Электронная библиотека » Стивен Хокинг » » онлайн чтение - страница 1


  • Текст добавлен: 14 марта 2018, 14:47


Автор книги: Стивен Хокинг


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Стивен Хокинг
Теория всего

Перевод оригинального издания:

Stephen Hawking

The Theory of Everything

Печатается с разрешения Waterside Productions Inc и литературного агентства «Синопсис».

Оригинальное издание опубликовано Phoenix Books and Audio.

© Phoenix Books and Audio, 2006

© ООО «Издательство АСТ», 2017 (перевод на русский язык)

Введение

В этой серии лекций я постараюсь в общих чертах рассказать о наших представлениях об истории Вселенной от Большого взрыва до образования черных дыр. Первая лекция посвящена краткому обзору идей о строении Вселенной, которых придерживались в прошлом, и рассказу о том, как была построена современная картина мира. Эту часть можно назвать историей развития представлений об истории Вселенной.

Во второй лекции я опишу, как теории гравитации Ньютона и Эйнштейна привели к пониманию того, что Вселенная не может быть неизменной – она должна либо расширяться, либо сжиматься. Из этого, в свою очередь, следует вывод, что в какое-то время в интервале от 10 до 20 млрд лет назад плотность Вселенной была бесконечной. Эта точка на оси времени называется Большим взрывом. По-видимому, этот момент и был началом существования Вселенной.

В третьей лекции я расскажу о черных дырах. Они образуются, когда массивная звезда или более крупное космическое тело коллапсирует под действием собственной гравитации. Согласно общей теории относительности Эйнштейна, каждый, кто окажется достаточно глуп, чтобы угодить в черную дыру, останется там навсегда. Никто не сможет оттуда выбраться. В сингулярности истории существования любого объекта приходит конец. Однако общая теория относительности – это теория классическая, то есть в ней не учитывается квантовомеханический принцип неопределенности.

В четвертой лекции я объясню, как квантовая механика позволяет энергии ускользать из черной дыры. Черные дыры не так уж черны, «как их малюют».

В пятой лекции я расскажу о применении идей квантовой механики к решению вопросов, связанных с Большим взрывом и происхождением Вселенной. Это подведет нас к пониманию того, что пространство-время может быть конечным, но не иметь границы или края. Это напоминает поверхность Земли, но с добавлением еще двух измерений.

В шестой лекции я покажу, как на основе этого нового предположения о границе можно объяснить, почему прошлое так сильно отличается от будущего, хотя законы физики симметричны относительно времени.

Наконец, в седьмой лекции я расскажу о попытках сформулировать единую теорию, охватывающую квантовую механику, гравитацию и все остальные физические взаимодействия. Если нам это удастся, мы действительно сможем понять Вселенную и свое место в ней.

Лекция первая
Представления о Вселенной

Еще в 340 г. до н. э. Аристотель в своем трактате «О небе» сформулировал два веских довода в пользу того, что Земля имеет форму шара, а не является плоской, как тарелка. Во-первых, он понял, что лунные затмения вызваны прохождением Земли между Солнцем и Луной. Тень Земли на Луне – всегда круглая, а это возможно, только если Земля имеет сферическую форму. Если бы Земля представляла собой плоский диск, тень была бы вытянутой и имела бы форму эллипса, за исключением тех случаев, когда в момент затмения Солнце находится точно над центром диска.

Во-вторых, из опыта своих путешествий греки знали, что в южных районах Полярная звезда находится ниже над горизонтом, чем в более северных. Опираясь на разницу видимых положений Полярной звезды в Египте и Греции, Аристотель даже приводит оценку длины окружности Земли – 400 тыс. стадиев. Чему равен один стадий – точно не известно (возможно, около 180 метров). Тогда оценка Аристотеля почти в два раза превосходит значение, принятое в настоящее время.

У древних греков был еще и третий аргумент в пользу того, что Земля должна иметь форму шара: иначе почему на горизонте сначала появляются паруса приближающегося корабля и только потом становится виден его корпус? Аристотель думал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее. Он так считал, поскольку в силу мистических соображений был убежден, что Земля – центр Вселенной, а круговое движение – самое совершенное.

Аристотель считал, что Земля неподвижна, а Солнце, Луна, планеты и звезды движутся по круговым орбитам вокруг нее.

В I веке н. э. эта идея была развита Птолемеем в целостную космологическую модель. Земля располагается в центре, ее окружают восемь сфер, несущих на себе Луну, Солнце, звезды и пять планет, известных в то время: Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты движутся по окружностям меньших радиусов, которые связаны с соответствующими сферами. Это требовалось, чтобы объяснить их достаточно сложные наблюдаемые траектории движения по небу. На внешней сфере расположены так называемые неподвижные звезды, которые сохраняют свои положения относительно друг друга, но все вместе совершают круговое движение по небу. Что находится за пределами внешней сферы – оставалось неясным, но эта часть Вселенной, несомненно, была недоступна для наблюдений.

Модель Птолемея давала возможность достаточно точно предсказывать положения небесных тел на небе. Но для этого Птолемею пришлось допустить, что иногда Луна подходит вдвое ближе к Земле, чем в другие моменты своего движения по предсказанной траектории. Это означало, что периодически Луна должна казаться вдвое больше обычного. Птолемей знал об этом недостатке, но, несмотря на это, его модель была принята большинством, хотя и не всеми. Она получила одобрение христианской церкви, как картина мира, согласующаяся со Священным писанием. Ведь эта модель обладала огромным преимуществом, поскольку оставляла за сферой неподвижных звезд достаточно места для рая и ада.


Старинный рисунок, на котором изображены разные космологические модели, объяснявшие движение планет. На центральной схеме представлена гелиоцентрическая (в центре находится Солнце) модель движения шести известных в то время планет, их спутников и других небесных тел, обращающихся вокруг Солнца. Со второго века доминирующей моделью стала геоцентрическая (в центре находится Земля) система Птолемея (вверху слева). На смену ей пришла гелиоцентрическая система Коперника, опубликованная в 1543 г. (внизу справа). В египетской модели (внизу слева) и модели Тихо Браге (вверху справа) предпринимались попытки сохранить представление о неподвижной Земле как центре Вселенной. Подробные сведения об орбитах планет приведены слева и справа.

Из «Иллюстрированного атласа» Иоганна Георга Хека, 1860 г.


Однако в 1514 г. польский священник Николай Коперник предложил гораздо более простую модель. Сначала, опасаясь обвинений в ереси, он опубликовал свою модель анонимно. Он считал, что в центре находится неподвижное Солнце, а Земля и планеты движутся вокруг него по круговым орбитам. К несчастью для Коперника, прошло почти сто лет, прежде чем его идеи были приняты всерьез. Тогда два астронома – немец Иоганн Кеплер и итальянец Галилео Галилей – публично выступили в поддержку теории Коперника несмотря на то, что орбиты, предсказанные на основе этой теории, несколько отличались от наблюдаемых. Конец господству теории Аристотеля-Птолемея был положен в 1609 г., когда Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.

В 1609 г. Галилео Галилей начал изучать ночное небо с помощью недавно изобретенного телескопа.

Наблюдая Юпитер, Галилей заметил, что планету сопровождают несколько небольших спутников (лун), которые обращаются вокруг нее. Это означало, что не все небесные тела должны обращаться вокруг Земли, как думали Аристотель и Птолемей. Конечно, по-прежнему можно было считать, что Земля неподвижна и находится в центре Вселенной, а спутники Юпитера движутся по крайне сложным траекториям вокруг Земли, так что создается видимость их обращения вокруг Юпитера. Однако теория Коперника была гораздо проще.

В это же время Кеплер развил теорию Коперника, предположив, что планеты движутся не по круговым орбитам, а по эллиптическим. Теперь предсказания теории окончательно совпали с наблюдениями. Что касается Кеплера, эллиптические орбиты были лишь искусственной гипотезой, причем весьма досадной, поскольку эллипс считался менее совершенной фигурой, чем круг. Обнаружив (почти случайно), что эллиптические орбиты хорошо соответствуют наблюдениям, он не мог согласовать это со своей идеей о том, что планеты обращаются вокруг Солнца под действием магнитных сил.

Объяснение было найдено гораздо позднее, в 1687 г., когда Ньютон опубликовал свой труд «Математические начала натуральной философии». Это, возможно, самый важный из когда-либо опубликованных трудов по физике. В нем Ньютон не только предложил теорию движения тел в пространстве и времени, но также разработал математический аппарат для анализа этого движения. Кроме того, он сформулировал закон всемирного тяготения. Этот закон гласит, что все тела во Вселенной притягиваются друг к другу с силой, которая тем больше, чем больше массы тел и чем ближе друг к другу они расположены. Это та же сила, которая заставляет объекты падать на землю. История с упавшим на Ньютона яблоком почти наверняка является вымышленной. Сам Ньютон упоминал лишь о том, что идея гравитации пришла ему в голову, когда он пребывал в созерцательном настроении и заметил падение яблока.

Ньютон не только предложил теорию движения тел в пространстве и времени, но также разработал математический аппарат для анализа этого движения.

Затем Ньютон показал, что, согласно его закону, гравитация заставляет Луну двигаться по эллиптической орбите вокруг Земли, а Землю и другие планеты – следовать по эллиптическим траекториям вокруг Солнца. Коперниканская модель избавилась от небесных сфер Птолемея, а заодно и от представлений о том, что Вселенная имеет естественную границу. Так называемые неподвижные звезды не меняют свои видимые взаимные положения в процессе движения Земли вокруг Солнца. Поэтому естественно было предположить, что это такие же объекты, как наше Солнце, но расположенные гораздо дальше. Это рождало вопросы. Ньютон понимал, что, согласно его теории гравитации, звезды должны притягиваться друг к другу. То есть они не могут оставаться абсолютно неподвижными. Не упадут ли они все вместе в одну точку?

В письме, написанном в 1691 г. Ричарду Бентли, другому выдающемуся мыслителю того времени, Ньютон утверждал, что такое действительно случилось бы, будь число звезд конечным. С другой стороны, если в бесконечном пространстве более-менее равномерно распределено бесконечное число звезд, этого не произойдет, поскольку нет никакой центральной точки, в которую они могли бы упасть. Этот аргумент – пример ловушки, в которую можно угодить, рассуждая о бесконечности.

В бесконечной Вселенной каждая точка может считаться центром, поскольку по любую сторону от нее находится бесконечное число звезд. Как стало ясно намного позднее, правильный подход заключается в том, чтобы рассматривать конечную область, в которой все звезды «падают» друг на друга. Возникает вопрос: что изменится, если добавить в рассмотрение другие звезды, практически равномерно распределенные за пределами этой области? По закону Ньютона, добавление звезд никак не повлияет на исходные звезды – они будут приближаться друг к другу с прежней скоростью. Мы можем добавить сколько угодно звезд, но коллапса не избежать. Теперь мы знаем, что невозможно построить модель бесконечной стационарной Вселенной, в которой гравитация всегда связана с притяжением.

Что интересно, до XX века общий образ мыслей был таков, что никто не предполагал, что Вселенная может расширяться или сжиматься. Считалось, что либо Вселенная существовала всегда в неизменном виде, либо была создана в определенный момент в прошлом примерно такой, какой мы видим ее сегодня. Отчасти это объясняется склонностью людей верить в вечные истины, а также находить утешение в мысли, что, хотя мы стареем и умираем, Вселенная всегда остается неизменной.

До XX века никто не предполагал, что Вселенная может расширяться или сжиматься.

Даже те, кто понимал, что в соответствии с теорией гравитации Ньютона Вселенная не может быть стационарной, не решались предположить, что она может расширяться. Вместо этого они пытались подправить теорию, приписывая силе гравитации свойство отталкивания на очень больших расстояниях. Это почти не сказывалось на прогнозах движения планет, но позволяло бесконечному числу звезд находиться в равновесии, поскольку силы притяжения между близко расположенными звездами уравновешивались бы силами отталкивания между далекими.


Когда-то люди считали, что бесконечное число звезд может находиться в равновесии, поскольку силы притяжения между близкими звездами уравновешиваются силами отталкивания между далекими. Однако сегодня мы понимаем, что такое равновесие было бы неустойчивым. Скопление Квинтоль, одно из крупнейших молодых звездных скоплений в нашей Галактике Млечный Путь, разрушится всего через несколько миллионов лет под действием гравитационных приливных сил в ядре Галактики. Но в течение короткого периода своего существования оно сияет ярче всех остальных звездных скоплений нашей Галактики.


Однако сегодня мы понимаем, что такое равновесие не могло быть устойчивым. Если звезды в некоторой области хотя бы немного приблизятся друг к другу, притяжение между ними станет сильнее и будет преобладать над отталкиванием. Это означает, что звезды продолжат сближаться. С другой стороны, если звезды слегка отдалятся друг от друга, возобладают силы отталкивания и звезды будут удаляться друг от друга.

Еще одно возражение против идеи бесконечной стационарной Вселенной обычно приписывают немецкому философу Генриху Ольберсу. На самом деле многие современники Ньютона обращали внимание на эту проблему, и статья Ольберса, опубликованная в 1823 г., не была первой из работ, содержащих убедительные рассуждения на эту тему. Однако она первой получила широкую известность. Трудность заключается в том, что в бесконечной стационарной Вселенной почти любой луч зрения должен упираться в поверхность звезды. Из этого следует, что все небо должно светиться так же ярко, как Солнце, даже ночью. Тогда Ольберс высказал мысль, что свет далеких звезд ослабляется из-за поглощения веществом, находящимся на его пути. Однако в таком случае межзвездное вещество со временем должно было бы нагреться и засиять так же ярко, как звезды.


Звезды в бесконечной стационарной Вселенной.


В бесконечной стационарной Вселенной почти любой луч зрения должен упираться в поверхность какой-нибудь звезды.

Избежать вывода о том, что ночное небо должно сиять так же ярко, как поверхность Солнца, можно только в том случае, если предположить, что звезды не светят вечно, а зажглись в какой-то определенный момент в прошлом. В таком случае, возможно, межзвездное вещество еще не успело нагреться или свет самых далеких звезд пока нас не достиг. И это подводит нас к вопросу о том, что заставило звезды зажечься.

Зарождение Вселенной

Разумеется, люди издревле размышляли о зарождении Вселенной. Во многих древних учениях о Вселенной, относящихся к еврейской, христианской или мусульманской традиции, Вселенная возникла в определенный конечный момент времени не так давно в прошлом. Одним из доводов в пользу такого начала было убеждение, что для существования Вселенной необходима первопричина.

Еще один довод выдвинул Блаженный Августин в своем труде «О граде Божьем». Он обратил внимание на развитие цивилизации и на то, что мы помним, кто совершил определенное деяние или создал какое-то изобретение. Значит, человечество, а также, возможно, и Вселенная существуют не так давно. Иначе мы бы ушли по пути прогресса гораздо дальше.

Опираясь на Книгу Бытия, Блаженный Августин относил сотворение Вселенной примерно к 5000 г. до н. э. Что любопытно, эта дата не так уж далека от окончания последнего ледникового периода (около 10 000 лет до н. э.), когда зародилась цивилизация. С другой стороны, Аристотелю и большинству древнегреческих философов не нравилась идея сотворения мира, поскольку она требовала слишком большого божественного вмешательства. Поэтому они верили, что человечество и мир вокруг нас существовали и, возможно, будут существовать вечно. Они тоже обдумывали упомянутый выше аргумент о прогрессе цивилизации и отвечали на него идеями о периодически происходящих наводнениях и других стихийных бедствиях, которые отбрасывают человечество к началу цивилизации.

В те времена, когда большинство людей верили в стационарную и неизменную Вселенную, вопрос о том, имеет ли она начало, относился к области метафизики или теологии. Каждый мог объяснять наблюдаемые явления по-своему. Кто-то верил, что Вселенная существует вечно, другие полагали, что она была приведена в движение в определенный момент времени, причем таким образом, что создается впечатление, будто она существовала всегда. Но в 1929 г. Эдвин Хаббл совершил революционное открытие, обнаружив, что в каком бы направлении мы ни посмотрели, далекие звезды стремительно удаляются от нас. Другими словами, Вселенная расширяется. Это означает, что в прошлом небесные тела находились ближе друг к другу. На самом деле складывалось впечатление, что примерно 10–20 млрд лет назад все они находились в одной точке пространства.

Это открытие окончательно перевело вопрос о зарождении Вселенной в сферу науки. Наблюдения Хаббла свидетельствовали о том, что был момент, называемый Большим взрывом, когда Вселенная была бесконечно мала и, значит, не могла повлиять на то, что происходит в настоящее время. А тем, что не имеет никаких наблюдательных последствий, можно пренебречь.

Можно сказать, что время началось в момент Большого взрыва – то есть мы не можем определить, что было до него. Необходимо подчеркнуть, что этот момент начала времени существенно отличается от всего, что рассматривалось прежде. В неизменной Вселенной начало времени – это нечто, что должно быть установлено извне. Нет никакой физической необходимости существования такого начала. Можно представить, что Бог сотворил Вселенную практически в любой момент времени в прошлом. С другой стороны, если Вселенная расширяется, то могут быть физические причины существования момента начала. Кто-то может по-прежнему верить, что Бог создал Вселенную в момент Большого взрыва. Он даже мог создать ее позднее, но таким образом, чтобы казалось, будто произошел Большой взрыв. Однако бессмысленно было бы предполагать, что Вселенная создана до Большого взрыва. Расширяющаяся Вселенная не исключает возможность существования Творца, но накладывает ограничения на время, когда он мог выполнять свою работу.

Лекция вторая
Расширяющаяся Вселенная

Наше Солнце и ближайшие к нему звезды являются частью обширного звездного скопления – галактики Млечный Путь. Долгое время люди думали, что это и есть вся Вселенная. Только в 1924 г. американский астроном Эдвин Хаббл показал, что наша Галактика – не единственная во Вселенной. На самом деле существует много других галактик, разделенных огромными участками пустого пространства. Чтобы доказать это, ему потребовалось измерить расстояния до этих галактик. Мы можем определить расстояния до ближайших звезд, наблюдая изменение их положений на небе по мере обращения Земли вокруг Солнца. Но другие галактики находятся так далеко, что в отличие от ближайших звезд кажутся неподвижными. Поэтому Хабблу пришлось использовать косвенные методы измерения расстояний.

Видимый блеск звезды зависит от двух факторов – ее светимости и расстояния от нас. Для ближайших звезд мы можем измерить видимый блеск и расстояние, что позволяет рассчитать их светимость. И наоборот, если бы мы знали светимость звезд из других галактик, мы могли бы вычислить расстояния до них, измерив их видимый блеск. Хаббл утверждал, что существуют определенные типы звезд, всегда имеющие одинаковую светимость (если удается ее измерить благодаря тому, что эти звезды находятся достаточно близко от нас). Следовательно, если мы найдем такие звезды в другой галактике, мы можем предположить, что они имеют такую же светимость. Таким образом, мы могли бы вычислить расстояние до этой галактики. Если расстояния, рассчитанные для множества звезд из одной и той же галактики, совпадают, то мы можем быть вполне уверены в полученных результатах. Таким способом Эдвин Хаббл вычислил расстояния до девяти разных галактик.

Мы можем определить расстояния до ближайших звезд, наблюдая изменение их положений на небе по мере обращения Земли вокруг Солнца.

В настоящее время мы знаем, что наша Галактика – лишь одна из сотен миллиардов галактик, наблюдаемых с помощью современных телескопов и состоящих из сотен миллиардов звезд. Мы живем в медленно вращающейся Галактике размером около ста тысяч световых лет; звезды в ее спиральных рукавах обращаются вокруг ее центра с периодом около ста миллионов лет. Наше Солнце – самая обычная желтая звезда средних размеров, расположенная близ внешнего края одного из спиральных рукавов. Несомненно, мы продвинулись далеко вперед со времен Аристотеля и Птолемея, когда Земля считалась центром Вселенной.


В галактике NGC 4214, находящейся на расстоянии около 13 млн световых лет от Земли, идет процесс образования скоплений новых звезд из межзвездного газа и пыли. На этом снимке, полученном на телескопе «Хаббл», мы видим этапы образования и эволюции звезд и звездных скоплений. Самые молодые из этих звездных скоплений расположены в правом нижнем углу снимка, где они выглядят, как несколько ярких сгустков светящегося газа.

Здесь молодые, горячие звезды отображаются белым и голубоватым цветом, поскольку они имеют высокие поверхностные температуры – от 10 000 до 50 000 °C. Переводя взгляд от самых молодых скоплений по направлению к левому нижнему углу, мы видим более старое звездное скопление. Самый удивительный объект на этом снимке расположен поблизости от центра галактики NGC 4214 – это скопление, состоящее из сотен массивных голубых звезд, каждая из которых более чем в 10 тыс. раз ярче нашего Солнца.


Звезды находятся так далеко от нас, что кажутся всего лишь светящимися точками. Мы не можем определить их размер или форму. Как же нам различать разные типы звезд? Для подавляющего большинства звезд наблюдению поддается только одна характеристика – цвет испускаемого ею света. Ньютон открыл, что при прохождении через призму солнечный свет разделяется на цветовые компоненты – спектр, – как в радуге. Наведя телескоп на конкретную звезду или галактику, можно наблюдать спектр света, идущего от этого объекта.

Как же нам различать разные типы звезд? Для подавляющего большинства звезд наблюдению поддается только одна характеристика – цвет испускаемого ею света.

Спектры звезд отличаются, но относительная яркость разных цветов спектра всегда соответствует той, которая наблюдается в свечении сильно раскаленных объектов. Следовательно, по спектру звезды мы можем оценить ее температуру. Более того, мы видим, что некоторые специфические цвета в спектре звезд отсутствуют, причем у разных звезд отсутствуют разные цвета. Мы знаем, что каждый химический элемент поглощает характерный только для него набор специфических цветов. Таким образом, сопоставляя эти цвета с теми, которые отсутствуют в спектре звезды, мы можем определить, какие химические элементы содержатся в атмосфере звезды.

В 1920-х годах, когда астрономы начали изучать спектры звезд из других галактик, они обнаружили удивительный факт: у этих звезд наблюдается такой же характерный набор отсутствующих спектральных линий, как и у звезд нашей Галактики, но эти линии смещены на одинаковую величину в сторону красной области спектра. Единственное разумное объяснение заключалось в том, что галактики удаляются от нас и частота излучаемых ими световых волн уменьшается вследствие эффекта Доплера (это явление называют красным смещением). Прислушайтесь к звуку автомобиля на дороге. Когда автомобиль приближается, звук его двигателя кажется выше, что соответствует более высокой частоте звуковых волн; а когда он проехал мимо и удаляется, звук двигателя кажется более низким. То же самое происходит и со световыми (или радиальными) волнами. На самом деле с помощью эффекта Доплера полиция измеряет скорость автомобилей по изменению частоты отраженного радиосигнала.


На одном из снимков самых дальних уголков Вселенной, полученном с помощью космического телескопа «Хаббл», представлена популяция слабых голубых галактик, которые оказались самым распространенным классом объектов во Вселенной.

Они удалены от нас на расстояние от 3 до 8 млрд световых лет. Это говорит о том, что они в изобилии встречались, когда Вселенная была в несколько раз моложе, чем сейчас. Но в настоящее время они встречаются редко, и обнаружить их трудно, поскольку излучение их ослабло или они подверглись саморазрушению. Если удастся разгадать загадку образования и эволюции этих голубых карликовых галактик, то, возможно, это даст нам новый ключ к пониманию процесса эволюции галактик, включая образование нашей Галактики Млечный Путь. Эти галактики – голубые, поскольку в них происходят эпизоды интенсивного звездообразования, во время которых рождается много молодых, горячих, голубых звезд.


После того как Хаббл доказал существование других галактик, он занялся составлением каталога расстояний до них и наблюдением их спектров. В то время большинство ученых полагали, что галактики движутся достаточно хаотично, и поэтому надеялись найти примерно одинаковое число спектров, смещенных в синюю и красную область. Когда оказалось, что все галактики имеют красное смещение, это стало сенсацией. Получается, что все галактики удаляются от нас. Еще более удивительным был результат, опубликованный Хабблом в 1929 г.: даже величина красного смещения галактики не случайна, а прямо пропорциональна расстоянию до нее. Другими словами, чем дальше галактика, тем быстрее она удаляется от нас. А это означало, что Вселенная не может быть стационарной, как думали раньше. В действительности она расширяется. Расстояние между галактиками все время растет.

Даже величина красного смещения галактики не случайна, а прямо пропорциональна расстоянию до нее – чем дальше галактика, тем быстрее она удаляется от нас.

Открытие расширения Вселенной – одна из величайших интеллектуальных революций XX века. Когда знаешь об этом, кажется удивительным, что никто не догадался об этом раньше. Ньютон и другие мыслители должны были понять, что стационарная Вселенная вскоре начала бы сжиматься под действием гравитации. Но представьте, что Вселенная не стационарна, а расширяется. Если бы она расширялась достаточно медленно, со временем сила гравитации положила бы конец расширению, и Вселенная начала бы сжиматься. Однако если она расширялась бы со скоростью, превышающей некоторое критическое значение, силы гравитации никогда бы не стали настолько велики, чтобы остановить это расширение, и Вселенная продолжала бы расширяться вечно. Это напоминает запуск ракеты с поверхности Земли. Если скорость ракеты достаточно низкая, в определенный момент под действием гравитации ракета остановится и начнет падать обратно. С другой стороны, если ее скорость превышает некоторое критическое значение (приблизительно 11,2 км/с), сила притяжения не сможет «вернуть» ракету на Землю, и она будет удаляться от нашей планеты.


Чтобы определить, прекратится ли расширение Вселенной и начнет ли она со временем сжиматься или будет расширяться вечно, можно сравнить ее с ракетой, удаляющейся от Земли. Если скорость ракеты достаточно низкая, со временем под действием гравитации она остановится и начнет падать обратно на Землю. Если же скорость ракеты превышает критическое значение (около 11,2 км/с), сила притяжения не сможет «вернуть» ракету на Землю, и она будет удаляться от нашей планеты вечно. Национальное управление по аэронавтике и исследованию космического пространства (NASA) успешно запустило более двухсот искусственных спутников, обращающихся вокруг Земли, в том числе восьмую орбитальную солнечную обсерваторию Годдарда, которая находилась на борту этой ракеты «Дельта», стартовавшей 21 июня 1975 г. с мыса Канаверел во Флориде.


Такое поведение Вселенной можно было предсказать на основе ньютоновской теории гравитации в XIX или XVIII столетиях и даже в конце XVII века. Но вера в стационарность Вселенной была столь сильна, что эта концепция просуществовала до начала XX века. Даже Эйнштейн, когда сформулировал общую теорию относительности в 1915 г., был уверен в том, что Вселенная должна быть стационарной. Поэтому он модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Это была новая сила «антигравитации», которая, в отличие от других сил, не имела конкретного источника, но была встроена в саму ткань пространства-времени. Эта космологическая постоянная наделяла пространство-время внутренней тенденцией к расширению и позволяла уравновесить взаимное притяжение всей материи во Вселенной и сделать возможным существование стационарной Вселенной.

По-видимому, в те времена лишь один человек был готов принять общую теорию относительности за чистую монету. Пока Эйнштейн и другие физики искали способы обойти предсказание общей теории относительности о нестационарности Вселенной, русский физик Александр Фридман занялся объяснением этого предсказания.

Даже Эйнштейн, когда сформулировал общую теорию относительности в 1915 г., был уверен в том, что Вселенная должна быть стационарной.

Модели Фридмана

Уравнения общей теории относительности, описывающие эволюцию Вселенной, слишком сложны, чтобы решать их во всех подробностях. Поэтому Фридман сделал два очень простых предположения: в каком бы направлении мы ни посмотрели, Вселенная выглядит одинаково, причем то же предположение верно при наблюдении из любой другой точки пространства. На основе общей теории относительности и двух этих предположений Фридман показал, что Вселенная не может быть стационарной. Получается, что в 1922 г. Фридман предсказал именно то, что спустя несколько лет открыл Эдвин Хаббл.

Фридман сделал два очень простых предположения о природе Вселенной: в каком бы направлении мы ни посмотрели, Вселенная выглядит одинаково, причем то же предположение верно при наблюдении из любой другой точки.

Предположение о том, что Вселенная выглядит одинаково во всех направлениях, очевидно, не соответствует действительности. Например, остальные звезды нашей галактики образуют на ночном небе отчетливо различимую светящуюся полосу, называемую Млечным Путем. Но если мы посмотрим на далекие галактики, нам покажется, что в любом направлении их число примерно одинаково. То есть Вселенная почти одинакова во всех направлениях, если рассматривать ее в космических масштабах, сопоставимых с расстояниями между галактиками.


Страницы книги >> 1 2 | Следующая
  • 4.3 Оценок: 7

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации