Текст книги "Лекции по общей психологии"
Автор книги: А. Лурия
Жанр: Общая психология, Книги по психологии
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 37 страниц) [доступный отрывок для чтения: 12 страниц]
Глава 2
Эволюция психики
Мы остановились на том, как современная наука понимает предмет психологии и какие практические приложения имеет эта область знания.
Теперь нам следует осветить одну из важнейших проблем – эволюцию психической деятельности.
Происхождение психикиДонаучная психология, которая развивалась в ранней идеалистической философии, считала психику одним из первичных свойств человека и рассматривала сознание как непосредственное проявление «духовной жизни». Поэтому вопрос о естественных корнях психики, о ее происхождении и о ступенях ее эволюции даже не ставился. Дуалистическая философия предполагала, что сознание так же вечно, как и материя, что оно всегда существовало параллельно с материей.
Научная психология исходит из совершенно иных положений и ставит перед собой задачу подойти к ответу на вопрос о происхождении психики, описать условия, в результате которых должна была появиться эта сложнейшая форма жизни.
Известно, что основным условием появления жизни является возникновение сложных белковых молекул, которые не могут существовать без постоянного обмена веществ со средой. Для своего выживания они должны усваивать (ассимилировать) из окружающей среды те вещества, которые являются предметом питания и необходимы для поддержания их жизни; одновременно они должны выделять во внешнюю среду продукты распада, усвоение которых может нарушить их нормальное существование. Оба эти процесса – ассимиляция и диссимиляция – входят в процесс обмена веществ и являются основным условием существования этих сложных белковых образований.
Естественно, что эти сложнейшие белковые молекулы (иногда их называют «коацерватами») вырабатывают особые свойства, отвечающие на воздействие полезных веществ или тех условий, которые содействуют усвоению этих веществ, и на вредные воздействия, грозящие их дальнейшему существованию. Так, эти молекулы положительно реагируют не только на питательные вещества, но и на такие условия, как свет, тепло, которые содействуют усвоению. Они отрицательно реагируют на сверхсильные механические или химические воздействия, которые мешают их нормальному существованию. На «нейтральные» воздействия, не входящие в процесс обмена веществ, они не реагируют.
Свойство коацерватов реагировать на воздействия, входящие в процесс обмена веществ (оставляя без ответа посторонние «индифферентные» воздействия), называется раздражимостью. Это основное свойство проявляется при переходе от неорганической материи к органической. К нему присоединяется и второе свойство – возможность сохранять высокоспециализированные свойства раздражимости к воздействиям, передавая соответствующие модификации белковых молекул от одного поколения к другому. Это последнее свойство, по-видимому связанное с модификацией некоторых фракций аминокислот (в частности, рибонуклеиновой кислоты, или РНК, составляющей молекулярную основу жизни), принято рассматривать как важный процесс, лежащий в основе биологической памяти.
Процессы раздражимости по отношению к жизненно важным «биотическим» воздействиям, выработка высокоспециализированных форм раздражимости и сохранение их с передачей последующим поколениям характеризует ту стадию развития жизни, которую обычно обозначают как растительная жизнь.
Этими процессами характеризуется вся жизнь, начиная от простейших водорослей и кончая сложными формами растительной жизни. Ими же обусловлены и так называемые «движения растений», которые, по существу, являются лишь формами усиленного обмена или роста, направляемого раздражимостью по отношению к биотическим воздействиям (влажности, освещенности и т. п.). Такие явления, как рост корня растения вглубь почвы, или неравномерный рост ствола в зависимости от освещенности, или поворот растения в направлении солнечных лучей, – все это является лишь результатом явлений «раздражимости» к биотическим (небезразличным для жизни) воздействиям.
Существенным для растительной жизни является одно важное обстоятельство. Растение, реагирующее усиленным обменом на биотические воздействия, не реагирует на посторонние воздействия, которые входят в процесс непосредственного обмена веществ. Оно не ориентируется активно в окружающей среде и может, например, погибнуть от отсутствия света или влаги, даже если источники света и влаги существуют совсем близко, но не оказывают на него непосредственного воздействия.
От этой пассивной формы жизнедеятельности резко отличаются формы существования на следующем этапе эволюции – на стадии животной жизни.
Характерным для каждого животного организма, начиная с простейших, является тот основной факт, что животное реагирует не только на биотические воздействия, непосредственно входящие в процесс обмена веществ, но и на «нейтральные», небиотические воздействия, если только они сигнализируют о появлении жизненно важных («биотических») воздействий. Иначе говоря, животные (даже простейшие) активно ориентируются в условиях среды, ищут жизненно важные условия и реагируют на всякие изменения среды, которые являются сигналом появления таких условий. Чем интенсивнее протекает обмен веществ, чем большую потребность испытывает простейшее живое существо в получении пищи, тем более активны его движения, тем в более оживленных формах протекает его «ориентировочная», или «поисковая», деятельность.
Эта способность реагировать на нейтральные «абиотические» раздражения при условии, что они сигнализируют о появлении жизненно важных воздействий, появляющаяся на стадии перехода к животному миру, называется, в отличие от явлений раздражимости, чувствительностью. Появление чувствительности и может служить объективным биологическим признаком возникновения психики.
Изменчивость поведения простейшихЧувствительность по отношению к «нейтральным» раздражителям, если они начинают сигнализировать о появлении жизненно важных воздействий, вызывает коренные изменения в формах жизни. Главное заключается в том, что живое существо начинает «ориентироваться» в окружающей среде, активно реагировать на каждое изменение, происходящее в ней, т. е. вырабатывать индивидуально изменчивые формы поведения, которые не существовали в растительном мире.
На первых порах выработка такого индивидуально меняющегося поведения происходит относительно медленно, однако его удается наблюдать даже в условиях эксперимента.
Приведем один из типичных экспериментов, проведенных немецким исследователем Брамштедтом.
Известно, что одноклеточные, на которых проводился этот эксперимент, чувствительны к теплоте (являющейся для них жизненно важным биотическим условием, необходимым для обмена веществ), но нечувствительны к свету. Поэтому, если поместить их в равномерно нагретую камеру, часть которой освещена, в то время как другая часть затемнена, они равномерно распределяются по всей камере. Если, наоборот, одну сторону равномерно освещенной камеры нагреть, они сосредоточиваются в нагретом конце камеры. Однако, если в течение длительного периода освещать нагретый конец камеры и затемнять ненагретый, положение дела меняется, и одноклеточные становятся чувствительными к свету, который сейчас приобретает для них значение сигнала к повышению температуры, и начинают сосредоточиваться в освещенном конце камеры, несмотря на разницы температур.
Характерно, что такая чувствительность к освещению формируется у одноклеточных постепенно и при длительном неподкреплении света теплотой может совсем исчезнуть.
Подобную же индивидуальную изменчивость поведения простейших можно вызвать на основе их оборонительных реакций, если изменять условия, вызывающие эти реакции. Примером может служить опыт известного польского исследователя Я. Дембовского.
Одноклеточные помещены в круглую пробирку с водой и обнаруживают характерные для них беспорядочные движения. Если поместить их в такую же трубку, но с четырехугольным сечением, они начинают ударяться о стенки этой пробирки, но скоро их движения приобретают измененный характер, обеспечивающий минимальные удары о стенки сосуда. Траектория этих движений, следовательно, начинает отражать конфигурацию сосуда. Выработанная у них траектория сохраняется даже тогда, когда они снова помещаются в пробирку круглой формы и некоторое время продолжают совершать те же движения по ромбической траектории.
Процесс изменчивости индивидуального поведения простейших, резко отличающий их от растений, происходит относительно медленно, и возникшие изменения так же медленно исчезают. Однако эти изменения настолько значительны, что возникшие новые формы поведения (приспособления к изменившимся условиям) позволяют осуществить нужные реакции приспособления к новым условиям на низшей ступени эволюционной лестницы.
Типичным примером этого может служить эксперимент, проведенный американским исследователем Смитом.
В узенькую пробирку с микроскопическим сечением помещалась туфелька (вид одноклеточных). Сечение трубки было так мало, что для того, чтобы выйти из трубки в направлении действия биотического агента (света), туфельке нужно было перевернуться, ударяясь о стенки трубки. В начале эксперимента на этот поворот у туфельки уходило 3–5 минут, однако если такие эксперименты повторялись много раз в течение 10–12 часов, поворот начинал выполняться много быстрее, и под конец на него требовалось всего 1–2 секунды. Таким образом, под влиянием новых условий вырабатывался новый «навык», который протекал в 180–200 раз быстрее, чем первоначальная реакция.
Как видим, формирование нового вида поведения, отвечающего измененным условиям, требует у простейших животных значительного времени. Характерно и то, что раз возникшее изменение поведения сохраняется у них достаточно долго, и нужно длительное время, чтобы оно исчезло.
Это можно наблюдать как у простейших одноклеточных, так и у относительно просто организованных многоклеточных.
Пример, показывающий такое медленное возникновение и столь же медленное исчезновение новой формы поведения, можно видеть в эксперименте, проведенном сначала бельгийским исследователем Блессом, а затем советским исследователем А. Н. Леонтьевым над плоским червем планарией (см.: Леонтьев А. Н. Проблемы развития психики).
Мы еще не знаем биологических механизмов такого появления чувствительности к ранее нейтральному агенту. Возможно, что оно связано с постепенным изменением биохимических свойств плазмы. Однако факт прижизненного появления новых форм указывает на возникновение индивидуальной изменчивости в поведении простейших и дает основание говорить о возникновении на этой стадии эволюции подлинного, хотя и очень элементарного, поведения.
Механизмы поведения простейшихНауке еще очень мало известно о физико-химических условиях поведения простейших и о тех причинах, которые вызывают положительные или отрицательные движения (движение по направлению к одним объектам и в направлении от других объектов соответственно).
Известно, что протоплазма, составляющая тело простейшего (одноклеточного) животного, состоит из внешнего, более плотного слоя (плазма-гель) и внутреннего, более жидкого слоя (плазма-золь). Известно также, что внешние слои протоплазмы одноклеточного более возбудимы, чем внутренние, и каждое внешнее действие вызывает усиленный обмен веществ, который постепенно распространяется от внешних слоев к внутренним, угасая по типу постепенно снижающегося градиента возбуждения. Эти градиенты возбуждения, по-видимому, и лежат в основе движений одноклеточного, возникающих, как только внешнее воздействие вызовет усиленный обмен веществ в соответствующей точке его поверхности или когда внутренние процессы приведут к необходимости активно искать вещества, необходимые для обеспечения такого обмена.
Некоторые авторы полагают, что адекватные воздействия умеренной силы вызывают положительную реакцию одноклеточного и приводят к движению по направлению к соответствующему воздействию, в то время как неадекватные (сверхсильные или вредные) воздействия вызывают отрицательное движение, направленное от воздействующего объекта. Положительное движение приводит к тому, что вызывающий раздражение объект сначала обволакивается струйками протоплазмы, которая у наиболее простейших одноклеточных (амеб) выпускается в место наиболее интенсивного обмена и замыкается вокруг этого объекта, включая его в состав тела одноклеточного. Если этот объект питателен, он усваивается телом одноклеточного, а продукт распада выделяется в среду. Если он не питателен, он таким же путем, как был захвачен, выбрасывается в окружающую среду.
Было бы, однако, неверно представлять, что все движения одноклеточных протекают по такой простой схеме. Особенностью поведения таких организмов является тот факт, что воздействия, доходящие до них, сами могут претерпевать сложнейшие изменения. Сама протоплазма одноклеточного никогда не находится в состоянии покоя, но характеризуется высоко дифференцированными, избирательными системами возбуждений, которые меняются в зависимости от протекающего в ней процесса обмена веществ и приводят к возникновению доминирующих форм возбуждения.
Как это было показано опытами Фоглера, механическое воздействие известной силы вызывает лишь относительно слабые реакции простейшего, а световое возбуждение может вообще не вызывать никаких реакций. Однако если на простейшее воздействуют одновременно механическое раздражение данной силы и световое раздражение, оба эти воздействия суммируются и приводят к повышенным реакциям простейшего.
Известно, что реактивность голодной амебы более высока, чем реактивность сытой амебы, и у нее создается повышенная готовность реагировать на соответствующие полезные воздействия или на раздражения, которые сигнализируют об их появлении.
Наконец, одноклеточное может «привыкать» к соответствующим воздействиям, снижая реакции на них по мере их длительного повторного предъявления.
Механизмы, лежащие в основе этого явления, еще мало изучены, и лишь проведенные в последнее время наблюдения заставляют думать, что появление и сохранение этих воздействий является результатом известных модификаций рибонуклеиновой кислоты, составляющей один из основных компонентов их плазмы.
Следует отметить, что тело простейших является относительно однородным и процесс наиболее интенсивного обмена может возникать у него в месте непосредственно возникающего возбуждения, образуя тем самым временный «головной» конец его тела.
Наиболее сложные одноклеточные имеют несравненно более сложную структуру. У них можно различить постоянные «органы» в виде чувствительных участков протоплазмы, которые образуют, например, «жгутики» у бактерий. Эти «жгутики» находятся в постоянном движении и несут наиболее существенные функции ориентировки во внешней среде; в них и возникают градиенты постоянного возбуждения, которые, распространяясь по остальному телу одноклеточного, приводят его в движение.
Богатство поведения одноклеточных очень велико и подлежит еще специальному изучению, так же как и те механизмы, которые лежат в его основе. Однако то, что мы уже знаем о них, заставляет думать, что здесь заложены основы той сложной деятельности активной ориентировки в среде, которые в дальнейшем составят важнейшую черту психической деятельности.
Происхождение нервной системы и ЕЕ простейшие формыОписанные процессы раздражимости по отношению к биотическим воздействиям, чувствительности по отношению к нейтральным воздействиям, сигнализирующим о появлении жизненно важных воздействий, и элементарного сохранения следов достаточны для поддержания жизни одноклеточных животных.
Однако они становятся недостаточными с переходом к многоклеточным.
Переход к многоклеточным существенно усложняет условия существования. Питание путем прямой диффузии питательных веществ, занимавшее ведущее место на уровне простейших, здесь заменяется питанием дискретной (концентрированной) пищей; повышается роль активной ориентировки во внешней среде. Становится необходимым обеспечить гораздо более дифференцированные движения и гораздо более быструю проводимость возбуждения, чем та, которая была доступна путем постепенного распространения градиентов возбуждения по протоплазме одноклеточных. Это и приводит к значительному усложнению строения тела многоклеточного, к выделению клеток специализированной рецепции раздражений, доходящих до тела животного, и появлению первых сократительных клеток, несущих ту функцию, которую на дальнейших этапах эволюции возьмут на себя мышечные клетки. Это приводит, наконец, к тому, что в местах прежних градиентов возбуждения начинают откладываться дорожки наиболее возбудимой протоплазмы и образуют наиболее элементарную форму нервной системы, которая у этих животных носит характер диффузной, сетевидной нервной системы.
Все это с особенной отчетливостью можно видеть в строении тела относительно простых многоклеточных, относящихся к классу кишечнополостных, например в строении тела медузы, актинии или морской звезды.
Характерным для этой стадии развития многоклеточных является то, что проводимость возбуждения ускоряется благодаря появлению сетевидной нервной системы во много раз. Если проведение возбуждения по протоплазме не превышает скорости 1–2 микрон в секунду, то с появлением простейшей (сетевидной) нервной системы скорость проведения равна 0,5 метра в секунду (заметим, что при дальнейшем развитии нервной системы и переходе на следующие этапы ее усложнения скорость проведения возбуждения еще более возрастает, доходя у лягушки до 25 метров в секунду, а у высших позвоночных до 125 метров в секунду).
Однако значительные преимущества, которые возникают с явлением первичной диффузной (сетевидной) нервной системы, имеют и свои границы. Как и на описанных выше этапах эволюции, у животных с сетевидной нервной системой еще нет постоянного головного конца, управляющего их поведением. Возбуждение равномерно распространяется по сетевидной нервной системе на все тело животного, а место приложения внешнего раздражения становится временным ведущим пунктом. Только у наиболее сложных кишечнополостных одна часть тела (например, один луч у морской звезды), по своему строению не отличающаяся от других частей тела (лучей), может стать доминирующей, «ведущей» и берет на себя функцию наиболее активного органа при движении. Если у морской звезды отрезать (ампутировать) этот «ведущий» луч, то роль «ведущего» переходит к другому, расположенному рядом с ним лучу.
Естественно, что такое отсутствие постоянного ведущего органа, который мог бы не только воспринимать, но и перерабатывать, кодировать полученную информацию и создавать программы дифференцированного поведения, существенно ограничивает возможности поведения на этом уровне. Эти недостатки устраняются на дальнейших этапах эволюции, особенно с переходом к земному существованию и формированием более сложно построенной ганглионарной нервной системы.
Ганглионарная нервная система и появление простейших программ поведенияПереход к наземному существованию связан со значительным усложнением условий жизни. Прямая диффузия питательных веществ из окружающей среды становится невозможной, наличие готовой плотной (дискретной) пищи – несравненно меньшим. Эта пища находится теперь в резко неоднородной среде, и ориентировка, необходимая для получения пищи, значительно усложняется.
Все это создает необходимость дальнейшего усложнения организма животных, и прежде всего дальнейшую эволюцию сложных органов рецепции и движений и формирования сложных и централизованных аппаратов переработки информации и регулирования движений. Именно этому и соответствует следующий этап в эволюции нервной системы, приводящий к возникновению цепочечной, или ганглионарной, нервной системы, которая впервые появляется у червей и приобретает максимальную сложность у высших беспозвоночных, и прежде всего у насекомых.
Как появление ганглионарной нервной системы, так и формирование поведения, которое осуществляется с ее помощью, знаменуют важнейший скачок в эволюции жизнедеятельности.
Уже у наиболее простых беспозвоночных (червей) можно проследить совсем новый принцип организации нервной системы по сравнению с предыдущей стадией. На переднем головном конце червя сосредоточиваются волокна, которые кончаются химическими и тактильными рецепторами, расположенными особенно густо. Эти аппараты воспринимают химические, термические, световые изменения, происходящие во внешней среде, а также изменения влажности. Сигналы этих изменений проводятся по волокнам и доходят до переднего узла или ганглия, где они сосредоточиваются в нервном «центре», впервые появляющемся на этой ступени эволюции. Здесь эти сигналы перерабатываются (кодируются), и возникающие «программы» поведения в виде двигательных импульсов распространяются по цепочке нервных ганглиев, каждый из которых соответствует отдельному сегменту тела червя. Доходящие до этих ганглиев импульсы вызывают соответствующие движения, направление которых программируется и регулируется передним ганглием.
Здесь возникает новый принцип – централизованность нервной системы, резко отличающейся от принципа построения диффузной (сетевидной) нервной системы. Головной конец червя, где сосредоточена особенно густая сеть хемо-, механо-, термо-, фото– и гигрорецепторов, приобретает ведущую роль, в то время как сегментарные ганглии сохраняют лишь относительную автономию. Это легко проследить, если разрезать тело червя на две половинки. В этом случае передняя половина будет закапываться в землю, сохранив свои организованные движения, в то время как задняя половина будет лишь беспорядочно извиваться, не проявляя никаких признаков организованного движения.
Усложнение строения нервной системы на стадии червей позволяет проследить у них более совершенные (хотя еще очень примитивные) виды формирования новых, индивидуально приобретенных видов поведения. Это было показано в свое время известным американским психологом Р. Йерксом. Он помещал дождевых червей в Т-образную трубку, простейший лабиринт. В левом конце этой трубки червь получал электрический удар, вызывавший оборонительную реакцию. При многократном повторении этого эксперимента у дождевого червя можно было выработать «навык» избегать электрического удара и двигаться направо. Насколько медленно шел этот процесс, видно из следующего: понадобилось свыше 150 проб, чтобы поведение червя приобретало организованный характер и в подавляющем числе проб он начинал двигаться направо, избегая электрического шока (табл. 1.1).
Если повторить этот же опыт после длительной паузы, «обучение» начинает протекать вдвое быстрее, и число ошибок достигает минимального количества уже после 80 опытов. Характерно также, что эксперименты с «переучиванием» червя (в этих опытах червь начинал получать электрический шок уже не слева, а справа) протекали значительно медленнее, и некоторый эффект «переучивания» начинал обнаруживаться лишь после 200 проб.
Отсюда видно, что ганглионарная нервная система червя позволяет не только вырабатывать новые формы поведения, но и сохранять выработанные «навыки», иначе говоря, что дождевой червь обладает примитивной формой «памяти».
Таблица 1.1
Формирование новых видов поведения у дождевых червей
В последнее время были проведены эксперименты, которые позволяют убедиться в возможности передачи такого «навыка» и сделать некоторые шаги к выяснению биохимических механизмов, лежащих в основе элементарной памяти. В этих экспериментах американский исследователь Макконнелл «обучал» группу червей нужному поведению в простейшем лабиринте. После этого он измельчал тела этих червей, делал из них вытяжку и скармливал ее другим, никогда не обучавшимся червям. Как показал эксперимент, черви, усвоившие эту вытяжку, вместе с этим «усвоили» и навыки, приобретенные первой группой червей. Когда их впервые помещали в лабиринт, они сразу же делали значительно меньше ошибок, чем обычные необученные черви. Этот факт заставил Макконнелла предположить, что выработка «навыка» на этих этапах эволюции связана с глубокими биохимическими изменениями протоплазмы и выработанный «навык» может «передаваться» гуморальным путем.
Наука не располагает окончательной оценкой и интерпретацией данных, полученных в этом эксперименте, можно лишь полагать, что изменения, вызванные подобным «обучением», связаны с модификацией рибонуклеиновой кислоты (РНК). Это было показано экспериментами, в которых тела «обученных» червей предварительно опускались в раствор рибонуклеазы (фермент, растворяющий РНК). После этого вытяжка из задних половин тела «обученных» червей не вызывала нужного эффекта, в то время как вытяжка из передних половин «обученных» червей (включавшая вещество переднего ганглия) продолжала вызывать подобный же эффект. Эти эксперименты говорят как о значении для сохранения «навыка» рибонуклеиновой кислоты, так и о том значении, которое для хранения «памяти» червя имеет передний ганглий, клетки которого защищены от растворяющего действия рибонуклеазы.
В науке до сих пор продолжаются споры о том, говорят ли эти эксперименты о «передаче» информации гуморальным путем или лишь об общем «повышении возбудимости», возникающем при усвоении вещества тел обученных червей. Несмотря на то что окончательного ответа на этот вопрос нет, результаты экспериментов показывают – на этом этапе эволюции возможна выработка прочного «навыка», и в сохранении этого «навыка», по-видимому, принимают участие все клетки тела животного.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?