleration of 9.81 m/s2 every second. This gives an example of the simplest differential equation, the solution of which is the function y (t), the derivative of which gives the vertical component, and the velocity gives the vertical component of acceleration (1).



This equation can be solved by allocating (2) for speed and (3) for path.




Another interesting moment is when it is possible to describe the movement of celestial objects on this scale due to the force of gravity. So, two bodies are given whose attraction is directed towards each other with a force inversely proportional to the square of the distance between them (4).



It is known that the derivative of the coordinate is velocity, the derivative of velocity is acceleration and it is necessary to obtain a function for motion, but according to equation (4), only the equation for acceleration (5) is known.



It may be strange here that the derivative is equal to the same function, but this is a common phenomenon when the derivative of the first or higher orders is determined by the values of themselves. But in practice, it is more often necessary to work with second-order differential equations, as can be seen in the previous examples.

However, there are also differential equations with third (6) or fourth (7) derivatives or higher (8) derivatives, which are considered higher-order differential equations.





In a way, it turns out that you need to find infinitely many numbers, one for each moment of time, but in general this coincides with the description of the function. And most often, even if in many cases it is possible to apply the classical description, then to a greater extent the use of the technology of ordinary mathematical transformations no longer meets the requirements. The usual description of the characteristics of a mathematical pendulum can be a proof of this.

Considering the real and idealized case, it can be noted that idealization works only at small angles of deflection of the pendulum, but when the angle becomes large enough, for example, equal to a semicircle, then the graph describing its oscillations as a whole ceases to be similar to the graphs of sine or cosine. The reason for this is the need to describe its motion exclusively using not partial, but general equations of harmonic oscillations with second-order differential equations.

This analogy can be applied to many other physical, most often real phenomena.

Used literature

1. Pontryagin L. S. Ordinary differential equations. – M.: Nauka, 1974.

2. Tikhonov A. N., Samarsky A. A. Equations of mathematical physics. – M.: Nauka, 1972.

3. Tikhonov A. N., Vasilyeva A. B., Sveshnikov A. G. Differential equations. – 4th ed. – Fzimatlit, 2005.

4. Umnov A. E., Umnov E. A. Fundamentals of the theory of differential equations. – Ed. 2nd – 2007. – 240 p.

5. Charles Henry Edwards, David E. Penny. Differential Equations and the problem of eigenvalues: Modeling and calculation using Mathematica, Maple and MATLAB = Differential Equations and Boundary Value Problems: Computing and Modeling. – 3rd ed. – M.: "Williams", 2007.

6. Elsholts L. E. Differential Equations and Calculus of Variations. – M.: Science, 1969.

ON THE ISSUES OF THE STUDY OF TRIPLE INTEGRALS
Aliev Ibratjon Khatamovich
2nd year student of the Faculty of Mathematics and Computer Science of Fergana State University
Ferghana State University, Ferghana, Uzbekistan

Аннотация. Изучение математической теории, способной в качестве отдельного инструмента описывать наблюдаемый мир весьма необходимо не только для исследователей в данной области, но и для всех представителей человеческой цивилизации, не говоря уже о тех, кто хочет производить описания математических теорий, ради этих же математических теорий. Особенной в данной части является такой метод исследования, как использование тройного или трёхкратного интеграла, наряду с отдельными операциями с элементами под знаком этого же тройного интеграла.

Ключевые слова: трёхкратные интегралы, математический анализ, исследования, определение, вычисление, научная новизна.

Annotation. The study of a mathematical theory capable of describing the observable world as a separate tool is very necessary not only for researchers in this field, but also for all representatives of human civilization, not to mention those who want to produce descriptions of mathematical theories for the sake of these same mathematical theories. Special in this part is such a method of research as the use of a triple or triple integral, along with separate operations with elements under the sign of the same triple integral.

Keywords: triple integrals, mathematical analysis, research, definition, calculation, scientific novelty.

The need to determine the volume, therefore, based on density and mass, along with the number of components and other derivatives of these quantities for objects that cannot be determined practically, a vivid example of this is the determination of the mass of a mountain, huge details for which it is not possible or too costly to use the Archimedes method, but it is necessary to calculate the volume or even when determining parameters of the whole planet.

The object of the study is a three-fold integral. The subject of the study is the process of calculating a triple integral, as well as operating with it when replacing variables of this triple integral. As a result of the study, some hypothesis is put forward that asserts the possibility of using triple integrals in calculating the parameters of linear accelerators relative to the internal particles of smooth electromagnetic waveguides of linear accelerators.

The objectives of the study are:

· Definition of the concept of a triple integral;

· Study of the process of replacing variables in a triple integral;

· Showing a model for calculating parameters by means of a three-fold integral for a linear accelerator waveguide.

The objectives of the study are:

· Study of the concept of a three-fold integral in the general understanding and some coordinate systems, indicating general concepts in a brief form;

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации