Электронная библиотека » Коллектив Авторов » » онлайн чтение - страница 4


  • Текст добавлен: 18 июля 2015, 22:00


Автор книги: Коллектив Авторов


Жанр: Культурология, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Показывая некоторые примеры цифровой факсимильной репродукции живописи, мы хотели бы подчеркнуть, что научное исследование иконописи без экспертных подходов, без использования комплексных методов в прошлом часто приводило к неверным атрибуциям и реставрационным решениям. К сожалению, и сегодня при искусствоведческой атрибуции порой обходятся без наглядных аргументов и лабораторных экспертиз. Однако это неприемлемо и рискованно при принятии реставрационных решений, на практике ведет к утрате подлинности и, кроме невосполнимых потерь, к отсутствию документальных свидетельств реставрационного вмешательства.

Не имея возможности изменить ситуацию в реставрационной практике в целом, мы пытаемся путем разработки технологии цифровой фотофиксации дать реставратору-художнику средство самоконтроля и мониторинга живописи для консервации, что, с нашей точки зрения, является продолжением и развитием реставрационной научной традиции в России.

И. В. Бурцева, О. И. Перминова, М. А. Рычкова
Зеленые пигменты миниатюр рукописного сборника «Апокалипсис» из коллекции В.В.Егорова

Сборник «Апокалипсис» XVI–XVII вв. из коллекции В. В. Егорова представляет собой составную рукопись, написанную полууставом на 232 листах с 332 двусторонними и односторонними миниатюрами в лист, выполненными в акварельной манере. В состав сборника входят 4 произведения:

1. «Апокалипсис» с толкованиями Андрея Кесарийского (лл. 1–94)

2. «Слово Иоанна Богослова на Успение Пресвятой Богородицы» (лл. 96–132 об.)

3. «Слово похвальное на зачатие Иоанна Предтечи, 23 сентября» (лл. 133–187)

4. «Сказание о чудесах Михаила Архистратига, 8 ноября» (лл. 188–231 об.) К «Апокалипсису» относятся – 72 миниатюры, большая часть которых воспроизведена в издании «Русская Библия» (М, 1992 г., Т. 8). По мнению искусствоведа Ю. А. Неволина [1], «Апокалипсис» был включен в состав сборника позднее остальных, «Слово похвальное на зачатие Иоанна Предтечи» может датироваться периодом, охватывающим 50-е и начало 60-х гг. XVI в., «Сказание о чудесах Михаила Архистратига» (по Неволину, «Сказание о чудесах архангела Михаила») – 60-ми гг. XVI в., «Слово Иоанна Богослова на Успение Пресвятой Богородицы» – концом 60-х – началом 70-х гг. XVI в. В это время русское книгописное искусство характеризуется появле нием большого числа лицевых полностью иллюстрированных рукописей. Второе, третье и четвертое произведения сборника, как считает Ю.А.Неволин, связаны общностью происхождения – они появились в мастерских Московского Кремля и украшены, вероятно, одним художником, несомненно, знакомым с западноевропейским искусством. Анализ живописи показывает, что имелось три стадии разработки сюжета:

– стадия легкого карандашного рисунка;

– тщательная прорисовка пером (как правило, использовались железо-галловые чернила);

– раскраска, после которой повторялась опись.

Состояние сохранности миниатюр в сборнике различно. По степени и виду повреждений их можно разделить на четыре группы, которые практически совпадают с составными частями книги. Наиболее руинированы миниатюры второй рукописи сборника, где наблюдаются значительные провалы по зеленой краске в той или иной степени во всех двусторонних миниатюрах. Третья и четвертая части книги имеют одинаковую степень повреждения миниатюр по зеленой краске – трещины, незначительные утраты и провалы. В первой части сборника повреждений по зеленой краске практически нет, здесь при первичном осмотре можно увидеть только осыпание красочного слоя, но на просвет в некоторых местах замечено начинающееся трещинообразование.

Технико-технологическое исследование документа было начато с анализа красочного слоя миниатюр – зеленой краски, где имелись значительные утраты и повреждения. При исследовании был использован разработанный подход к анализу красочного слоя книжных миниатюр [2, 3], который включает использование следующих методов анализа: микрохимического, ИК-Фурье-микроспектроскопии, микроспектроскопии комбинационного рассеивания, элементный анализ методом ICP-MS (масс-спектроскопия с индуктивно-связанной плазмой).

Основная часть исследований выполнена методами микрохимических капельных реакций и ИК-Фурье-спектроскопии (спектрофотометр «Scimitar», совмещенный с микроскопом «UMA-400», фирма «Varian», США) в режимах отражения от поверхности и НПВО (нарушенное полное внутреннее отражение) в диапазоне частот от 4000 см–1 до 500 см–1. При анализе спектров использовалась собственная база данных на ацетат меди, а также база данных испанских исследователей [4], обработка спектров осуществлялась по прикладной программе Resolutions.

Цель работы заключалась в анализе зеленого пигмента из всех составных частей сборника в наиболее проблемных местах.

Результаты и обсуждение

Первоначально методами микрохимического анализа, используя тест-полоски фирмы «Merck» и капельные реакции на медь с хлоридом железа (III) [5] и желтой кровяной солью К4[Fe(CN)6], было установлено, что в состав всех исследованных проб зеленых красок входит ион меди (Cu+2). Русские живописцы [6, 7] использовали ряд красок, в состав которых входила медь: атакамит, глауконит, малахит, ярь-медянка. Нельзя также исключить присутствие зеленых красок, содержащих мышьяк. Известно [7–10], что медьсодержащие краски катализируют разрушение целлюлозы, причем наиболее сильно – хлориды и ацетаты. Проведенный анализ проб тест-полосками на присутствие ионов хлора и мышьяка дал отрицательный результат. Он был подтвержден элементным анализом некоторых проб методом ICP-MS. На основании этого и анализируя состояние миниатюр и степень повреждения тех мест, откуда были взяты микропробы, было сделано предположение, что зеленой краской может являться ацетат меди, известный под названиями ярь-медянка и медянка, но нельзя было исключить и присутствие малахита, поскольку часть миниатюр находится в хорошей степени сохранности.

Дальнейшее исследование проб проводилось методом ИК-Фурье-спектроскопии. Были исследованы пробы зеленой краски со страниц 16, 31, 111, 128, 160, 167, 186 (ил. 1), представлены спектры отражения зеленой краски, которые имеют высокую степень идентичности, т. е. при создании миниатюр автор использовал одну и ту же краску. В спектрах отсутствует характерная для карбонатной группы (СО3–2) полоса поглощения в области 872–877 см–1, что исключает присутствие в составе краски карбонатов – малахита.

В полученных спектрах проявляются как характерные для ацетатов меди полосы, так и дополнительные – 2917–2921 см–1, 2850–2851 см–1, 1650–1640 см–1 – характерные для белковых соединений, что указывает на наличие яичного (очень сильные линии 2917–2921 см–1, 2850–2851 см–1, характерные для яичного желтка) белкового связующего. Полосы отражения 1587–1584 см–1, 1440 см–1 были отнесены к нейтральному ацетату меди, 1560–1550 см–1 и полоса в районе 1410 см–1 к основному ацетату меди. В ряде спектров были зафиксированы достаточно интенсивные полосы в районе 1080 см–1 или 1000 см–1, которые нельзя было отнести ни к основному, ни к нейтральному ацетату меди, спектры которых использовались как стандарты. Было сделано предположение, что, вероятно, в нашем случае мы имеем дело со смесью ацетатов меди – отсюда и такое многообразие оттенков зелени на миниатюрах. Старые краски в процессе бытования могли видоизмениться в результате внешних воздействий: влаги, температуры, состава окружающей среды. Семейство соединений под названием «ацетаты меди», как известно, в зависимости от своего стехиометрического состава обладают разной окраской [11–12]: темно-зеленой, светло-зеленой, голубой, серо-зеленой. Естественно, что соотношение полос в спектре также будет изменяться. Если состав краски представляет собой смесь ацетатов меди, то в ИК-спектре имеет место искажение полос, наблюдается их наложение, что вызывает уширения или смещения полос.



Ил. 1. ИК-спектры зеленого пигмента, стр. 158, 128, 31, 16


На примере моногидрата ацетата меди (ч.д.а. ГОСТ 5852-79) проведено исследование изменения физико-химических свойств вещества (цвета, термических характеристик, ИК-спектров) при воздействии температуры и влаги. Исследование термических свойств образца проводилось методами дифференциально-сканирующей калориметрии (ДСК) и термогравиметрическим анализом (ТГА) на установке «ТА-2000» (Du Pont) при скорости нагрева 5 град/мин.

Исходный образец представлял собой кристаллическое вещество голубовато-зеленоватого цвета. При нагревании в интервале температур 87–160оС наблюдался эндотермический эффект 273 дж/г, сопровождаемый потерей веса в размере 8 %, что соответствует отщеплению одной молекулы Н2О. При этом происходит изменение цвета, образец стал почти черным. Однако, при рассмотрении кристаллов под микроскопом видно, что их цвет – темно-зеленый. При дальнейшем нагреве вещество начинает разлагаться, температура начала разложения 180–200оС.

Если к образцу, нагретому до 170оС и охлажденному до комнатной температуры, добавить 1 каплю воды, то цвет образца изменяется. Он приобретает зеленый цвет, подобно хвое. Термограммы ДСК и ТГА этого образца несколько отличаются от исходного образца. Мы также наблюдаем здесь один эндотермический эффект 249 дж/г с потерей веса в 8,9 %, но в более узком диапазоне температур 102–137оС.

Если к образцу, нагретому до 170оС и охлажденному до комнатной температуры, добавить избыток воды, то цвет образца становится грязно-коричневым, но по мере испарения воды он приобретает зеленый цвет разных оттенков.

При перекристаллизации исходного моногидрата ацетата меди из воды образуются мелкие кристаллы голубоватого цвета. Кривые термограмм ДСК И ТГА отличаются от описанных выше. Здесь фиксируются два эндотермических эффекта: первый – 93 дж/г, в интервале температур от комнатной до 94оС с потерей веса в 3 % и второй – 201 дж/г, в интервале температур 104–153оС с потерей веса 8 %. Это говорит о том, что в данном случае образовались ацетаты меди с различным содержанием молекул воды.

Таким образом, совершенно очевидно, что изменение температурно-влажностных условий приводит не столько к разложению вещества как такового, сколько к изменению его стехиометрического состава, что визуально воспринимается как изменение цвета. Эти изменения отразились и на ИК-Фурье-спектрах (ил. 2). Вид полосы (ее ширина и интенсивность) в районе 3500–3000 см–1 указывает на разное присутствие молекул воды в образах. Происходит также сдвиг полос относительного исходного образца и изменение соотношения интенсивностей. Так, для образца Б появляется полоса 1643 см–1 вместо 1597 см–1, увеличивается интенсивность полосы 1032 см–1, она становится более разрешенной. Для образца В вместо полосы 1428 см–1 появляются две полосы 1373 см–1 и 1384 см–1, а образец А характеризуется наличием всех перечисленных дополнительных полос наряду с наличием полос, характерных для исходного моногидрата ацетата меди Г. При сравнении этих спектров со спектрами образцов рукописи было обнаружено, что степень совпадения спектров достигает 60–70 % (ил. 3).

Таким образом, доказано, что во всех проанализированных пробах, принадлежащих разным частям сборника, зеленым красителем является ацетат меди различного стехиометрического состава. Можно утверждать, что составные части сборника имели разную историю бытования. Та часть, где имеет место лишь начало трещинообразования и наблюдается только осыпание красочного слоя, вероятно, написана позднее, чем другие части. Результаты исследования должны быть приняты во внимание при решении проблем атрибуции. Строгое соблюдение температурно-влажностного и светового режимов хранения этого документа является необходимым условием его сохранности.

Литература

1. Неволин Ю. А. Новое о кремлевских художниках-миниатюристах XVI века и составе библиотеки Ивана Грозного [Текст] / Ю. А. Неволин // Советские архивы. – 1982, № 1. – С. 68–70.

2. Бурцева И. В. Современные физико-химические методы, применяемые для анализа красочного слоя книжных миниатюр [Текст] / И. В. Бурцева // Тезисы доклада международной научно-практической конференции «Проблеми збережения, консервацiї, реставрацiї, та експертизи музейных памяток». – Киев, 2005. – С. 45–48.

3. Бурцева И. В., Шарикова А. И. Исследование красочного слоя миниатюр сборника «Апокалипсис» из коллекции В. В. Егорова [Текст] / И. В. Бурцева, А. И. Шарикова // Румянцевские чтения. – М., 2006.

4. www. e-VISART FTIR Database GIF.exe [Электронный ресурс]

5. Halsberghe L., Erhardt D., Gibson L. T., Zehnder K. Simple method for the identification of acetate salts on museum objects [Текст] / L. Halsberghe, D. Erhardt, L. T. Gibson, K. Zehnder // Preprints 14th Triennial Meeting, the Hague, 12–13 September 2005. – V. II. – Р. 639–647.

6. Щавинский В. А. Очерки по истории техники живописи и технологии красок в Древней Руси [Текст] / В.А. Щавинский. – М.-Л.: ОГИЗ. – 1935. – С. 161.

7. Наумова М. М. Техника средневековой живописи [Текст] / М. М. Наумова. – М., 1998.

8. Banik G. Discoloration of Green Copper Pigments in Manuscripts and Works of Graphic Art [Текст] / G. Banik // Restaurator. – 1989, N 10. – Р. 61–73.


Ил. 2. ИК-спектры ацетата меди: а – перекристаллизованный из воды, светло-зеленый, б – перекристаллизованный из воды, грязно-зеленого цвета, в – нагретый до 170оС + вода, г – исходный


Ил. 3. Сравнение спектров ацетата меди со спектрами зеленого пигмента. А. Верхний – спектр ацетата меди, перекристаллизованный из воды, Нижний – спектр зеленого пигмента, стр.160. Б. Верхний – спектр зеленого пигмента, стр. 31, Нижний – спектр ацетата меди, нагретый до 170оС + вода


9. Писарева С. А. Медные пигменты древнерусской живописи [Текст]: дисс., канд. культуролог. наук / С. А. Писарева: М, РГГУ, 1997.

10. Бланк М. Г., Бойченко Е. И., Добрусина С. А., Лебедев Н. Б., Фляте Д. М. Поиск методов реставрации и консервации атласов 16–17 веков, разрушившихся под действием зеленой краски [Текст] / М. Г. Бланк и др. // Теория и практика сохранения книг в библиотеке (сборник). – Л., 1980.

11. Герасимова Т. Я., Киреева В. Н., Писарева С. А. Новый подход к реставрации произведений графики с красочным слоем на основе медьсодержащего пигмента [Текст] / Т. Я. Герасимова и др. // Материалы IV международной конференции «Консервация памятников культуры в единстве и многообразии». – С.-Петербург, 2003. – С. 68–71.

12. Наста К. Разрушение бумаги, вызванное медянкой [Текст]: дисс. магистра / К. Наста: Торунь, Университет им. Н. Коперника.

Т. Д. Великова, Е. С. Трепова
Исследование действия биоцидов на бумагу

Существует большое количество препаратов, способных подавлять рост микроорганизмов, и их количество постоянно растет. Однако далеко не все они по тем или иным причинам применимы для защиты бумаги. Идеального вещества, отвечающего всем предъявляемым требованиям, нет. Непрерывно ведется поиск новых препаратов для защиты документов, пострадавших во время аварий или хранившихся длительное время в неблагоприятных условиях.

Решая вопрос о применении какого-либо препарата в консервации, необходимо проводить лабораторные исследования по определению его биоцидных свойств, поскольку рабочие концентрации, указанные в характеристике биоцида, часто являются ингибирующими только на некоторые виды микроорганизмов в жидкой среде. При введении в бумагу биоцидные концентрации могут оказаться значительно выше рекомендуемых, а также препарат может негативно влиять на физико-химические и механические свойства бумаги.

Материалы и методы

Исследованы пять биоцидов различных фирм Санкт-Петербурга (табл. 1), химический состав которых указан в соответствии с данными фирм-производителей.

Тест-культурой служил микромицет Aspergillus niger van Tieghem. Этот вид часто встречается в хранилищах библиотек и архивов, относится к быстро и активно растущим видам [1].

Для определения минимальной биоцидной и биостатической концентрации (МБЦК и МБСК) жидкую среду Чапека-Докса [2] с концентрацией биоцида от 80 % до 0,001 % заражали суспензией спор A. niger (титр 1–2 млн./см3) и выдерживали при 28±2оС. Рост микромицета оценивали визуально в течение 14 суток. Концентрацию биоцида считали биостатической, если в пробирке не было роста микроорганизмов.

При биостатической концентрации препаратов микроорганизмы не развиваются вообще или их рост значительно подавлен, но споры могут оставаться жизнеспособными, и при возникновении благоприятных условий они способны прорастать, поэтому необходимо определять МБЦК, при которой происходит гибель спор и вегетативного мицелия.

Для определения МБЦК 1 мл жидкой среды, в которой в течение 14 суток не было обнаружено видимого роста микроорганизмов, наливали в чашки Петри на агаризованную среду и равномерно распределяли по ее поверхности. Зараженные чашки Петри инкубировали в термостате при 28±2оС в течение 5–7 суток. В качестве МБЦК, при которой происходит полная гибель микроорганизмов, принимали ту наименьшую концентрацию в жидкой среде, при рассеве из которой рост на агаре отсутствовал.


Таблица 1. Характеристика исследованных препаратов


Обработанные биоцидами и высушенные на воздухе образцы бумаги из 100 %-ной хлопковой целлюлозы опытной выработки (ХЦ) и образцы газетной бумаги (ГБ) диаметром 2,5 см помещали на поверхность зараженной агаризованной среды. Чашки Петри инкубировали в термостате при 28±2оС. Через определенные промежутки времени (4, 7, 11, 15 суток) оценивали эффективность защиты образцов бумаги от поражения грибами по наличию зоны ингибирования как диаметр зоны отсутствия роста микромицетов, начиная от центра чашки (образца).

Этот опыт имитирует условия аварийной ситуации в крайне неблагоприятных условиях – если книги намокли в очень грязной воде (сточной, канализационной, пропитанной органическими веществами и др.) или если после аварии не просушены участки документа, на которых имеются вещества животного или растительного происхождения (мездровый, рыбий, желатиновый, крахмальный, пшеничный клеи).

Одним из условий применения любого препарата для консервации документов является отсутствие его отрицательного действия на свойства бумаги, в том числе на ее физико-механические характеристики. В качестве критерия изменения механических свойств бумаги был взят показатель сопротивления излому по числу двойных перегибов (ЧДП). Определение прочности на излом при многократных перегибах проводили по ГОСТ 1352.2-80 [3]. Испытывали ГБ и ХЦ, обработанные растворами биоцидов в концентрации большей или равной МБЦК. Величину сопротивления излому определяли на приборе И2-I при нагрузке 1 кг для ХЦ и при нагрузке 0,5 кг – для ГБ. Полученные значения сравнивали с ЧДП контрольных образцов – бумаги без обработки и бумаги, смоченной в дистиллированной воде. Изменение механической прочности бумаги при обработке ее биоцидами определяли по формуле:


(ЧДП образца / ЧДП контроля) × 100 %.


Белизну бумаги до и после обработки биоцидами в концентрации большей или равной МБЦК определяли на приборе «Specol» и на Спектрокалориметре СК 1-А при длине волны 457 нм. Для контроля использовались образцы, смоченные дистиллированной водой.

Результаты и обсуждение

В жидкой среде все препараты ингибировали рост микромицета: МБСК составляла 0,0004–0,04 %, МБЦК – 0,02–0,2 %. По сравнению с ранее изученными биоцидами существенного отличия в МБЦК и МБСК данных препаратов нет, кроме Лизоформина. Из пяти исследованных препаратов только в состав Лизоформина входят производные гуанидина, которые хорошо зарекомендовали себя на бумаге.

Для защиты бумаги (МБЦК), как и следовало ожидать, для ее обработки требуются концентрации исследуемых препаратов значительно большие (в 100–400 раз), чем в жидкой среде, кроме Лизоформина (в 50 раз) и Полидеза, который защищает только ХЦ и только при 100 %-ной концентрации (табл. 2).

Лучшим антигрибным действием на хлопковой бумаге обладал препарат Санатекс (МБЦК<5 %), на газетной бумаге – Анти-В (МБЦК = 0,5 %). Полидез в концентрации 100 % предотвращал рост гриба только на ХЦ, а ГБ, обработанная 100 %-ным препаратом Полидез, полностью была покрыта спороносящим мицелием A. niger (рис. 1).

Размер зон ингибирования вокруг образцов бумаги, обработанной препаратами Антиплесень и Санатекс, почти одинаковы, а МБЦК и МБСК у Санатекса несколько ниже (рис. 2). На чашках Петри с образцами бумаги, обработанной различными концентрациями Санатекса, четко видно: чем больше концентрация препарата, тем больше зона ингибирования, причем это увеличение строго пропорционально, что косвенно свидетельствует о способности биоцида равномерно распределяться в бумаге.


Таблица 2. Биостатические и биоцидные концентрации исследованных препаратов



Рис. 1. Минимальные ингибирующие концентрации на бумаге


С увеличением концентрации препаратов Анти-В, Антиплесень и Лизоформин выше МБЦК не происходит пропорционального роста зон ингибирования.

Таким образом, в условиях аварийных ситуаций, сопровождающихся большими количествами органических веществ, которые способствуют развитию грибов, все пять исследованных биоцидов защищают ХЦ. Окончательный выбор биоцида определяется другими характеристиками: действием на физико-механические свойства бумаги, их токсичностью и стоимостью.

После обработки бумаги биоцидами Полидез снижает прочность ГБ на 100 %, ХБ – на 95 %, Лизоформин – на 26 % и 82 % соответственно. Остальные препараты – Анти-В, Антиплесень и Санатекс – увеличивают механическую прочность ГБ, но снижают этот показатель у ХБ на 40–60 %. После обработки препаратом Полидез белизна ГБ снизилась на 23 %. Белизна бумаги после обработки остальными препаратами изменялась в пределах 1–3 % (табл. 3, рис. 3).


Рис. 2. Зона ингибирования роста A. niger при различной концентрации биоцидов на бумаге


Таблица 3. Изменение свойств бумаги после ее обработки биоцидами


Биоцидная концентрация Полидеза в жидкой среде соизмерима с биоцидными концентрациями других препаратов, однако при обработке бумаги он не проявляет защитных свойств. Отрицательное действие Полидеза на механические свойства бумаги (снижение ЧДП) значительно выше, чем у препарата Лизоформин, в состав которого входят четвертичные аммониевые соединения.

Анти-В, Антиплесень и Санатекс оказывают одинаковый биоцидный эффект на тест-культуру, после обработки этими препаратами прочность газетной бумаги увеличивается, белизна не снижается.


Рис. 3. Изменение физико-механических характеристик ХЦ и ГБ после обработки биоцидами


Основываясь на химическом составе пяти исследованных биоцидов, можно было предположить, что лучшие результаты будут получены при испытании препаратов Полидез, рекомендованного для бумажной промышленности, и Лизоформин, в состав которого входят производные гуанидина. Однако три препарата, представленные гетероциклическими сероазотсодержащими соединениями, обладали сходными свойствами. Не подтвержденные предположения могут быть связаны с тем, что кроме указанных активных компонентов в составе рекомендуемых препаратов присутствуют различные наполнители и добавки. Мы еще раз убедились в необходимости при использовании новых биоцидов в консервации документов основываться не на их химическом составе, а на результатах испытаний свойств бумаги или других материалов, обработанных этими биоцидами.

Литература

1. Flieder F., Capderou C. Sauvegarde des collections du Patrimoine [Текст] / F. Flieder, C. Capderou. – Paris: CNRS Editions, 1999. – P. 256.

2. ГОСТ 9.048-89. ЕСЗКС. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов. М.: Изд-во стандартов, 1989. – 20 с.

3. ГОСТ 13525.2-80. Бумага и картон. Метод определения прочности на излом при многократных перегибах.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации