Электронная библиотека » Томас Рид » » онлайн чтение - страница 2


  • Текст добавлен: 13 января 2021, 00:39


Автор книги: Томас Рид


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 24 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Управление и связь в военные годы

Шла осень 1940 года. В темно-синем небе над вечерним Лондоном виднелись лишь небольшие клочки облаков. Стояла обманчивая тишина. Внезапно где-то в полумраке завыли сирены воздушной тревоги. Лондонцы привыкли к этому беспокойному звуку, ночные авианалеты Германии на Соединенное Королевство стали для них обыденным явлением. Немцы начинали вылеты ночью, потому что в темноте истребителям Королевских ВВС было сложнее выслеживать подлетающие конвои бомбардировщиков, а защитникам Лондона – тяжелее их сбивать. Однако ночные вылеты были неточными, пилоты ориентировались визуально и часто использовали зажигательные бомбы, чтобы отметить цель, чаще всего центр промышленности или транспортный узел[9]9
  Richard Overy, The Battle of Britain: Myth and Reality (New York: Penguin, 2010).


[Закрыть]
, для последующей активной бомбардировки. Из затемненных окон не вырывалось ни лучика света. В безлунные ночи люфтваффе атаковал меньше.

Этой ночью луна взошла, осветив мягким серебристым сиянием красные и коричневые крыши столицы. На Флит-стрит два американских репортера надели стальные шлемы и забрались на вершину 50-этажного здания офиса Chicago Tribune. Джозеф Черутти и Ларри Ру ожидали очередного авианалета.

Они посмотрели вверх – «тьму прорезал луч прожектора»[10]10
  Joseph Cerutti, «The Battle of Britain», Chicago Tribune, September 19, 1965, G34.


[Закрыть]
. Затем на юго-востоке показалась «блестящая цепочка трассирующих пуль, устремленных к небу». Потом в бой вступили зенитные батареи, их снаряды, похожие на падающие звезды, разрывались высоко в небе. И только тогда Черутти и Ру услышали «беспощадный грохот» десятка немецких бомбардировщиков, доверху напичканных взрывчаткой и зажигательными бомбами. Над самым городом пилоты открыли люки. Их смертоносный груз, поначалу невидимый, со свистом полетел вниз, послышались взрывы, и повсюду разлилось белое пламя. Языки огня затемняли клубы дыма. Стаи городских птиц – скворцы, ласточки, голуби – в панике поднялись в горящее небо. Из темноты внезапно выступила ярко освещенная громада купола кафедрального собора Святого Павла.

Только с приближением рассвета наступило затишье. Медленно возвращающийся солнечный свет, казалось, растопил неослабевающий поток бомбардировщиков. «Теперь все в порядке», – сказал Ру. Глава бюро Chicago Tribune в Лондоне уже много раз видел авианалеты, «смерть прямо над головой»[11]11
  Там же.


[Закрыть]
. Затем Черутти снова услышал звук низко летящего самолета. Большой одиночный бомбардировщик резко снижался: «Он приземлился на крышу офисного здания на соседней улице. Я стоял, облокотившись на невысокий каменный парапет, и наблюдал. Бомба взорвалась с оглушительным грохотом, и в зареве взрыва я увидел, как целый, как будто даже неповрежденный, фасад здания буквально подняло в воздух. Окна и карнизы поднялись вместе со стеной метров на пятнадцать, и только потом все развалилось, разлетевшись на груды обломков».

Знаменитая воздушная битва за Британию началась в первых числах июня 1940 года. А уже первого августа Адольф Гитлер подписал директиву фюрера за номером 17, которая предписывала люфтваффе «всеми имеющимися средствами в кратчайшие сроки преодолеть сопротивление английских ВВС»[12]12
  John Keegan, The Second World War (London: Pimlico, 1989), 78.


[Закрыть]
. В августе ночные авианалеты стали интенсивнее. Британия не сдавалась. В начале сентября Гитлер изменил стратегию и выбрал главной целью Лондон. 15 сентября две сотни немецких самолетов под прикрытием тяжелых истребителей направились к столице Соединенного Королевства. Авиаудары продолжались несколько месяцев. Днем немецкие бомбардировщики и истребители проносились над юго-восточной Англией, по ночам они атаковали Лондон. Особенно массированная атака была предпринята люфтваффе в ночь с 15 на 16 октября, когда в налете на столицу принимали участие 235 бомбардировщиков. Оборонительные сооружения Британии явно не справлялись: 8326 залпами защитникам удалось уничтожить только два самолета и подбить два других[13]13
  Frederick Arthur Pile, Ack-Ack (London: Harrap, 1949), 39.


[Закрыть]
. Год завершился еще одним мощным ударом по городу, нанесенным в ночь с 29 на 30 декабря. Олицетворением этого кошмара стала фотография собора Святого Павла, окутанного клубами дыма. За декабрь британцам удалось сбить всего 14 вражеских самолетов.

Военный историк Джон Киган[14]14
  John Keegan, The Second World War (London: Pimlico, 1989), 73.


[Закрыть]
назвал битву за Британию «действительно революционной». Впервые в истории государство провело широкомасштабную военную кампанию против другого государства исключительно в воздухе. Британию не атаковали ни наземные, ни морские силы, только мощный военно-воздушный флот Германии. Жизненно важно было укрепить воздушную оборону, эта необходимость остро ощущалась вдоль всей Атлантики. Благодаря странному стечению обстоятельств, немецкие бомбы, падающие в ночном небе Лондона, вызвали настоящий взрыв в области научных и промышленных исследований в США. Спустя всего четыре года, еще до окончания войны в Европе, новые думающие машины появились в районе Ла-Манша, – машины, способные бороться с другими машинами и принимать автономные решения о жизни и смерти.

I

Немалый вклад в это внес Вэнивар Буш, один из самых плодовитых изобретателей своего поколения. К началу Второй мировой войны у Буша был впечатляющий опыт научной и руководящей работы, он занимал пост вице-президента МТИ (Массачусетского технологического института) и декана Инженерной школы Стэнфордского университета. В 1936 году Буш пытался опротестовать решение Генерального штаба армии США вдвое сократить бюджет на научные исследования. Военные генералы сочли, что американское оружие отвечает требованиям современности, а деньги лучше потратить на поддержку существующего оборудования, его ремонт и боеприпасы[15]15
  Rexmond C. Cochrane, The National Academy of Sciences: The First Hundred Years, 1863–1963 (Washington, DC: The Academy, 1978), 387.


[Закрыть]
. Кроме того, как отметил Буш после продолжительных переговоров, военное командование совершенно не представляло, чем наука может им помочь, а ученые не представляли, что нужно военным.

Человек-оператор становился шестеренкой внутри брюха машины, незначительным, предназначенным для одноразового использования винтиком, распадающимся на куски под вражеским огнем.

В 1938 году Буш был назначен на должность заместителя председателя Национального консультативного комитета по воздухоплаванию (НАКА), предшественника НАСА. Эта работа дала ему глубокое понимание передовых авиационных разработок, в чем немало помогли рассказы его сотрудника Чарльза Линдберга, побывавшего на немецких заводах по производству военного оборудования и самолетов. Линдберг был потрясен мощью немецких военных машин, особенно тех, что стояли на вооружении непобедимого люфтваффе. Только немногие могли лучше Линдберга оценить их силу. Одиннадцатью годами ранее этот пионер авиации стал первым пилотом, который без остановки пролетел от Нью-Йорка до Парижа. Позже он сравнивал свой самолет с живым существом. Высоко в воздухе Линдберг почувствовал себя частью машины, вот как он пишет о том перелете: «…каждый из нас чувствовал красоту, жизнь и смерть особенно остро, каждый зависел от верности другого. Мы сделали это, мы пересекли океан, а не я или он в отдельности»[16]16
  Charles A. Lindbergh, The Spirit of St. Louis (New York: Scribner, 1953), 486.


[Закрыть]
. Линдберг опасался, что во время войны единство человека и быстрых громадных машин не будет уже таким живым и прекрасным, а станет смертоносным. Авиатор очень не хотел, чтобы Америка принимала участие в военных действиях.

Опыт Буша, наоборот, подсказывал ему, что Америке лучше быть готовой к войне и задача науки – помочь своей стране. В январе 1939 года уже немолодой Буш переехал из Бостона в Вашингтон, чтобы занять пост президента Института Карнеги. Он уже хорошо видел свою цель – Буш стремился принимать участие в управлении фондами научных исследований и направлять их на развитие точных наук, которые считал приоритетными на тот момент. Офис Института Карнеги располагался на углу Шестнадцатой и Пи-Стрит, всего в десяти кварталах к северу от Белого дома. Фактически Буш стал неофициальным советником президента по научным вопросам. Весной 1939 года, когда в Европе еще царил мир, Буш начал обдумывать проблему противовоздушной обороны.

Буш прекрасно понимал, насколько труднее стало сбивать новые самолеты старым оружием. Во время работы в НАКА он наблюдал, как самолеты становятся крупнее, быстрее и поднимаются все выше. Поразить такую машину артиллерийскими снарядами, которые взрываются при ударе, стало практически невозможно. Правильно установить время отсроченного взрыва – еще сложнее, поскольку скорость и расстояние существенно увеличились. В октябре 1939 года Буш стал председателем НАКА и сразу доложил президенту, что «не существует агентства для очень важной области воздушной обороны, особенно по модернизации зенитных устройств»[17]17
  David A. Mindell, Between Human and Machine: Feedback, Control, and Computing before Cybernetics (Baltimore: Johns Hopkins University Press, 2002), 187.


[Закрыть]
. 27 июня 1940 года Рузвельт учредил Национальный исследовательский комитет по вопросам обороны (National Defense Research Committee, NDRC)[18]18
  Там же.


[Закрыть]
, чьей целью было создать фонд академических исследований в области практических военных проблем. Деятельность NDRC обещала быть крайне успешной.

В то время инженеры часто использовали пример стрельбы по уткам, чтобы объяснить проблему предсказания позиций цели. Когда опытный охотник видит летящую птицу, его глаза передают визуальную информацию через нервные окончания мозгу, мозг вычисляет позицию ружья, а руки регулируют положение, словно «ведя» цель по предсказанной траектории полета. Процесс, длящийся доли секунды, завершается спуском курка. Если перенести движения стрелка на инженерную систему, то охотник одновременно выполняет функции сети, компьютера и силового привода. Если заменить птицу далеко и быстро летящим вражеским самолетом, а охотника – противовоздушной батареей, то слаженная работа глаз, мозга и рук станет сложнейшей инженерной задачей.

Именно этой инженерной задаче суждено было лечь в основу кибернетики. Норберт Винер весьма воодушевился ею и снова и снова пытался решить связанную с ней проблему предсказания траектории движения самолета. Профессор Винер так и не узнал, что один из наиболее одаренных американских предпринимателей еще в 1915–1918 годах нашел свое решение этой проблемы, в результате чего на свет появился первый беспилотный летательный аппарат, способный лететь на заданной высоте по заданному курсу, прозванный «летающая бомба».

Притом что Элмер Амброуз Сперри сам был выдающимся изобретателем-новатором, он обладал поистине экстраординарной деловой хваткой. Сфера его интересов была очень широка. Помимо всего прочего, Сперри хотел создать компанию, которая бы поставляла модули управления – стабилизирующие системы для судов, системы навигации самолетов и наведения оружия – как отдельную технологию. Продукция Сперри должна была повысить надежность машин, обеспечив вычисления более точные, чем мог бы произвести человек. Сам изобретатель не дожил до войны, но его изобретения и собранная им команда ученых позволили компании стать ведущим поставщиком военного оборудования во время Второй мировой войны. Элмер Сперри основал компанию Sperry Gyroscope в 1910 году, и изначально она занималась продажей судовых гирокомпасов собственного производства. Позже Сперри изобрел гиростабилизаторы, уменьшающие качку судна и позволяющие самолету лететь прямо, еще позже его компания выпускала гироуправляемые торпеды, автопилоты для судов и приборы для обнаружения подводных лодок.

Руководство концерна Sperry понимало, что проблемы противовоздушной обороны не ограничиваются землей. Американские «Летающие крепости», мощные бомбардировщики B‐17, были слишком крупными и потому уязвимыми перед быстрыми, маленькими и маневренными истребителями. Большие самолеты нуждались в новых средствах защиты. Томас Морган, президент компании Sperry в начале 1940-х годов, главной ценностью военных продуктов фирмы называл то, что «они расширяют физические и умственные возможности человека в вооруженных столкновениях, позволяя наносить удары врагу до того, как он сможет на них отреагировать»[19]19
  Mindell, Between Human and Machine, 350.


[Закрыть]
.

Яркий пример такого инновационного продукта – турели Sperry, надежно защитившие громоздкие В‐17. Пулеметчики в них работали отдельно друг от друга, их пулеметы 50-го калибра могли обстреливать цели в зоне видимости на относительно небольшом расстоянии. Бортовой механизм управления огнем мог напрямую управлять гидравлическими приводами турели, то есть уже тогда использовалось дистанционное управление. Движения турели были стабилизированы и сглажены, что позволяло стрелку быстро поворачиваться, преследуя вражеские истребители.

Инженеры Sperry искали способ наглядно показать, как солдаты и рабочие взаимодействуют с их машинами. Отдел инженерной графики принял решение нанять на работу художника с опытом рисования в перспективе. На эту должность назначили Альфреда Крими, известного нью-йоркского художника, специалиста по фрескам. Крими получил отдельную студию, полную свободу действия и время для экспериментов.

Крими разработал особую технику, создавая как бы прозрачные рисунки, части которых перекрывают друг друга. Его самые известные картины изображают артиллеристов, чьи винтовки просвечивают сквозь тело, «как будто их видно с помощью рентгеновских лучей»[20]20
  Alfred D. Crimi, Crimi (New York: Center for Migration Studies, 1988), 150.


[Закрыть]
. Он изображал человеко-машинное взаимодействие как на фронте, так и в тылу, показывал конвейерные цепочки по сборке оружия для военно-морского флота, женщин-работниц, рассматривающих что-то под микроскопом, огромные гирокомпасы в море и научные лаборатории, в которых воссоздавались условия высоты порядка 20 тысяч метров над уровнем моря.

На самом известном карандашном рисунке Крими изображен пулеметчик, лежащий в шаровой турели Sperry, небольшой сферической кабине с выступающими из нее двумя пулеметами, присоединенной к днищу «Летающей крепости» B‐17. Турель делалась небольшой, чтобы не перегружать самолет, и была весьма тесной. В ней располагалось два 50-калиберных пулемета Браунинг с боекомплектом в 500 патронов для каждого. Сложная система желобков в верхней части сферы поставляла патроны к корпусу пулеметов. Пулеметы были расположены по обе стороны от стрелка, образуя общую конструкцию. В турели было несколько треугольных окон, самое большое из них, 33-сантиметровое прицельное окно, находилось между ног стрелка. Броня защищала только спину человека. В турели не было места для парашюта.

Стрелок с помощью гидравлических рычагов управления, похожих на джойстики, мог поворачивать турель. Угол поворота составлял 360 градусов по вертикали и 90 – по горизонтали. Поворачиваясь вместе с турелью, стрелок или ложился, или почти вставал. Гашетки располагались на джойстиках. Правая нога стрелка управляла кнопкой связи, левая – рефлекторным прицелом, который накладывал светящийся указатель на цель. Стрелок, обычно самый низкий член экипажа, залезал в турель уже в воздухе, когда самолет ложился на курс, после того как убирали шасси. Команда наводила оба пулемета на землю, затем стрелок открывал люк, располагал ноги в стременах и сворачивался в позе эмбриона между двумя пулеметами. Подтянув ремни, он получал контроль над вращающимся оружием.

Говоря словами Рэндалла Джаррелла, знаменитого американского поэта, «согнувшись внутри своей маленькой сферы, он был похож на зародыш в чреве матери». Джаррелл служил офицером ВВС во время войны. В 1945 году он опубликовал яркое стихотворение «Смерть стрелка-радиста», состоящее всего из пяти строк, в котором обличал последствия объединения человека и машины во время механизированной войны. Человек-оператор становился шестеренкой внутри брюха машины, незначительным, предназначенным для одноразового использования винтиком, распадающимся на куски под вражеским огнем и подлежащим равнодушной утилизации: «Потом меня смыли шлангом со стенок турели»[21]21
  Steven Gould Axelrod, Camille Roman, and Thomas J. Travisano, The New Anthology of American Poetry, vol. 3 (New Brunswick, NJ: Rutgers University Press, 2003), 96. Перевод Р. Сефа.


[Закрыть]
.

Сейчас подобные технологии могут показаться примитивными, однако тогда это было самое совершенное оборудование, отвечавшее высоким требованиям механического предсказания пути полета.

Проблема обезличивания людей в слиянии с механизмами, пусть не настолько жестко обозначенная, угадывается в эскизах и рисунках Крими. На его эскизах некоторые части машинной оболочки не прорисованы, чтобы показать оператора-человека, словно бы встроенного внутрь турели как живая часть машины. Тело человека, в свою очередь, изображено словно бы прозрачным, чтобы показать глубинные механизмы. Пугает отсутствие лица. Рисунки чем-то напоминают учебные эскизы по анатомии для студентов-медиков. Крими проиллюстрировал, как люди взаимодействуют с машинами, чтобы увеличить силу своих мускулов. Человеко-машинный симбиоз был далек от идеала – стрелок в турели все еще использовал свои глаза, чтобы находить истребители, и свой мозг, чтобы определять момент, когда нужно жать на гашетку. Тем не менее турели Sperry подняли взаимодействие людей и машин на новый уровень.

Эскизы Крими – это отражение страха перед стремительно развивающейся механизацией, призыв к борьбе с «монотонностью труда человеческих конвейеров»[22]22
  Alfred D. Crimi, Crimi (New York: Center for Migration Studies, 1988), 152.


[Закрыть]
. Его схематичные рисунки часто печатали в крупных журналах, они затрагивали больную тему. В этих произведениях искусства отображались новые формы человеко-машинного взаимодействия, волновавшие тогда все общество. И если Винер восторгался «механизированным человеком», Крими был настроен более скептически. Тем не менее, работая в Sperry, художник выразил в своих рисунках ровно то же самое, что кибернетика выразила на своем собственном языке: отношения между людьми и их механическими инструментами начали меняться.

II

Задолго до того, как кибернетика заговорила о своих цепочках «обратной связи», один из талантливейших инженеров своего времени работал над вопросами управления и взаимодействия в условиях войны. Воздушный бой – сложная задача, однако европейский блицкриг высветил новую проблему – необходимость развития противовоздушной обороны. Просто увидеть цель в то время уже было сложнейшей задачей. Прожекторы мало помогали. Когда немецкий бомбардировщик «Юнкерс-88» попадал в линию света, стрелять было уже поздно, и самолет стремительно уносился прочь. Чтобы справиться со своей задачей, системам противовоздушной обороны нужно было видеть самолет до того, как его увидят люди, им требовалась большая чувствительность. Эта задача была решена с помощью радара.

Термин «радар» изначально был аббревиатурой фразы «radio detection and ranging» (радиообнаружение и измерение дальности). Главной задачей радаров было определять расстояние от радиолокационной станции до объекта. К 1940 году и страны «оси», и союзники начали использовать коротковолновые радары. Гораздо более значимая технология микроволновых радаров пока не была открыта, однако это должно было вот-вот случиться. До того как появились атомные бомбы, микроволновый радар считался наиболее мощным секретным оружием, критически важной новой технологией, от которой зависела победа или поражение от стран «оси»[23]23
  William White, «Secrets of Radar Given to World», New York Times, August 15, 1945, 1.


[Закрыть]
.

По словам The New York Times, радар может «видеть сквозь самый густой туман и непроглядную ночь». Принцип его работы прост, это немного похоже на бросок камня в темную дыру и измерение того, как долго он будет лететь до земли: радиостанция посылает радиоволны, цель отражает энергию этих волн, а антенна принимает отраженный сигнал. Время, которое требуется, чтобы получить отраженный сигнал (эхо), и определяет удаленность цели. Электромагнитный импульс радара движется со скоростью света, 299 792 458 метров в секунду. Если объект находится в 24 километрах от радара, его эхо вернется через 0,00016 секунды. Выявленную дальность и направление объекта операторы видят на «экране», круглом дисплее, напоминающем слабо освещенный циферблат часов. На экране изображено несколько концентрических колец, а иногда карта. Цель появляется на экране как маленькая светящаяся точка. Расстояние от точки до центра экрана зависит от того, сколько времени ушло на получение эхо-сигнала. Важно, что радар указывает точное направление цели, независимо от ее удаленности. За это отвечает антенна, которая поворачивается и испускает направленные импульсы, похожие на прожекторы из микроволн. Цель появляется на экране оператора, когда вращающаяся антенна оказывается напротив нее. Высота цели рассчитывается с помощью угла поворота антенны. Конечно, радар улавливает и шумы. Справочники по радарам 1940-х годов включали в себя обширные параграфы по «изучению и интерпретации всех типов контактов в индикаторах радара»[24]24
  Radar Operator’s Manual, Radar Bulletin no. 3 (RADTHREE) (Washington, DC: United States Fleet, Navy Department, 1945), 3–10.


[Закрыть]
. Это было настоящее искусство – правильно считывать размер точки, ее форму, частоту мерцания, флуктуации по высоте, перемещение в диапазоне и азимут. Работа операторов была очень серьезной: если перепутать шум и настоящий сигнал, можно выстрелить в скалу или в дружественный самолет вместо вражеского.

Официальная разработка первого американского серийного радара, SCR‐268, началась в 1936 году. Он был очень неудобен из-за огромных размеров антенн – около 12 метров в ширину и 3 метра в высоту. Кроме того, он был еще и очень неточным из-за того, что работал на длинной, около одного метра, волне. Использовать радар было все равно что изучать землю с высоты птичьего полета без возможности приблизиться, чтобы рассмотреть детали. Теоретически проблема решалась простым переходом на короткие или микроволны. Короткие волны с большой частотой имели критически важное преимущество, ведь чем короче волна, тем уже поисковый луч и тем выше разрешение картинки, которую видит оператор. Новый радар позволил бы приближать карту, не теряя высокого разрешения, и это был бы по-настоящему удобный инструмент. Проблема заключалась в том, что, хотя физики знали о существовании микроволн, никто еще не нашел способа их генерации[25]25
  David Zimmerman, Top Secret Exchange: The Tizard Mission and the Scientific War (Montreal: McGill-Queen’s Press, 1996), 90–91.


[Закрыть]
. Немецкие инженеры сразу признали задачу построения микроволновых радаров технически невозможной[26]26
  George Raynor Thompson and Dixie R. Harris, The Signal Corps: The Outcome (Washington, DC: US Army Center of Military History, 1991), 303.


[Закрыть]
.

МТИ удалось разрешить эту задачу, и в этом есть доля иронии: разрушая Англию, Германия помогла создать мощное оружие, которое помогло ее победить. Свирепые атаки немецких сил на Лондон и юго-восточную Англию привели к тому, что Британия сосредоточила усилия всех своих инженеров на быстрой разработке продукции военного назначения. Научные исследования потеряли часть финансирования, поэтому сэр Генри Тизард, член Комитета по аэронавигационным исследованиям Британии, позволил США проводить изыскания, связанные с британскими секретными экспериментами в области микроволновой технологии. В конце 1939 года исследователи из Бирмингемского университета сделали сенсационное открытие и построили микроволновую пушку, назвав ее «магнетрон»[27]27
  H. A. H. Boot and J. T. Randall, «Historical Notes on the Cavity Magnetron», IEEE Transactions on Electron Devices 23, no. 7 (1976): 724–729.


[Закрыть]
.

Электрические системы наведения требовали меньше навыков от операторов, меньше времени и денег для производства, а в работе позволяли получить большую точность, скорость и гибкость.

Крошечное изобретение было примечательно тем, что могло испускать столь желанные короткие волны и работало в сантиметровом диапазоне. А его миниатюрные размеры позволяли устанавливать его на самолеты и корабли. Магнетрон открывал широкие возможности для военных самолетов: теперь солдаты могли увидеть врага в любое время суток, в то время как враг еще не видел их. Кроме того, мобильные радары позволяли самолетам летать в темноте, а кораблям – маневрировать в густом тумане. И это еще не все: сигнал радара, если он работает с десяти– и трехсантиметровыми волнами, гораздо труднее заглушить, чем длинноволновый сигнал. Это давало большое преимущество – теперь союзники могли заглушить сигнал врага, лишив его ориентиров, и не ослепить при этом свои собственные приборы.

Американская программа разработки радаров кардинально изменилась 28 августа 1940 года – со встречи двух ученых. В ту среду свирепый тропический шторм обрушился на среднеатлантические штаты. Вэнивар Буш обедал с Тизардом в вашингтонском клубе «Космос». Они хорошо поладили, обнаружив общий интерес к практическому применению гражданских исследований. Этот обед послужил толчком к целой серии событий, в результате которых NDRC Буша взяло под контроль исследование микроволн. Армия и флот прекратили свое собственное исследование в этой области еще в 1937 году и не возражали против такого решения. «С магнетроном, – вспоминал Буш, – мы вырвались вперед»[28]28
  David Zimmerman, Top Secret Exchange: The Tizard Mission and the Scientific War (Montreal: McGill-Queen’s Press, 1996, 135.


[Закрыть]
.

В октябре 1940 года была учреждена Радиационная лаборатория МТИ, которая поначалу занимала всего несколько комнат и в которой работало всего несколько десятков исследователей. Буквально за какие-то месяцы лаборатория совершила колоссальный шаг вперед. Инженеры МТИ сделали еще одно блестящее открытие: они использовали обратную связь и скоординировали сервомеханизмы антенны с отраженным импульсом радара, иными словами, создали автоматическое управление гаубицами.

В конце мая 1941 года Радиационная лаборатория продемонстрировала экспериментальную автоматическую радарную систему. Инженеры привезли механизированную турель на крышу здания МТИ и настроили систему так, чтобы пулемет автоматически отслеживал самолет, пролетающий мимо, даже в условиях сплошной облачности. Демонстрация впечатляла.

Следующий шаг был очевиден: взять этот приборчик, перепроектировать его и встроить в автоматическую систему противовоздушной обороны. В начале декабря 1941 года Радиационная лаборатория продемонстрировала свое экспериментальное оборудование в расположении войск связи США в Форте Ханкок, Нью-Джерси. Вечером в пятницу 5 декабря инженеры праздновали успех своей новой машины, а через два дня Япония атаковала Перл-Харбор.

В течение следующих четырех военных лет лаборатория превратилась в огромный исследовательский центр, который выполнял большую часть работы по разработке радаров в США. Ее ежемесячный бюджет составлял четыре миллиона долларов, а число сотрудников достигало четырех тысяч человек, причем в это число входила пятая часть лучших физиков государства[29]29
  «Tech’s Radar Specialists Now Return to Peace Jobs», Christian Science Monitor, August 15, 1945, 2.


[Закрыть]
. Радиационная лаборатория имела свой собственный завод, аэропорт в Бедфорде, штат Массачусетс, а также сеть радиолокационных станций в США и по всему миру. Лаборатория стала самым крупным проектом NDRC и одним из самых прославленных научных институтов времен войны. К маю 1945 года, менее чем через пять лет после начала миссии Тизарда, армия и флот заключили контракт общей суммой более 2,7 миллиарда долларов на поставку радарного оборудования, разработанного в МТИ. Эти значительные инвестиции легли в основу мощной послевоенной электронной индустрии США.

Наибольшим достижением лаборатории можно назвать микроволновый радар XT‐1 с системой автоматического наведения, который военные переименовали в SCR‐584. Это было очень важное устройство, с появлением которого почти все ранее созданные радары в одночасье устарели. Машина была достаточно точной, чтобы отобразить на своем экране траекторию 155-миллиметрового артиллерийского снаряда, когда он приближался к цели. Когда маленькая звездочка и более крупная звездочка сходились на экране, они просто исчезали.

То, как гидравлические приводы усиливали мускулы человека, просто впечатляло. То, насколько радарная система улучшала его восприятие, впечатляло еще сильнее. Однако даже двух этих усовершенствований было недостаточно. Чтобы издалека нанести удар по немецкому бомбардировщику, нужно было нечто большее, чем заранее увидеть самолет и направить на него оружие. Чтобы попасть по вражескому бомбардировщику, нужно было еще понять, куда целиться. Снаряд не может перемещаться со скоростью света, как импульс радара: 155-миллиметровый снаряд может находиться в воздухе до 20 секунд, прежде чем настигнет цель, а за это время немецкий бомбардировщик может пролететь более трех километров. Как и в случае с охотником, стреляющим по летящим уткам, стрелок должен предугадать траекторию полета мишени и нацелиться на точку в будущем. Для этого предсказания нужен был специальный механический мозг.

Военные подразделения, ответственные за стрельбу из больших орудий, называются «батареи». Управлять стрельбой, особенно точным наведением сложных артиллерийских орудий, было крайне непросто. Начнем с того, что различные элементы противовоздушной батареи могли располагаться на расстоянии нескольких метров друг от друга, в зависимости от местности и выбранной стратегии. Независимые компоненты батареи связывались телефонными линиями. Чтобы поразить цель, наблюдатель должен был передать данные офицеру по телефону. Офицер вводил данные в примитивный компьютер и получал выходные значения. Затем он передавал эти значения по телефону пулеметчикам. Стрелки настраивали орудия, наводили их на цель и только после этого стреляли. Половина работы держалась на телефонных переговорах, точность стрельбы зависела от качества связи. Поэтому нужно отдать должное телефонной компании Bell Telephone Laboratories и исследовательскому институту, основанному AT&T и Western Electric, неустанно совершенствовавшим свое оборудование.

Точная стрельба батареи по движущейся цели требовала двух независимых вычислений: баллистики и предсказания. Баллистические расчеты были проще и заключались в решении одной задачи – куда выстрелить, чтобы снаряд взорвался в определенной точке пространства и времени. Стрелку нужно было ввести всего три значения: азимут и высоту, чтобы определить направление стрельбы, а также время, чтобы определить точный момент выстрела. При традиционном, неавтоматизированном, методе членам артиллерийской команды приходилось вычитывать эти значения из специальных таблиц, состоящих из длинных колонок значений высоты, азимута, настроек замедлителя, времени полета и свободного падения.

В ходе эволюции артиллерийских установок добавились новые поправки: на начальную скорость снаряда, встречный и попутный ветер, температуру и давление воздуха и многие другие. Изучать таблицы в самый разгар стрельбы стало окончательно неэффективно. Так появились механизированные наводчики, которые автоматизировали поиск по таблицам. Место бумаги с колонками цифр заняли металлические конусы, утыканные кнопками, немного напоминающие цилиндры в старомодных музыкальных шкатулках. Эти цилиндры, так называемые камеры Sperry, выглядели как скрученные и изогнутые стволы деревьев, но они работали, и работали лучше человека. Фактически эти конусы были первым независимым хранилищем данных – то, что сейчас мы называем ROM (Read Only Memory), а прибор для их чтения – примитивным механическим компьютером. Машина научилась выбирать и комбинировать значения, рассчитанные заранее.

Вторая вычислительная задача, предсказание, оказалась гораздо сложнее. Вычислить, как выпустить снаряд, чтобы он оказался в определенной точке пространства и времени, – это одно. Подсчитать, где именно будет эта определенная точка пространства и времени по отношению к быстро летящему самолету, – совершенно другое. Чтобы упростить задачу, инженеры допустили, что вражеский самолет летит прямо и на одной высоте, а не по петляющей траектории, то ниже, то выше, как это происходит обычно на практике. Устройство наведения предполагало, что имеется константная траектория. Допущение не соответствовало реальности, но не настолько, чтобы лишить предсказание смысла.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации