Электронная библиотека » Крейг Вентер » » онлайн чтение - страница 17


  • Текст добавлен: 9 сентября 2015, 13:30


Автор книги: Крейг Вентер


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 17 (всего у книги 30 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Мы же для ускорения геномных исследований использовали метод случайного покрытия генома в комбинации с секвенированием спаренных концов, а также новые математические методы. Главной особенностью нашей работы было применение современных технологий. Сотрудники моей лаборатории секвенирования создавали лучшие библиотеки генов и разрабатывали самые изощренные алгоритмы, а не стремились «застолбить» права на отдельные участки генома. Шампанское рекой лилось на вечеринке в честь завершения секвенирования Haemophilus influenzae – впервые были наглядно продемонстрированы перспективы использования метода дробовика для расшифровки всего генома, и наконец-то появилась возможность расшифровки, сравнения и анализа ДНК живых существ.

Коллеги и конкуренты узнали о нашем успехе в Англии, где Ричард Моксон из Оксфорда организовал четырехдневное совещание под эгидой Wellcome Trust. Моксон много лет работал в Университете Джона Хопкинса, считал Хэма Смита своим учителем и был «абсолютно сражен» достижениями TIGR. Он не сомневался в успешном завершении проекта. Зато сотрудник Wellcome Майкл Морган, известный скандалист, разделял позицию Уотсона – что я-де ставлю под удар мировое научное сообщество и представляю серьезную угрозу для Института Сенгера.

В это время Клайд Хатчисон пришел к выводу, что паразитическая бактерия Mycoplasma genitalium, живущая в мочеполовой системе человека, может стать подходящим кандидатом для секвенирования генома, поскольку она обладает самым маленьким геномом среди свободноживущих организмов. Хэм знал, что мы сумеем просеквенировать этот геном очень быстро, и с большим удовольствием позвонил из моего кабинета Клайду, пригласив его на встречу в Великобритании через несколько месяцев, и, между прочим, поинтересовался, не хочет ли Клайд, чтобы к тому времени геном M. genitalium просеквенировали? Почему бы и нет, ответил тот. (Позже Хатчисон говорил: «Мы бы закончили секвенирование M. genitalium лишь к 2000 году, если бы не ваше предложение».)

Несмотря на то, что тогда мы уже завершили секвенирование первого генома, я предпочел отложить обнародование нашего триумфа и собирался сделать нечто большее, чем просто секвенирование последовательности ДНК. Я хотел проанализировать геном, выяснить, что именно последовательность может рассказать о характеристиках этого вида живого организма, а затем написать основополагающую статью и установить некий стандарт в этой области.

Интерпретация генетического кода и специфических генов – непростой процесс. Никогда раньше ничего подобного для свободноживущего организма в таком полном объеме не делалось. У нас имелось 1,8 миллиона строк As, Cs, Ts, и Gs, которые необходимо было проанализировать и перевести на английский язык, а для этого нам нужно было новое программное обеспечение и новые методики.

Интереснее всего было бы обнаружить гены этого организма, блоки генетического материала (как правило, около 900 пар оснований кода, эквивалентных 300 аминокислотам), которые фактически являются схемами синтеза белков. Так называемые «открытые рамки считывания» содержат участки генетического кода, который описывает все аминокислоты первичной структуры белка. Бактерии не имеют интронов (не несущих информации участков ДНК), которые разбивают гены и все усложняют, поэтому мы могли находить все открытые рамки считывания в геноме, а затем выяснять, какой белок кодировали эти последовательности, тщательно просматривая общедоступные базы данных и отмечая аналогичные генетические последовательности.

Как всегда, мы доверяли консерватизму матери-природы и полагали, что если белок выполняет определенную работу, скажем, в E. coli, он наверняка делает то же самое в H. influenzae. Однако эта бактерия имела около пары тысяч генов, и на такое исследование требовалось много времени. Из-за скудости информации в общедоступных базах данных методика работала только для 6 из каждых 10 генов. Остальным не находилось никаких соответствий среди известных белков или генов, и поэтому они были зарегистрированы как новые гены с неизвестной функцией. Затем мы построили гигантскую диаграмму метаболизма всех идентифицированных генов и вероятные пути метаболизма, которые демонстрируют, как один ген «разговаривает» с другими, чтобы эта бактерия занималась своими повседневными делами. Такое построение оказалось очень увлекательным занятием, потому что у нас появилась возможность получать более подробную информацию, как этот организм функционирует, и каждый день отражать эту информацию в его метаболической диаграмме. Но мне все равно хотелось большего.

Да, мы первыми в мире получили набор генов, необходимых для элементарной жизнедеятельности организма, но полученные данные оставались удручающе неполными. А ведь заполнив все пробелы, мы бы раскрыли тайны эволюции этого вида, да и не только. Но нам с Хэмом пришлось согласиться, что эти проблемы выходят за рамки данного уровня анализа, а потому придется заняться ими в другой раз. Мы решили суммировать наши результаты и отправить статью в Science. Я позвонил тамошнему редактору Барбаре Ясны и рассказал о наших достижениях. И ей, и другим редакторам это показалось очень интересным. Мы обговорили даже вид обложки журнала, если статья получит положительную оценку экспертов.

Нам пришлось раз сорок переписывать статью! Мы знали, что она станет исторической, и я настаивал на максимальной точности изложения. Вопрос о том, кого указывать в качестве авторов, довольно сложен, особенно когда речь идет о «Большой Биологии», а в нашей работе участвовала буквально целая армия, начиная от молекулярных биологов, математиков и программистов до сотрудников лаборатории секвенирования. И порядок упоминания авторов чрезвычайно важен: главные указываются первыми или последними в списке. После фамилии одного из них ставится адрес для переписки. Наилучший вариант для молодого ученого – стать первым в списке авторов и одновременно адресатом для переписки. Если ваше имя стоит в списке последним и указаны ваши координаты, это означает, что вы – главный ответственный за ее содержание, а младшие коллеги внесли в исследование значительный вклад. Перепробовав разные варианты, мы остановились на кандидатуре Роба Флейшмана в качестве первого автора, а меня и Хэма поставили последними, потому что мы были главными в этой работе. В итоге все были просто счастливы, что приняли участие в грандиозном достижении и стали авторами важнейшей статьи. И наконец, настал заключительный этап перед публикацией – мы отправили ее в Science на рецензирование.

Как правило, отзывы коллег часто бывают весьма критическими, но на этот раз мы получили, пожалуй, лучшие из когда-либо виденных мной рецензий. По просьбе рецензентов мы внесли некоторые изменения в статью и отправили обратно в Science, где ее должны были напечатать в июне 1995 года. Но, конечно, слухи о нашем успехе появились уже за несколько недель до публикации. В результате меня пригласили выступить с главной лекцией на ежегодном заседании Американского общества микробиологов 24 мая в Вашингтоне. Я согласился с условием, что вместе со мной выступит и Хэм.

Научные журналы – это бизнес, они зарабатывают деньги на подписке и рекламе, поэтому неудивительно, что такие издания, как Science и Nature, пытаются помешать утечке информации о своих материалах до их публикации. В противном случае на статьи накладывается «эмбарго», а журналистов, которые сообщают о них в прессе или в эфире до официальной публикации, лишают доступа к пресс-релизам о содержании будущего номера журнала. Ученым, нарушающим это эмбарго и открыто обсуждающим свои работы до их появления в печати, нередко отказывают в публикации статей. Эта система на руку журналам, но, конечно, идет вразрез с основополагающим принципом открытого и свободного общения, основы науки. Мы с Хэмом не хотели упустить шанс представить первый в истории свободноживущий геном вниманию нескольких тысяч микробиологов (в заседании Общества приняли участие более 19 тысяч ученых), которые могли бы лучше, чем кто-либо, оценить результаты нашей работы. Редакция Science сначала возражала, но правила не запрещают проведение научных презентаций, если их организаторы не дают интервью для прессы.

В тот вечер мы с Хэмом, очень торжественные, прибыли на конференцию в костюмах и при галстуках. Я окинул взглядом огромный зал на тысячи мест, подключил свой компьютер, проверил качество изображения рисунков на гигантских экранах и почувствовал, что начинаю нервничать. Масштаб мероприятия был поистине пугающим, и к тому же мне предстояло выступить со своим первым докладом по микробиологии перед ведущими учеными в этой области, самыми «сливками» микробиологии. Меня пугали возможные традиционные вопросы о патентах и о причинах враждебного отношения ко мне коллег-генетиков. Но я был обязан все выдержать…

Мне стало особенно трудно, когда президент Общества микробиологов Дэвид Шлезингер объявил об «историческом событии». Затем Хэм представил меня в своей обычной теплой манере и начал рассказывать, как мы создали библиотеки ДНК генома Haemophilus, и как важно было разбить ДНК на фрагменты определенного размера таким образом, чтобы при случайной выборке из миллионов фрагментов лишь от 20 до 30 тысяч из них статистически представляли собой всю ДНК генома. Я продемонстрировал, как мы облегчили процесс сборки, применив метод секвенирования спаренных концов к обоим концам каждого фрагмента. Затем показал, как мы использовали разработанные на основе метода EST алгоритмы и мультипроцессорный компьютер с массовым параллелизмом, чтобы собрать 25 тысяч случайных последовательностей в крупные контиги, покрывающие большую часть генома, а затем провели спаривание последовательностей с концов этих контигов и заполнили оставшиеся пробелы. В результате 1,8 миллиона пар оснований генома были с помощью компьютера соединены в правильном порядке. Мы преобразовали аналоговую версию мира биологии в цифровой мир компьютеров.

Но самое интересное было впереди. Я поведал собравшимся, как мы использовали геном для изучения биологических характеристик этой бактерии, как она вызывает менингит и другие инфекции. И это было еще не все. На самом деле для проверки метода мы секвенировали еще один геном – самый маленький из известных геномов паразита Mycoplasma genitalium. Когда я закончил свое выступление, все в зале одновременно встали и устроили мне продолжительную овацию. Я был очень взволнован, – это было так неожиданно, я никогда раньше не видел акой единодушной спонтанной реакции на научной конференции.

У Science были все основания для беспокойства по поводу моего выступления: презентация вызвала лавину обсуждений и оценок еще до выхода в свет нашей статьи. Заголовок в самом журнале гласил: «Вентер побеждает в гонке за секвенирование – дважды» и там же было процитировано высказывание Коллинза о «выдающемся историческом событии»{77}77
  Nowak R. «Venter Wins Sequence Race – Twice», Science, № 268, 1273, June 2, 1995.


[Закрыть]
. Журнал Time выразился так: «Получив отказ в государственном финансировании по причине ненадежности своего метода, Вентер использовал личные средства, обошел ученых, получивших такое финансирование, и достиг, даже по мнению конкурентов, “значительных результатов”»{78}78
  Time, June 5, 1995, p. 21.


[Закрыть]
. А The New York Times писала: «Словно в подтверждение того, что секвенирование генома Haemophilus не было простой случайностью, в конце своей лекции доктор Вентер достал “очередного кролика из шляпы” и сообщил о секвенировании генома еще одного свободноживущего организма»{79}79
  Wade N. «Bacterium’s Full Gene Makeup Is Decoded», The New York Times, May 26, 1995, p. A16.


[Закрыть]
. И далее: «Благодаря своим достижениям, доктор Вентер вполне может стать членом того самого научного сообщества, с которым он давно не в ладах из-за любви к ускоренным методам секвенирования генома, эффективность которых другие специалисты считают маловероятной».

Мы все – я, Хэм, моя команда – были счастливы, ведь мы помнили, сколько нам пришлось пережить за это время – интриги НИЗ, враждебность или полное равнодушие коллег…

А впереди нас ждали новые неприятности.

В свое время Хазелтайн и SmithKline Beecham не разрешили мне публиковать результаты секвенирования EST, и тогда наши коллеги-ученые были возмущены, думая, что это мое решение. Теперь, когда дело дошло до Haemophilus и секвенирования всего генома, я, найдя лазейку в соглашениях между HGS и TIGR, понял, что они распространялись только на секвенирование отдельных последовательностей EST, – возможность сборки геномов целиком тогда не рассматривалась.

В распоряжении HGS значились 6 месяцев (с момента передачи результатов TIGR), – время отбора генов для коммерческого использования, после чего можно было публиковать результаты. И вот в случае с Haemophilus я начал передавать в HGS необработанные результаты секвенирования еще до их сборки. На протяжении 4 месяцев в компьютеры HGS было закачано 25 тысяч бактериальных последовательностей, что вызвало у специалистов скорее замешательство, чем интерес. Когда же мы начали «сшивать» все последовательности воедино в геном и стало понятно значение нашей работы, недоумение сменилось откровенной враждебностью.

Отчасти дело было в том, что когда конкуренты HGS принялись штамповать EST человека со все возрастающей скоростью, Хазелтайн пришел в ужас, обнаружив, что мы секвенируем всего лишь геномы бактерий. «Я до вас доберусь!» – зарычал он на одном заседании Совета директоров TIGR, но затем сменил гнев на милость, когда руководство SmithKline осознало коммерческую ценность результатов секвенирования и решило, что эти результаты помогут им в разработке новых вакцин и антибиотиков. И тут уже привычно ожесточенные споры по поводу разрешения на публикацию результатов начались всерьез.

Хазелтайн утверждал, что часы «коммерциализации» начнут «тикать» только после того, как HGS получит полную последовательность генома. Это, разумеется, позволит сохранить геном в секрете еще полтора года. Но я просто не мог допустить, чтобы HGS подала заявку на патент генома или помешала нашей публикации и лишила нас шанса стать первыми в соревновании за расшифровку генома. А Хазелтайн прекрасно понимал, что если мы первыми в истории расшифруем геном, то потом, безусловно, легко обойдемся без HGS. Хазелтайн пригрозил подать в суд, чтобы заблокировать публикацию генома, и нанял для этой цели адвокатов.

Ежедневно получая все новые и новые требования, я осознавал, что компромисс может оказаться фатальным для TIGR и всей моей карьеры. Сколько времени я отдал тогда на бесконечные консультации с Стивом Паркером и его командой юристов! А Хазелтайн повысил ставки и привлек влиятельного вашингтонского адвоката, только что ушедшего в отставку с поста советника президента США.

Теперь он планировал подать в суд для получения судебного запрета и одновременно собирался запатентовать геном. Но вскоре выяснилось: чтобы выиграть процесс, HGS придется доказывать в суде, как именно публикация моей статьи может нанести вред его бизнесу, – непростая задача для компании, не занимающей исследованием микроорганизмов.

В последний момент, через этого бывшего адвоката президента, компания HGS предложила компромисс: если я предоставлю им полную последовательность генома до отправки статьи в Science, они пойдут на уступки. Чувствуя, что выиграл право на публикацию, я согласился, и требуемые данные были переданы в HGS, а мы отправили статью в журнал. Однако я не сумел предугадать поведения патентного поверенного Роберта Миллмана. С хвостиком и бородой, всегда экстравагантно одетый, рыжеволосый Миллман имел среди специалистов в области патентного права высокую репутацию, да еще у него был опыт работы в области молекулярной биологии.

С его помощью HGS сумела-таки оформить патент до публикации моей статьи, хотя это и стоило им немалых денег. Патентная заявка на 1200 страницах содержала 1,8 миллиона пар оснований генома бактерии. Точно так же, как и тысячи других патентных заявок, поданных HGS и Миллманом, она представляла ценность только для патентных адвокатов. Единственным ощутимым последствием этой агрессивной патентной политики стало вызванное ею невероятное возмущение научного сообщества.

Статья о геноме Haemophilus была опубликована в Science 28 июля 1995 года, в список авторов вошли сорок человек, и в качестве главных авторов были указаны мы с Хэмом{80}80
  Fleischmann R. D., Adams M. D. et al. «Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd», Science, № 269, 496–512, 1995.


[Закрыть]
. Статью анонсировали на обложке, в журнале поместили подробную генетическую карту: зеленым цветом были показаны гены, участвующие в энергетическом метаболизме, желтым – копирующие и восстанавливающие ДНК, и так далее. Почти половина генов оказались неокрашенными – их роль была неизвестна. В статье описывалось не только содержимое генома, но и то, чего в нем не хватает. Мы расшифровали лабораторный штамм Rd, не вызывающий никакого заболевания, и нашли, что в нем нет полного набора генов, связанных с инфицированием. Мы обнаружили, что некоторые метаболические пути этого гена неполные, в частности, в цикле Кребса (цикле энергетики клетки) не хватает половины ферментов. В результате, для роста этого вида организма требуются высокие концентрации глютамата. Однако видный биохимик из Стэнфорда сказал, что мы наверняка тут «напортачили», ведь все знают, что в каждой клетке осуществляется весь цикл Кребса. Но впервые секвенировав геном микроорганизма, мы узнали, что существуют клетки, в которых отсутствует цикл Кребса, и такие, в которых энергетика целиком связана с ним.

В том же номере Science мы опубликовали еще одну статью, в которой объяснялось, как Haemophilus может ускорить свою эволюцию путем обмена участками ДНК с другими бактериями своего типа, как бы обновляя свой геном{81}81
  Smith H. O., Tomb J.-F. et al. «Frequency and Distribution of DNA Uptake Signal Sequences in the Haemophilus influenzae Rd Genome», Science, № 269, 538–40, 1995.


[Закрыть]
. Хэм нашел ключ к механизму обмена в уникальной последовательности из 9 пар оснований, 1465 копий которых «разбросаны» по всей длине генетического кода, в середине генов. Определенные молекулы на поверхности бактерии связываются с этой последовательностью и доставляют ДНК в клетку. Существует не так много способов такой доставки. Поразительно, что в этом механизме обновления «программного обеспечения» намного меньше возможностей для изменения, чем в самом программном обеспечении; создается впечатление, что для выживания бактерии важнее количество нового программного обеспечения, а не качество.

Одно из самых интересных открытий было сделано командой Ричарда Моксона из Оксфорда. При изучении гена, который кодирует фермент, катализирующий образование молекул липоолигосахаридов на поверхности бактерии, они обнаружили, почему наши организмы с таким трудом борются с микроорганизмами. Позже Моксон вспоминал, как «мы с Дереком Гудом определили более 20 новых, ранее нераспознанных генов на пути синтеза липополисахаридов всего лишь за несколько недель».

Его команда обнаружила, что имеются повторяющиеся участки последовательности ДНК перед геном, при копировании которого в дочерние клетки ДНК-полимеразой возникают ошибки. После расшифровки всего генома мы обнаружили, что здесь сидит ряд генов, ответственных за синтез определенных молекул на клеточной поверхности. Этим остроумным способом бактерии постоянно изменяют свои антигены на поверхности клеток, чтобы новые штаммы были на один шаг впереди иммунной защиты организма. Этот процесс можно наблюдать при функционировании дыхательной системы: как только организм распознает один штамм, на смену ему приходит другая версия Haemophilus. Теперь мы знаем, что похожие механизмы встроены в генетический код и других патогенов человека. И это одна из причин, почему мы никогда не сможем выиграть войну против инфекционных заболеваний, а лучшее, что мы способны придумать, – это быть на шаг впереди эволюции бактерий.

23–26 апреля Моксон организовал в Оскфорде конференцию, которая прошла очень успешно. Один из участников вспоминал: «Крейг, выскочив на трибуну, стал рассказывать, как собирался геном Haemophilus influenzae, – его выступление произвело потрясающий эффект, и всем стало ясно, что в микробиологии наступают великие перемены. Так оно и случилось». Я не только приехал на эту конференцию и выступил с докладом, но и привез с собой компакт-диск с результатами секвенирования последовательности Haemophilus и генома Mycoplasma. Участники конференции часами изучали наши результаты. «Вот оно. Вот, что такое этот организм», – заметил один из них{82}82
  Shreeve J. The Genome War: How Craig Venter Tried to Capture the Code of Life and Save the World (New York: Ballantine, 2005), p. 110.


[Закрыть]
.

В TIGR как раз тогда заканчивались деньги, а тут замаячили неограниченные возможности. Ричард хотел подать заявку на финансирование от Wellcome, чтобы его оксфордская лаборатория совместно с TIGR могла заняться расшифровкой генома бактерии Neisseria meningitis, заражение которой является основной причиной менингита у детей. У меня была неловкая встреча с Морганом, когда выяснилось, что «геномный король» компании Wellcome даже не читал наших статей в Science. Тем не менее отдел Wellcome по инфекциям и иммунитету рекомендовал считать программу секвенирования генома Neisseria mening itis приоритетной, учитывая количество заболеваний, инвалидности и летальных исходов при менингите. Обычно за этим, как пустая формальность, следует одобрение Wellcome Trust. Но на этот раз возникла проблема, связанная с не утвержденным американскими властями статусом TIGR как некоммерческой организации, и в связи с этим – опасения, что благотворительные пожерствования могут пойти в доход HGS. Морган наложил вето на исследования генома менингита из-за возможных юридических проблем с Комиссией по благотворительности Великобритании. Я начал было секвенирование геном бактерии, но вынужден был приостановить работу.




Письмо, присланное мне Сенгером:

«Уважаемый доктор Вентер, большое спасибо за копию Вашей превосходной статьи о секвенировании Haemophilus Influenzae. Результаты, безусловно, впечатляют. Мне было очень интересно узнать подробности использования метода дробовика. Он всегда меня очень интересовал, но проблема была в том, что он не пользовался популярностью среди моих коллег. Каждому нравилось заниматься своим собственным участком последовательности. Полагаю, что сейчас, с ростом автоматизации, это перестало быть проблемой. Многое, безусловно, изменилось со времени работы над бактерией лямбда.

Еще раз поздравляю Вас.

С наилучшими пожеланиями, искренне Ваш, Фред Сенгер».

Вскоре статья о результатах секвенирования Haemophi lus стала самой цитируемой среди публикаций по биологии. Профессор Стэнфордского университета Люси Шапиро рассказывала, как ее сотрудники всю ночь напролет тщательно изучали эту статью. Мы получали сотни поздравлений по электронной почте с признаниями: «Теперь мы понимаем, что это такое – геномика» и «Это настоящее начало геномной эры». Фред Сенгер даже прислал написанную от руки милую записку по поводу публикации генома Haemophilus, где отметил, что всегда верил в мой метод.

Нашу работу называли «колоссальным подвигом с огромным потенциалом для медицины двадцать первого века». В газете The New York Times Николас Уэйд выразился весьма поэтично: «Жизнь – это невыразимая, непостижимая тайна, одна из немногих вещей на свете, точно описать которую раньше казалось абсолютно невозможным. И, тем не менее, сейчас, впервые за всю историю, перед нами химически точное определение полной генетической схемы свободноживущего организма»{83}83
  Wade N. «First Sequencing of Cell’s DNA Defines Basis of Life», The New York Times, August 1, 1995, p. C1.


[Закрыть]
. Даже Джим Уотсон назвал это «великим моментом в науке». Интересно, дочитал ли Уотсон статью в Science до конца? Там я рассуждал о том, что «описанные здесь методы являются предпосылками для секвенирования генома человека». В сопроводительной заметке журнал процитировал еще одно мое высказывание: «Успех секвенирования H. Influenza стал для биохимиков всего мира стимулом к секвенированию генома человека»{84}84
  Nowak R. «Homing In on the Human Genome», Science, № 269, 469, July 28, 1995.


[Закрыть]
.

Вскоре после выхода в печать статьи о Haemophilus мы опубликовали в Science, как и обещали, минимальный геном Mycoplasma genitalium{85}85
  Fraser C. M., Gocayne J. D. et al. «The Minimal Gene Complement of Mycoplasma genitalium», Science, № 270, 397–403, 1995.


[Закрыть]
. В редакционной статье руководитель международной программы по секвенированию генома дрожжей Андре Гоффо напомнил читателям, как в течение многих лет считалось, что первым полностью расшифрованным геномом будет геном бактерии E. coli, «но, ко всеобщему удивлению, гонку выиграл аутсайдер, который сейчас приступил к секвенированию уже второго генома»{86}86
  Goffeau A. «Life with 482 Genes», Science, № 270, October 20, 1995.


[Закрыть]
. Далее он отметил: «Одним из наиболее впечатляющих особенностей метода секвенирования генома M. genitalium является его высокая эффективность, свидетельствующая о мощности используемых в TIGR секвенаторов и вычислительных методов». Клайд Хатчисон прислал нам ДНК M. genitalium в январе 1995 года, а мы представили рукопись статьи уже 11 августа того же года!

Получив второй геном свободноживущего организма, мы положили начало новой дисциплине – сравнительной геномике. Вот некоторые отклики на это событие, опубликованные в журнале The Scientist{87}87
  Kreeger K.Y. «First Completed Microbial Genomes Signal Birth of New Area of Study», The Scientist, November 27, 1995.


[Закрыть]
. «Дэвид Смит из Министерства энергетики заявил: “Я начал читать статью Mycoplasma, посвященную сравнению геномов, и вдруг меня осенило – ого, да ведь это будет совершенно новая область биологии с огромными перспективами”».

Заместитель директора Института генома человека НИЗ, возглавляемого сначала Уотсоном, а затем Коллинзом, Элке Джордан сказал примерно то же: «Думаю, мы продолжим постепенно секвенировать геномы микроорганизмов, а затем, когда станут доступны более крупные, более сложные геномы – такие, как геномы дрожжей, C. elegans и Drosophila, применим к ним кое-что из полученного опыта секвенирования». Хэм прекрасно написал об этом в журнале The Scientist: «Все это Крейг сделал сам, несмотря на сомнения практически всех ученых в этой стране. Они только и ждали, что у него ничего не получится и он опозорится. Но у него получилось даже больше, чем можно было вообразить, и к тому же – гораздо быстрее». А ведь я только-только набирал темп…

Мои длившиеся целый год усилия опубликовать результаты исследований TIGR с применением метода EST наконец-то увенчались успехом – в сентябре 1995 года вышел специальный 377-страничный выпуск «Геномного каталога» журнала Nature{88}88
  Adams M. D., Kerlavage A. R. et al. «Initial Assessment of Human Gene Diversity and Expression Patterns Based Upon 52 Million Basepairs of cDNA Sequence», Nature, № 377, Suppl., 3–174, 1995.


[Закрыть]
. А месяцем раньше я получил некоторое признание среди коллег-ученых: в Nature главный редактор журнала Джон Мэддокс выступил с весьма необычной статьей{89}89
  Maddox J. «Directory to the Human Genome», Nature, № 376, 459–60, August 10, 1995.


[Закрыть]
. Она начиналась так: «“Если вы опубликуете эту вентеровскую бодягу, – услышал я несколько месяцев назад в телефоне хорошо знакомый мне голос, – обещаю, что никто из геномного сообщества США никогда вам больше ничего не пришлет”». После чего Мэддокс продолжил: «Человек, который наверняка узнает себя по этому описанию, – один из самых выдающихся генетиков в США». Впоследствии редактор Nature признался мне, что звонил ему, разумеется, Джим Уотсон.

Мэддокс всегда умел придумывать заголовки, а еще любил и понимал науку, а потому решил печатать нашу статью, несмотря на угрозы. Он написал: «Есть несколько хороших причин, помимо бравады, чтобы опубликовать этот материал. Главная, – и это станет очевидным после выхода Геномного каталога, – данная работа является отличным образцом научного исследования, представляющего большой самостоятельный интерес. Масштаб работы также впечатляет. Общая длина секвенированных на сегодня группой Вентера последовательностей EST составляет 5 миллионов пар оснований, или около 0,15 % генома человека… Более 55 тысяч EST достоверно соответствуют генам, из которых лишь около 10 тысяч зарегистрированы в настоящее время в публично доступных базах данных».

Научное сообщество и пресса с восхищением отнеслись к нашим достижениям. На первых полосах различных изданий появились статьи под заголовками, сообщавшими о начале гонки за расшифровку генома человека: «Пионер генетики открывает свой банк данных»{90}90
  Tanouye E. The Wall Street Journal, September 28, 1995.


[Закрыть]
; «Новый каталог – первый атлас нас самих»{91}91
  Friend T. USA Today, September 28, 1995.


[Закрыть]
; «Заметный прогресс в исследовании генома»{92}92
  Wade N. The New York Times, September 28, 1995.


[Закрыть]
; «Ученые заметили у генов признаки разделения труда»{93}93
  Brown D. Weiss R., The Washington Post, September 28, 1995.


[Закрыть]
, «Новые подробности широкомасштабного проекта расшифровки генома человека»{94}94
  Goetinck S. The Dallas Morning News, September 28, 1995.


[Закрыть]
. Как часто отмечалось, Каталог стал важным шагом на пути, ведущим к пониманию, что же делает нас людьми{95}95
  Goetinck S. The Dallas Morning News, September 28, 1995.


[Закрыть]
.

Я попал на обложку журнала Business Week{96}96
  Carey J. «The Gene Kings», Business Week, May 8, 1995.


[Закрыть]
, и про меня написали в журнале People{97}97
  Jerome R. «The Gene Hunter», People, June 12, 1995.


[Закрыть]
. Журнал U.S. News & World Report отметил, что, несмотря на насмешки и злобные нападки моих критиков, «Крейг Вентер смеется последним»{98}98
  Goodman T. U. S. News and World Report, October 9, 1995.


[Закрыть]
.

Теперь Министерство энергетики выделило нам деньги на секвенирование других микроорганизмов. После долгих обсуждений мы выбрали в качестве третьего объекта для расшифровки генома необычный микроорганизм Methanococcus jannaschii, который обитает в местах, где зарождающийся в недрах Земли горячий, богатый минеральными веществами раствор из гидротермальных источников поднимается со дна моря, подобно столбам дыма. Этот организм был обнаружен в 1982 году батискафом «Элвин» Вудс-Холского океанографического института в кипятке, извергающемся из одного такого «белого курильщика» в Тихом океане на глубине 2400 м, на расстоянии 160 км от мексиканского города Кабо-Сан-Лукас. Это было все равно, что найти на Земле микроскопического инопланетянина: наше весьма выносливое существо прекрасно себя чувствовало бы и на других планетах.

Давление на такой глубине – более 245 атмосфер, что соответствует давлению 260 кг/см². Температура в середине белого курильщика составляет более 329 °C, в то время как температура окружающей воды обычно всего 2 °C. Methanococcus любит нежиться в промежуточных условиях, при температуре воды около 85 °C. Существуя за счет минеральных веществ, а не органических соединений, Methanococcus jannaschii берет углерод из углекислого газа, а для получения энергии использует водород, выделяя в качестве продукта своего метаболизма метан.

Считалось, что Methanococcus jannaschii принадлежит к третьей «ветви жизни» – идея, выдвинутая Карлом Вёзе из Иллинойского университета. Я всегда был высокого мнения о Карле и считал его великим мыслителем. Он высказал предположение, что все биологические виды делятся на три основные класса. Первый – эукариоты, например человек или дрожжи, клетки которых содержат «центр управления» в клеточной структуре под названием «ядро». Второй класс – бактерии и археи, микроорганизмы, обладающие некоторыми сходными с эукариотами чертами, но не имеющие ядра для «хранения» своих геномов. Традиционно, бактерии и археи объединяли в единое царство под названием «прокариоты», и за попытку их разделить Карл был подвергнут осуждению и осмеянию. Он воспринимал нападки коллег гораздо острее, чем я. И вот Карл согласился сотрудничать со мной. По мере секвенирования генома Methanococcus jannaschii он все больше и больше нервничал, и я его прекрасно понимал, зная, насколько важны для него результаты этого исследования. Ему не терпелось изучить данные секвенирования фрагментов, но я уговаривал его подождать, пока мы соберем всю хромосому. К счастью, ему не пришлось ждать слишком долго. Ранее были определены всего лишь несколько генов высокотемпературных организмов, поэтому нам было очень любопытно посмотреть на их отличия от генов Methanococcus.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации