Текст книги "3ds Max 2008. Секреты мастерства"
Автор книги: Владимир Верстак
Жанр: Программы, Компьютеры
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 31 (всего у книги 46 страниц)
Я уже неоднократно говорил, что любое моделирование должно начинаться с анализа будущей модели. Самым простым (и, наверное, самым правильным) способом анализа является попытка мысленно разделить сложную модель на части, для каждой из которых можно применить свой способ моделирования. Именно такой подход к моделированию я называю комплексным.
Рассмотрим простой пример – нам необходимо создать модель магнитофона. Выполнив предварительный анализ, можно предположить, что большинство частей являются стандартными (Standard) или улучшенными (Extended) примитивами. Некоторые детали магнитофона могут потребовать более сложного подхода к моделированию, например создания составных объектов (Compound Objects). И лишь в редких случаях, допустим, когда нужно иметь полный контроль над геометрией, моделирование идет за счет наращивания полигонов или уточнения формы на уровне подобъектов по пути «от простого к сложному».
Если обобщить вышесказанное, то можно сделать вывод, что комплексный подход к моделированию – это такой подход, при котором сложная модель мысленно разбивается на более простые геометрические формы, для моделирования которых применяются различные средства (использование примитивов, полигональное моделирование, NURBS-моделирование, лофт-моделирование и т. д.).
В данном разделе рассмотрим комплексный подход к моделированию на примере крана для ванной (рис. 9.134).
Рис. 9.134. Визуализация модели крана для ванной
Первое, что я сделал, прежде чем начать моделирование, – пошел в ванную комнату и произвел необходимые замеры.
СОВЕТ
Если у вас есть возможность получить точные размеры объекта, который вы собираетесь моделировать, никогда не пренебрегайте такой возможностью – это поможет не только получить более реалистичную модель, но и сократить время моделирования.
Замеры получены, с чего начинать? Начинать можно с любой детали (если у вас есть размеры, то вам нет необходимости привязываться к базовой геометрии). Я предпочитаю начинать моделирование с основных форм, постепенно «наращивая» детали. Воспользуемся именно этим способом.
Начнем с корпуса крана. Он имеет довольно сложную форму. Казалось бы, здесь не обойтись без NURBS– или Surface-моделирования либо без использования составного объекта. Однако, как показала практика, самым простым способом моделирования в данном случае является полигональное с последующим разделением полигонов.
ПРИМЕЧАНИЕ
В процессе написания данного раздела я пробовал создавать корпус при помощи полигонального, NURBS– и Surface-моделирования. В результате этих экспериментов сделал вывод: если вам не нужны точные размеры и идеальная форма, то быстрее и проще всего работать с полигональной моделью.
Построим объект Box (Параллелепипед) с параметрами, представленными на рис. 9.135.
Рис. 9.135. Параллелепипед (слева) и его параметры (справа)
Обратите внимание на то, что количество сегментов по длине параллелепипеда установлено равным 7, что обусловлено количеством точек, в которых объект меняет свою форму.
Построение параллелепипеда и создание нужного количества сегментов – это все, что нам нужно от стандартного примитива. Далее необходимо конвертировать объект в Editable Poly (Редактируемая полигональная поверхность), для чего щелкните на нем правой кнопкой мыши и в появившемся контекстном меню выполните команду Convert To ► Convert to Editable Poly (Преобразовать ► Преобразовать в редактируемую полигональную поверхность).
Перейдите на уровень редактирования подобъектов Polygon (Полигон)
выделите четыре полигона – крайние фронтальные и соответствующие им полигоны с противоположной стороны объекта (рис. 9.136).
Рис. 9.136. Выделенные полигоны
После выделения полигонов перейдите на вкладку Modify (Изменить) командной панели и в свитке Edit Polygons (Редактирование полигонов) щелкните на кнопке, расположенной рядом с кнопкой Inset (Смещение внутрь). В результате появится окно Inset Polygons (Сместить полигоны внутрь), в котором задайте параметру Inset Amount (Величина смещения) значение, равное 0,5 (рис. 9.137). Подтвердите внесенные изменения, щелкнув на кнопке OK.
Сейчас можно включить NURMS-сглаживание и посмотреть результат выполненного редактирования. Напомню, что сделать это можно, установив в свитке Subdivision Surface (Поверхности с разбиением) флажок Use NURMS Subdivision (Использовать NURMS-разбиения). В области Display (Отображение) задайте параметру Iteration (Количество итераций) значение, равное 2 (рис. 9.138).
Рис. 9.137. Окно Inset Polygons (Сместить полигоны внутрь)
Рис. 9.138. Деталь крана после применения NURMS-разбиения
Далее необходимо добавить заготовке небольшую «бочковатость» по краям. Именно в этих местах будут крепиться вентили кранов горячей и холодной воды. Сделать это довольно просто: достаточно разрезать три торцевых полигона с двух сторон. Чтобы выполнить такие разрезы, сделайте следующее.
1. На уровне редактирования полигонов выделите шесть полигонов (по три с каждой стороны), образующих торцы детали.
2. В свитке Edit Geometry (Редактирование геометрии) щелкните на кнопке Slice Plane (Секущая плоскость) и в окнах проекций разместите секущую плоскость так, чтобы она, располагаясь вертикально, проходила через середину детали (рис. 9.139).
Рис. 9.139. Положение секущей плоскости
3. Нажмите кнопку Slice (Сечение) для создания новых граней, после чего щелкните на кнопке Slice Plane (Секущая плоскость), чтобы выключить режим секущей плоскости.
4. Перейдите на уровень редактирования вершин и сдвиньте наружу на расстояние 3 мм по две построенные вершины торцевых полигонов.
На рис. 9.134 видно, что корпус крана имеет заметное утолщение в середине и некоторое сужение ближе к краям. Изменить форму таким образом довольно просто: достаточно передвинуть и масштабировать группы вершин.
ВНИМАНИЕ
Проводить трансформации необходимо, именно выделяя группу и масштабируя ее относительно центра, а не перемещая отдельные вершины (в противном случае будет сложно сохранить симметрию).
На рис. 9.140 показана модель после того, как вершины в средней части были масштабированы и перемещены.
Рис. 9.140. Модель после выполненных трансформаций
Обратите внимание, что в местах будущего крепления кранов геометрия полученного объекта не представляет собой правильную окружность. Это как раз тот случай, о котором я говорил в самом начале раздела, имея в виду то, что метод полигонального моделирования имеет относительную точность форм.
Немного улучшить форму позволит еще одно смещение ребер внутрь четырех полигонов, с которыми мы работали в начале раздела. Выделите их снова и еще раз примените к ним Inset (Смещение внутрь), но уже с большим значением параметра Inset Amount (Величина смещения), например равным 5 (рис. 9.141).
Рис. 9.141. Окружности, полученные после второго смещения граней
Переходим к моделированию средней части корпуса крана. В этом месте к корпусу крепятся ручка переключения душа, кран и стойка для размещения душа. Нам необходимо создать утолщения в месте крепления этих элементов. Два из них (вертикальные) имеют один размер, а фронтальное (для крепления ручки) немного меньший. Логично сначала построить их одинаковыми, а потом один из них уменьшить.
Для придания детали нужной формы выделите три средних полигона (два вертикальных и один фронтальный) и примените к ним Bevel (Скос) из свитка Edit Polygons (Редактирование полигонов), как показано на рис. 9.142.
Рис. 9.142. Начало формирования средней части
Сразу же, не снимая выделения с выдавленных полигонов, еще раз примените Bevel (Скос) с небольшим значением параметра Height (Высота), завершив таким образом построение средней части корпуса крана (рис. 9.143).
Рис. 9.143. Создание еще одного скоса для выступающих частей корпуса крана
Осталось масштабировать часть корпуса крана, к которой будет крепиться ручка переключения на душ/кран. Воспользуйтесь для этого инструментом Select and Uniform Scale (Выделить и равномерно масштабировать).
На этом построение корпуса крана можно считать законченным (рис. 9.144).
Рис. 9.144. Окончательный вид корпуса крана
Перейдем к моделированию кранов. Сначала создадим крепление. Внешне оно напоминает гайку, у которой вытянута одна сторона. Думаю, что в данном случае самым простым способом моделирования будет использование Surface-поверхности.
Начнем с построения сплайнов. Для формы гайки лучше всего подойдет сплайн формы NGon (Многоугольник).
1. Выполните команду главного меню Create ► Shapes ► NGon (Создание ► Формы ► Многоугольник) и постройте в окне проекции Front (Спереди) многоугольник с шестью сторонами и радиусом 16 мм.
2. Создайте еще один шестиугольник радиусом 13 мм, в настройках которого установите флажок Circular (Окружность).
3. Выделите один из построенных многоугольников и преобразуйте его в Editable Spline (Редактируемый сплайн), а затем присоедините к нему второй многоугольник при помощи команды Attach (Присоединить).
4. Перейдите на уровень редактирования Segment (Сегмент), выделите все сегменты обоих сплайнов и разбейте их. Для этого задайте параметру, расположенному возле кнопки Divide (Разделить) в свитке Geometry (Геометрия), значение 1. Затем щелкните на кнопке Divide (Разделить) (рис. 9.145).
Рис. 9.145. Многоугольники с разделенными сегментами
Сплайны необходимо разбить для того, чтобы иметь возможность имитировать на гайке скос.
ВНИМАНИЕ
Первые вершины обоих сплайнов должны находиться на одной стороне (это важно для дальнейших построений, иначе произойдет скручивание поверхности объекта).
Скопируйте созданные сплайны, для чего перейдите на уровень подобъектов Spline (Сплайн) и в окне проекции To p (Cверху), удерживая нажатой клавишу Shift, переместите оба сплайна по координате Y на 10 мм. Кроме того, нам понадобится еще одна окружность меньшего диаметра, для построения копии которой выделите сплайн окружности и переместите его еще на 20 мм относительно предыдущих. Не снимая выделение, уменьшите его при помощи инструмента Select and Uniform Scale (Выделить и равномерно масштабировать).
Теперь необходимо изменить форму двух шестигранников для соответствия их строящемуся объекту. Для этого выделите вершины, находящиеся в серединах сегментов (те, которые были построены путем разделения сегментов), и немного сместите их в противоположные стороны (рис. 9.146).
Рис. 9.146. Положение и форма сплайнов, подготовленных для создания модели гайки
После редактирования положения вершин шестигранников и размера окружностей можно переходить к построению поперечных сечений. В ранних версиях 3ds Max Cross Section (Поперечное сечение) существовала лишь в виде отдельного модификатора, но в последних версиях программы она стала частью редактора сплайнов. Воспользуемся ею для построения поперечных сечений и поверхности.
1. Выделите объект, состоящий из сплайнов, и перейдите к свитку Geometry (Геометрия) настроек объекта на командной панели. В области New Vertex Type (Тип новых вершин) установите переключатель в положение Smooth (Сглаживание).
ВНИМАНИЕ
Все построенные сплайны должны принадлежать одному объекту.
2. В свитке Geometry (Геометрия) нажмите кнопку Cross Section (Поперечное сечение), в результате чего она выделится цветом.
3. В окне проекции Left (Слева) щелкните на сплайне меньшего радиуса, затем на втором сплайне и на следующем за ним шестиграннике (рис. 9.147). Щелкните правой кнопкой мыши для завершения построения поперечных сечений.
Рис. 9.147. Поперечные сплайны для правой части гайки
4. В области New Vertex Type (Тип новых вершин) установите переключатель в положение Linear (Линейная) и продолжите построение поперечных сплайнов для оставшейся части объекта.
5. Создайте поверхность, для чего примените к объекту модификатор Surface (Поверхность), выполнив команду главного меню Modifiers ► Patch/Spline Editing ► Surface (Модификаторы ► Редактирование патчей/сплайнов ► Поверхность).
6. При необходимости в свитке Parameters (Параметры) настроек модификатора установите флажок Flip Normals (Обратить нормали).
После этого получится почти готовая гайка. Ей лишь недостает четкости граней. Это легко исправить, установив для этой части модели отдельную группу сглаживания. Для этого примените к объекту модификатор Edit Mesh (Редактирование поверхности), перейдите на уровень редактирования полигонов и выберите полигоны, расположенные между двумя шестиугольниками. В области Smoothing Groups (Сглаживание) свитка Surface Properties (Свойства поверхности) щелкните на кнопке Clear All (Очистить все).
СОВЕТ
При желании можно применить к объекту модификатор Shell (Раковина) для придания толщины.
В результате этих действий гайка примет окончательный вид (рис. 9.148).
Рис. 9.148. Готовая модель гайки
Теперь построим четыре гайки: три одинаковые, стандартные гайки и одну cо скосом, находящуюся у основания крана.
Их следует моделировать описанным выше способом (кроме того, вы можете немного изменить копию созданной гайки). По этой причине не стану повторяться, а лишь покажу, как должны выглядеть сплайны и готовая поверхность новых гаек (рис. 9.149).
Как видно из рис. 9.149, для этого типа гаек нужны пять сплайнов: четыре из них попарно зеркально отраженные и один (окружность меньшего диаметра) дублирован с масштабированием для придания утолщения на гайке (можно вместо этого использовать модификатор Shell (Раковина)). Две такие гайки будут располагаться с противоположной стороны корпуса крана для крепления к стене, а одна – в верхней части для крепления стойки (рис. 9.150).
Для нижней гайки характерно небольшое заужение геометрии к низу. Его можно получить, просто переместив последний сплайн на некоторое расстояние вниз и немного уменьшив его размер (рис. 9.151). Между нижней гайкой и корпусом должна располагаться втулка, роль которой в данном случае играет параметрический объект Cylinder (Цилиндр).
Рис. 9.149. Форма сплайнов малой гайки
Рис. 9.150. Корпус крана с гайками
Рис. 9.151. Модифицированная гайка нижней части крана
Прежде чем приступить к более сложному моделированию, построим два декоративных элемента, закрывающих места крепления крана к стене. В нашем случае это может быть либо объект, выполненный методом вращения (при помощи модификатора Lathe (Вращение)), либо просто немного деформированная половина сферы. Я решил воспользоваться вторым способом, как более простым. Согласно моим измерениям диаметр окружности «чашки» составляет 70 мм, соответственно, необходимо построить половину сферы (в настройках объекта Sphere (Сфера) установить флажок Hemisphere (Полусфера)) радиусом 35 мм и масштабировать ее по оси вращения (ось Z) (рис. 9.152).
Дальнейшее моделирование может показаться вам более сложным. Это объясняется тем, что моделировать придется при помощи NURBS. В 3ds Max это непростая процедура, так как есть некоторые ограничения, которые необходимо учитывать при моделировании. Возможно, у вас появится закономерный вопрос: «А зачем тогда пользоваться этой технологией, если все можно сделать при помощи полигонального моделирования?» Ответ прост: потому, что при правильном использовании форм, которые описываются неоднородными рациональными В-сплайнами (NURBS), результат окажется лучше (более сглаженные формы), к тому же его быстрее можно достичь.
Перейдем к моделированию кранов. По сути, это будут поверхности, созданные при помощи вращения кривых, с построения которых мы и начнем.
В окне проекции Top (Сверху) постройте NURBS-кривую размером 20 х 17 мм (рис. 9.153). Для этого воспользуйтесь командой Create ► NURBS ► CV Curve (Создание ► NURBS ► CV-кривая).
Рис. 9.152. Корпус крана с гайками и декоративными элементами
Рис. 9.153. CV-кривая, построенная в окне проекции Top (Cверху)
Перейдите на вкладку Modify (Изменение). Чтобы создать поверхность, примените к построенной кривой инструмент Create Lathe Surface (Создать поверхность вращением), расположенный на плавающей панели NURBS. В результате должен получиться объект, напоминающий по форме бочонок (рис. 9.154).
Теперь нужно создать еще один объект таким же способом, то есть вращением кривой профиля. На сей раз это будет кривая каплевидной формы, построенная при помощи CV Curve (CV-кривая) (рис. 9.155).
Рис. 9.154. Основание ручки (слева) и кнопка Create Lathe Surface (Создать поверхность вращением) на панели NURBS (справа)
Рис. 9.155. Форма кривой части ручки
После создания кривой примените к ней инструмент Create Lathe Surface (Создать поверхность вращением), расположенный на плавающей панели NURBS.
ПРИМЕЧАНИЕ
Неискушенному пользователю может показаться, что легче и привычнее сделать такой объект, используя стандартные способы построения сплайнов и применяя модификатор Lathe (Вращение), в настройках которого переключатель Output (Результат) установлен в положение NURBS. Такой подход вполне годится для объектов, которые не будут редактироваться как NURBS-поверхность. В противном случае могут возникнуть проблемы, способные при дальнейшем редактировании поверхности вызвать значительные затруднения или сбой в работе программы.
Продолжим моделирование. Теперь следует сделать три копии только что построенного объекта. Эти копии нужно будет расположить по периметру корпуса ручки при помощи инструмента Array (Массив), поэтому сначала необходимо установить опорную точку (Pivot Point) в середину построенного ранее корпуса. Чтобы это сделать, нужно перейти на вкладку Hierarchy (Иерархия) командной панели и нажать кнопку Pivot (Опора). В свитке Adjust Pivot (Настройка опоры) следует щелкнуть на кнопке Affect Pivot Only (Только опора) и переместить в окне проекции Front (Спереди) опорную точку в середину корпуса ручки (рис. 9.156).
Рис. 9.156. Опорная точка, размещенная в середине корпуса ручки
Теперь можно создать массив из построенной детали. Для этого выполните команду главного меню Tools ► Array (Инструменты ► Массив), в результате чего откроется окно, в котором необходимо установить параметры, как показано на рис. 9.157.
В результате у вас должны получиться три копии объекта, расположенные по периметру корпуса. Остается только добавить фаску, чтобы поверхности объектов, составляющих ручку крана, выглядели более естественно, плавно перетекая одна в другую. Но прежде, чем это делать, необходимо повернуть среднюю часть (корпус) на 45° (рис. 9.158). Это делается для того, чтобы шов, образованный кривой вращения (белая линия, идущая от центра), не попадал в места пересечения объектов, в противном случае возникнут проблемы с созданием фаски.
Сделайте копию средней части ручки и одной из пристыкованных деталей, чтобы впоследствии создать ручку переключения на душ/кран.
Переходим к созданию фаски. Прежде всего необходимо объединить все детали, относящиеся к ручке, в один объект. Для этого нужно выделить корпус (или любую другую деталь ручки) и, нажав в свитке General (Общие) кнопку Attach (При– соединить), выбрать в окне проекции все необходимые детали, относящиеся к ручке. Только после этого можно воспользоваться инструментом Create Fillet Surface (Создать поверхность-фаску)
плавающей палитры NURBS. Выделив инструмент создания фаски, щелкните на одном из внешних объектов ручки (в результате он изменит цвет), а затем на корпусе. В итоге получим фаску, параметры которой необходимо уточнить в свитке Fillet Surface (Поверхность-фаска). Задайте значения величины фаски при помощи параметров Start Radius (Начало радиуса) и End Radius (Конец радиуса) (у меня они равны 3,5). В областях Trim First Surface (Обрезать первую поверхность) и Trim Second Surface (Обрезать вторую поверхность) установите флажки Trim Surface (Обрезать поверхность) (рис. 9.159).
Рис. 9.157. Настройки, выполненные в окне Array (Массив)
Рис. 9.158. Взаимное расположение объектов, составляющих ручку
Рис. 9.159. Параметры фаски (справа) и сопряжение двух деталей, полученных с ее помощью (слева)
Возможно, при обрезании поверхности (Trim Surface) вам понадобится установить флажки Flip Trim (Обратить обрезание) или Flip Normals (Обратить нормали) – все будет зависеть от того, как вы построили поверхность и как ее рассчитывает программа.
Создание фаски необходимо повторить для всех деталей рукоятки крана. Чтобы закончить с этой деталью, добавим к фронтальной части улучшенный примитив OilTank (Цистерна) с небольшой фаской, выполненной при помощи выдавливания ребер. Для этого используем модификатор Edit Mesh (Редактирование поверхности) (рис. 9.160).
Ручка переключения на душ/кран делается из созданной ранее копии двух объектов. Это всего лишь немного модифицированная форма рычага переключения.
ПРИМЕЧАНИЕ
Напоминаю, что вы можете в любой момент перейти на уровень редактирования вершин и изменить форму кривой, использованной для тела вращения. Это можно сделать даже после создания фаски и обрезания поверхности.
Сейчас можно посмотреть на полученную модель крана в целом (рис. 9.161).
Прежде чем начинать моделирование стойки, которая представляет собой, пожалуй, самую сложную с точки зрения формы деталь крана, создадим трубку в его нижней части. Самый простой способ построения в данном случае – использование лофтинга с небольшим редактированием формы профиля.
Рис. 9.160. Готовая модель рукоятки крана
Рис. 9.161. Результат визуализации части крана
В окне проекции Left (Слева) постройте сплайн Line (Линия) длиной 360 мм и загибами на концах по 80 мм (это будет сплайн пути), а в окне проекции To p (Cверху) – окружность диаметром 18 мм для формы поперечного сечения (рис. 9.162).
Рис. 9.162. Форма сплайна пути
Чтобы получить лофт-объект, необходимо выделить сплайн пути и выполнить команду главного меню Create ► Compound ► Loft (Создание ► Составные объекты ► Лофтинговые). В результате на командной панели появятся настройки лофт-объекта. В свитке Creation Method (Метод создания) нажмите кнопку Get Shape (Взять форму) и в окне проекции To p (Сверху) щелкните на построенной ранее окружности. В результате у вас должен получиться объект в виде изогнутой трубки.
СОВЕТ
При необходимости можно скорректировать форму лофт-объекта редактированием вершин сплайна пути или радиуса окружности.
Но это еще не все. Нам нужно создать утолщение на конце трубки (в том месте, где крепится сетка фильтра). Это проще всего сделать при помощи редактирования деформации масштаба. Чтобы получить доступ к этим параметрам, щелкните на кнопке Scale (Масштаб) в свитке Deformations (Деформации) настроек лофт-объекта. В результате откроется окно Scale Deformation (Деформация масштаба). В нем необходимо добавить в самом конце шкалы (а соответственно, и на самом лофт-объекте) несколько точек и отредактировать их положение так, чтобы профиль кривой повторял форму наконечника трубки (рис. 9.163).
ПРИМЕЧАНИЕ
Более подробно о том, как работать с лофт-объектами, рассказано в разд. «Моделирование лофт-объектов» данной главы.
Рис. 9.163. Окно Scale Deformation (Деформация масштаба)
После всех вышеописанных операций должен получиться объект, показанный на рис. 9.164.
Рис. 9.164. Результат визуализации созданной части крана
Моделирование держателя для душа может вызвать определенные затруднения, поэтому рекомендую очень внимательно отнестись к этой части раздела.
Начнем с того, что уберем из сцены все объекты, кроме верхней гайки (она нам понадобится для того, чтобы иметь возможность привязаться к размеру ее внутреннего отверстия). В окне проекции To p (Сверху) постройте окружность с диаметром, соответствующим внутреннему диаметру гайки. После создания сплайна конвертируйте его в NURBS, для чего щелкните на нем правой кнопкой мыши и выполните команду Convert To ► Convert to NURBS (Преобразовать ► Преобразовать в NURBS) контекстного меню. Используя плавающую палитру инструментов NURBS, примените к окружности инструмент Create Extrude Surface (Создать поверхность выдавливанием)
на высоту (значение параметра Amount (Величина) настроек кривой на командной панели) 65 мм.
После выдавливания скопируйте созданный объект и поверните его на 90°. Таким образом получим ответвление в стойке для присоединения гибкого шланга (рис. 9.165).
Чтобы получить сглаженное соединение двух поверхностей, присоедините командой Attach (Присоединить) одну поверхность к другой и создайте между ними фаску, как это было описано выше для ручек. В результате у вас должно получиться основание держателя (рис. 9.166).
Рис. 9.165. Начало моделирования стойки
Рис. 9.166. Держатель после создания фаски
Перейдем к построению верхней части держателя. Ее форма является относительно сложной с точки зрения моделирования стандартными средствами, но можно воспользоваться небольшой хитростью – создать этот объект методом лофтинга.
В окне проекции Front (Спереди) постройте сплайн пути, а в окне Left (Cлева) – два сплайна поперечного сечения (рис. 9.167).
Создайте лофт-объект, для чего выделите сплайн пути и выполните команду Create ► Compound ► Loft (Создание ► Составные объекты ► Лофтинговые). В результате этих операций на командной панели появятся настройки лофт-объекта. В свитке Creation Method (Метод создания) нажмите кнопку Get Shape (Взять форму) и выберите в одном из окон проекций прямоугольник в качестве начальной формы поперечного сечения. После этого в свитке Path Parameters (Параметры пути) задайте параметру Path (Путь) значение, равное 5, затем, щелкнув на кнопке Get Shape (Взять форму), выберите прямоугольник еще раз. Продолжите формирование объекта, задав параметру Path (Путь) значение, равное 15, и выбрав модифицированный прямоугольник (с изогнутыми сторонами). Повторите эту же операцию для пути со значением 85 %. И наконец, последнее значение пути равно 95 % и в качестве формы пути используется правильный прямоугольник (рис. 9.168).
Рис. 9.167. Форма сплайнов пути и профиля в окне проекции фронтального вида (а) и вида слева (б)
Рис. 9.168. Лофт-объект, построенный в верхней части держателя душа
ПРИМЕЧАНИЕ
Возможно, при построении лофт-объекта у вас окажутся перевернутыми сплайны поперечных сечений. Чтобы это исправить, можно выделить форму поперечного сечения на уровне подобъектов Shape (Форма) лофт-объекта и поворачивать ее до правильного положения в пространстве.
Теперь необходимо изменить контуры объекта так, чтобы он стал больше похож на реальный держатель. Для этого воспользуемся деформацией масштабирования из свитка Deformations (Деформации). Щелкните на кнопке Scale (Масштаб), в результате чего откроется окно Scale Deformation (Деформация масштаба), в котором нажмите кнопку Display Y Axis (Показать ось Y) и отожмите Make Symmetrical (Сделать симметричным), чтобы деформация происходила только по оси Y. Добавьте кривой, расположенной в окне Scale Deformation (Деформация масштаба), по четыре точки, симметрично расположенные относительно центра, и одну в середине. После этого скорректируйте их положение так, как показано на рис. 9.169.
Рис. 9.169. Окно Scale Deformation (Деформация масштаба)
В результате этих действий у вас должен получиться почти готовый элемент верхней части опоры (рис. 9.170).
Рис. 9.170. Держатель после применения деформации масштаба
Далее необходимо сделать углубления в верхней части держателя. Обычно я выполняю подобную работу при помощи редактирования полигональной поверхности на уровне подобъектов. Но есть более простой, хотя и не самый лучший путь – булева операция вычитания.
СОВЕТ
Я настоятельно не рекомендую злоупотреблять булевыми операциями, так как геометрия, получаемая после таких вырезаний, становится почти непригодной для дальнейшего редактирования. Кроме того, такая операция иногда приводит к аварийному завершению программы. В связи с этим перед применением булевых операций необходимо сохранить файл и проверить объекты на наличие ошибок (можно воспользоваться модификатором STL Check (STL-тест)). Применять булевы операции лучше всего на завершающей стадии моделирования объекта.
Постройте цилиндр с радиусом 12,5 мм и расположите его в верхней части держателя так, чтобы ось цилиндра совпадала с его верхней кромкой (рис. 9.171).
Рис. 9.171. Объекты, подготовленные для булевой операции вычитания
Выделите держатель и выполните команду Create ► Compound ► Boolean (Создание ► Составные объекты ► Булев). В свитке Pick Boolean (Указать булев) щелкните на кнопке Pick Operand B (Указать операнд Б) и в одном из окон проекций выберите построенный цилиндр в качестве второго операнда. В результате у вас должна получиться геометрия верхней части держателя, как показано на рис. 9.172.
Займемся моделированием ручки душа. Здесь форма объектов сама подсказывает способы моделирования: наконечник с сеткой необходимо выполнять при помощи NURBS, среднюю часть как Surface-поверхность, а конечную – вращением сплайна.
Рис. 9.172. Модель на данном этапе
СОВЕТ
Большая часть построенных объектов не нужна для продолжения моделирования, поэтому имеет смысл спрятать их при помощи команды Hide (Спрятать), оставив лишь верхнюю часть стойки.
Перейдем к построению NURBS-кривых. Основная форма, завершающаяся сеткой, напоминает колокольчик размером 50 x 55 мм. Ее мы сейчас и построим (рис. 9.173).
Рис. 9.173. Форма CV-кривой
Постройте NURBS-кривую и примените к ней инструмент Create Lathe Surface (Создать поверхность вращением) плавающей палитры инструментов NURBS так же, как это описано выше для ручек кранов. В результате у вас должен получиться объект, подобный показанному на рис. 9.174.
Рис. 9.174. Поверхность, построенная вращением
Построение второй CV-кривой у вас не должно вызвать проблем, так как мы уже не раз выполняли такое построение, кроме того, данная кривая имеет простую форму (рис. 9.175).
Рис. 9.175. CV-кривая для формы вращения
СОВЕТ
При работе с CV Curve (CV-кривая) бывает сложно создавать прямые углы или небольшие закругления, потому что NURBS старается сгладить кривую, расположенную между точками. Чтобы этого избежать, можно располагать соседние точки ближе, а также применять к ним весовой коэффициент (параметр Weight (Вес) в свитке CV уровня подобъектов Curve CV (Управляющие вершины кривой)), что я в данном случае и сделал для угловой точки.
Как и в предыдущих случаях, необходимо выполнить сглаженное объединение двух построенных объектов. Как вы уже знаете, чтобы построить фаску между двумя объектами, необходимо в первую очередь присоединить одну поверхность к другой (воспрользовавшись иструментом Attach (Присоединить)), а затем применить инструмент Create Fillet Surface (Создать поверхность-фаску)
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.