Электронная библиотека » Александр Ферсман » » онлайн чтение - страница 16


  • Текст добавлен: 1 июня 2020, 15:55


Автор книги: Александр Ферсман


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 16 (всего у книги 27 страниц)

Шрифт:
- 100% +
Атомы в воздушной стихии

Что такое воздух? Как мало мы себе представляем воздух, как мало мы даже интересуемся этим вопросом! Мы привыкли, что воздух нас окружает, и, как здоровье, начинаем ценить его только тогда, когда теряем его, когда попадаем в условия, где воздуха не хватает.

Мы знаем, как трудно дышится на больших высотах, как у некоторых уже на высоте трех километров появляется горная болезнь, начинается слабость; мы знаем, как страдают летчики, когда они поднимаются на самолетах выше пяти километров; на высоте восьми и десяти километров воздуха уже определенно не хватает и приходится прибегать к помощи имеющихся на самолете запасов кислорода.

Мы знаем, как тяжело опускаться в глубины рудников, как долго звенит в ушах, пока на глубине 1500 м вы освоитесь с новым давлением воздуха.

Воздух сейчас представляет одну из интереснейших проблем не только для науки, но и для химической промышленности.

Долгое время человек никак не мог понять, что такое воздух. В течение нескольких веков в первобытной химии господствовало убеждение, что воздух состоит из особого газа – флогистона и что когда какое-либо вещество горит, то из него выделяется флогистон и заполняет, как особая тонкая материя, весь мир.

Потом, благодаря гениальному открытию французского химика Лавуазье, сделалось ясно, что воздух состоит в основном из двух веществ – одного живительного, которое было названо кислородом, и другого, равнодушного к жизни, получившего поэтому имя «азот» (по-гречески – безжизненный).

В 1894 году было обнаружено, что состав воздуха гораздо сложнее, что кроме кислорода и азота, этого безжизненного газа, он содержит в себе целый ряд других химических элементов, которые играют в нем большую роль.

И современные химики определяют состав воздуха по весу в следующем виде:



Но этот состав характерен только для нижних слоев атмосферы. Выше 20 км количество газов начинает изменяться: количество тяжелых газов уменьшается, легких – увеличивается. Постепенно растет содержание водорода, гелия, а где-то высоко, там, где сверкают метеоры, где рассеянные частицы создают северное сияние, там, по-видимому, преобладают легкие газы.

Сейчас мы настолько точно знаем состав воздушного океана, что каждая капелька, рассеянная в кубическом метре его, не ускользает от внимания наших химиков.

И вот оказывается, что окружающий нас газовый океан не только основа всей нашей жизни, но и основа новой, грандиозной промышленности.

Англичане за последние годы подсчитали, что все население Англии и Шотландии за сутки поглощает до 20 млн м3 кислорода из воздуха, а специальные установки за этот же срок извлекают до 1 млн м3 этого газа для нужд промышленности.

Одновременно с этим промышленность сжигает уголь и нефть, потребляя кислород, и возвращает в атмосферу грандиозное количество углекислоты. Тот же процесс происходит и в живых организмах. Например, человек каждый день выделяет около трех литров углекислоты.

Чтобы понять значение этой цифры, достаточно указать, что большое дерево эвкалипт в течение одного дня может разложить углекислоту и вернуть свободный кислород атмосфере примерно в количестве одной трети количества углекислоты, выдыхаемой человеком. Следовательно, три крупных эвкалипта разложат столько углекислоты, сколько выделит один человек, и таким образом восстановят равновесие состава атмосферы.

Из этого мы видим, как велико значение той растительности, которая окружает нас и которую мы так бережно храним и насаждаем в наших городах. Жизнь растений является единственным источником восстановления кислорода, поглощаемого человеком. А между тем кислород начинает использоваться все в больших и больших количествах.

В 1885 году маленькие заводы по изготовлению перекиси бария впервые положили начало промышленному использованию кислорода воздуха.

Сейчас кислород воздуха служит основой для целого ряда химических производств; в металлургии вместо воздуха в доменные печи вдувается чистый кислород; в ряде химических производств кислород является незаменимым окислителем.

С каждым годом растут все новые и новые установки, которые через жидкий воздух извлекают кислород из окружающей нас атмосферы.

Наравне с кислородом все шире и шире начинают использоваться человеком и другие газы.

Еще недавно аргон, входящий в состав воздуха в количестве 1 %, не играл никакой роли в промышленности. Сейчас при помощи сложных установок из воздуха извлекают ежегодно около одного миллиона кубических метров этого редчайшего газа.

Многие из нас не знают, что каждый год этим газом наполняют свыше одного миллиарда электрических лампочек.

В светящихся рекламах больших городов в специальных лампочках с каждым годом все шире и шире используется и другой благородный газ воздуха – неон. Его очень мало в воздушном океане – одна часть приходится на 55 тысяч частей воздуха. Но все же неоновая промышленность развертывается и растет с каждым годом.

Начинают извлекать из воздуха и гелий. Его еще меньше, чем неона, хотя в атмосфере над каждым квадратным километром Земли содержится около 20 т этого ценнейшего газа Солнца. Гелий извлекается из воздуха и главным образом из подземных газовых струй и используется для наполнения дирижаблей; в холодильной технике с его помощью получают самые низкие температуры в мире.

В нашу промышленность начинают входить даже самые редкие газы, как криптон и ксенон.

Криптона в воздухе меньше одной тысячной процента. А между тем как важно было бы получать его в больших количествах, ибо тогда на 10 %, а при применении ксенона на 20 %, повысилась бы яркость наших электролампочек. А это значит, что на 20 % понизилось бы потребление электроэнергии нашими осветительными установками[64]64
  Это ожидание А. Е. Ферсмана сбылось. Действует государственная программа перехода на экономически эффективные осветительные приборы. – Науч. ред.


[Закрыть]
.

Но, конечно, самым важным сырьем для промышленности, извлекаемым из воздуха, является азот.

В 1830 году впервые была сделана попытка использовать азотные соединения для удобрения полей.

Об азоте воздуха тогда никто не думал, и даже прибывавшая на судах из Чили селитра не всегда находила себе применение на бедных полях Западной Европы. Но постепенно развивавшаяся химизация сельского хозяйства требовала все больших и больших количеств тех трех живительных веществ, на которых строится химическая жизнь растения, – азота, фосфора и калия. Потребность в азоте стала так повышаться, что физик и химик Крукс в 1898 году предсказывал азотный голод и предлагал искать новые методы для извлечения азота из воздуха.

Прошло немного лет. При помощи электрических разрядов химики научились превращать азот воздуха в аммиак, азотную кислоту и цианамид.

Во время Первой мировой войны азот, нужный для производства взрывчатых веществ, сделался предметом многочисленных исследований. Сейчас во всем мире работает свыше 150 азотных заводов; они ежегодно извлекают из воздуха 4 миллиона тонн азота. Но и эта цифра оказывается ничтожной по сравнению с громадным запасом этого газа, составляющим примерно 81 % всего объема воздушной стихии.

Достаточно сказать, что все азотные установки мира каждый год извлекают примерно такое количество азота, которое содержится в столбе атмосферы над половиной квадратного километра земной поверхности. Так рисуются перед нами новые промышленные пути использования воздуха. Промышленность начинает все больше и больше использовать все составные части воздушного океана. Атмосфера превращается в грандиозный источник минерального сырья, запасы которого практически неисчерпаемы. Однако пока пути овладения этими запасами еще далеко не найдены.

Процессы, при помощи которых человек разделяет воздух на составные части, еще довольно несовершенны. Для извлечения азота требуются и большие давления, и громадное количество энергии. Для разделения благородных газов и получения кислорода надо прибегать к сложным, дорогим установкам, переводить воздух сначала в жидкое состояние, чтобы затем выделить отдельные газы. И вот на этом пути у нас в Советском Союзе сделаны блестящие открытия.

В Институте физических проблем Академии наук СССР построены новые, замечательные машины, которые позволяют очень тщательно разделять громадные количества воздуха на составные части.

А нам рисуются уже маленькие машинки, установленные в каждой комнате. Включим электрический ток – завертится трубодетандер; откроем кран, на котором будет стоять надпись: «Кислород», – и вместо воздуха из него потечет синеватая жидкость, охлажденная до минус 200°.

Откроем другой кран – из него по капелькам будет вытекать жидкий благородный газ криптон или ксенон, а где-то на дне, как зола в печках, будет накапливаться твердая угольная кислота, которая затем будет поступать под особый пресс и давать нам тот твердый сухой лед, который вы все видели у наших продавцов мороженого и который будет охлаждать наши помещения в жаркие дни.

Может быть, в этой картине я немного забежал вперед. Еще нет таких портативных машинок, которые можно было бы приключить к нашему штепселю, но я уверен, что недалеко то время, когда мы сможем использовать окружающие нас богатства воздуха для наших нужд, и грандиозная химическая промышленность будет построена на неисчислимых запасах азота и кислорода – двух элементов, выдающихся по своему значению в жизни Земли.

Я мог бы сейчас закончить мой рассказ, но думаю, что он еще далеко не полон.

Я ничего не сказал об использовании угольной кислоты воздуха и о возможности использования всех газов, образующихся при сгорании угля, дров, обжига известняков.

Ученые уже подсчитывают те грандиозные количества угольной кислоты, которые выбрасываются в воздух промышленностью как отходы. Они предполагают использовать ее для изготовления сухого льда, они хотят извлечь из нашей атмосферы те три сотых процента угольной кислоты, которые в ней содержатся.

А физики идут еще гораздо дальше: они говорят, что наш воздух состоит не только из десяти газов, о которых мы выше говорили, воздух содержит огромное количество газов еще более редких, еще более рассеянных в миллионных, в миллиардных долях процента, – газов радиоактивных.

Речь идет об эманации радия и о различных летучих газах, продуктах распада легких металлов. Эти газы живут недолго в нашей атмосфере: жизнь одних измеряется днями, других – секундами, третьих – миллионными долями секунды. Воздух насыщен этими продуктами распада мировых атомных ядер. Космические лучи вызывают на каждом шагу разрушение атомов и появление неустойчивых газов, которые должны снова исчезнуть и перейти в более устойчивые формы твердого вещества.

В воздушном океане непрерывно происходят химические реакции. Сложнейшие процессы происходят между рассеянными атомами вещества, и еще мало понятны нам те постоянные и сложные перемещения, те электрические разряды, которые идут в этом воздушном океане вокруг нас.

Разгадать их – значит сделать еще один шаг по пути подчинения природы нашим потребностям.

Атомы в воде

Воды источников рек, морей, океанов и подземные пластовые воды все вместе образуют неразрывную водную оболочку Земли, или гидросферу. Над огромными просторами океанов непрерывно происходит испарение воды под влиянием тепла Солнца.

В атмосфере вода конденсируется и падает на землю в виде дождя, снега и града. Она размывает почвы, выщелачивает их, разрушает породы, растворяет массу разнообразных веществ и сносит все это опять в моря и океаны.

Таким образом, вода много миллионов раз совершает свой круговорот: океан → атмосфера → земля → океан. И каждый раз она извлекает из твердых пород Земли все новые и новые количества растворяющихся в воде веществ.

Подсчитано, что ежегодно все реки мира сносят с поверхности Земли в океан около трех миллиардов тонн растворенных ими веществ.

Иначе говоря, воды разрушают и сносят со всей Земли за 25 тысяч лет слой пород толщиной около одного метра.

Работа, совершаемая водой на Земле, грандиозна.

Вода, химическая формула которой Н2O, – одно из самых распространенных веществ на Земле.

Объем воды Мирового океана составляет 1,37 миллиарда кубических километров!

Значение воды в истории Земли, а следовательно, и в геохимии огромно.

Вот почему в свое время в геологических науках существовала гипотеза о происхождении всех горных пород на Земле из водной среды.

Сторонники этой гипотезы – нептунисты, названные по имени мифологического бога морей Нептуна, – спорили с плутонистами, доказывавшими, в свою очередь, происхождение всех пород на Земле из расплавленных масс, излившихся на поверхность из глубин подземного царства бога Плутона.

Сейчас мы знаем, что обе эти силы – вода и вулканы – участвовали в образовании пород Земли.

В природе практически нет воды, которая не содержала бы каких-то примесей или растворенных в ней веществ или солей.

В природе, иными словами, нет дистиллированной воды. Даже дождевая вода содержит углекислоту, следы азотной кислоты, йода, хлора и других соединений.


Кристаллы снега


Получить химически чистую воду очень трудно, если не сказать – невозможно. Газы воздуха, стенки сосуда, в котором находится вода, хотя и в малых количествах, но растворяются в воде.

Например, миллиардные доли серебра переходят в раствор воды, содержащейся в серебряном сосуде. Серебро чайной ложки в ничтожном количестве переходит в воду. Химик почти не может заметить этих следов. Но некоторые низшие организмы, например водоросли, настолько чувствительны к следам серебра и к некоторым другим атомам в воде, что погибают от них.

Природная вода, протекая по чрезвычайно разнообразным породам Земли: пескам, глинам, известнякам, гранитам и так далее, извлекает, конечно, из них разнообразные соединения. Некоторые ученые говорили, что если знать, по какому ложу течет река, – можно сказать, какого состава будет ее вода.

Но, несмотря на то, что в природе, как мы уже знаем, широко распространены алюмосиликаты, воды, как правило, не содержат больших количеств алюминия и кремния. Если эти металлы и присутствуют, то главным образом в виде мути, в виде механической взвеси. С другой стороны, все воды рек и морей всегда содержат щелочи – натрий, калий, а также магний, кальций и другие элементы. В чем же дело?

Оказывается, что химический состав растворенных в водах солей чрезвычайно зависит от степени растворимости тех или иных солей в воде. Наиболее растворимые соединения являются самыми обычными составными частями природных вод. Как мы уже говорили, главную массу солевого остатка природной воды постоянно составляют атомы натрия, калия, кальция, магния, хлора, брома и некоторых других элементов.

Насыщенные солями воды – рассолы – опять-таки содержат именно эти хорошо растворимые соединения атомов, вымытых из пород.

Океан, таким образом, является вместилищем растворимых солей, которые накопились в нем за все время существования Земли, в результате непрерывной циркуляции воды между материком и океаном.


Ниагарский водопад. США


Ученые пытались по количеству растворенных солей в океане подсчитать, какие их количества ежегодно выносят реки. На этом основании они вычисляли возраст океана, или то число лет, которое было необходимо, чтобы вода океана приобрела наблюдаемую сейчас концентрацию солей. Цифры, однако, получились не очень достоверные.

Итак, хорошо растворимые соединения атомов составляют основу солевой части природных вод. Вода океана содержит 3,5 % солей, из которых более 80 % хлористого натрия – всем нам известной поваренной соли. Каждый знает, как она легко растворяется. Все другие растворимые соединения находятся в воде лишь в очень малых количествах. В любой природной воде моря, реки, подземного источника – все химические элементы могут быть обнаружены. Весь вопрос в совершенстве наших методов исследования.

Если вспомнить, что имеется всего около сотни химических элементов, то легко представить себе, какие разнообразные по своему составу воды могут встретиться в природе. И действительно, ученые установили существование многочисленных классов вод.

Воды океана в любом месте – на поверхности и в глубине (но вдали от берегов) – исключительно постоянны по своему составу.

Содержание в них всех химических элементов строго повторяется количественно. Менее постоянен, но очень схож между собой состав речных вод. То, что реки текут в разных породах, в разных климатических условиях, накладывает отпечаток на их состав. Так, реки северных широт содержат больше железа, гумуса, часто они даже окрашены ими. Реки средних широт содержат главным образом натрий, калий, сульфаты, хлор. В более теплых широтах, особенно в областях, лишенных стока вод в моря или океаны, вода рек и, более часто, озер бывает засолена.

Подобная же смена состава вод по зонам наблюдается и по вертикали – для подземных пластовых вод. Чем глубже лежат эти воды, тем они больше приближаются к рассолам. Наиболее разнообразны по составу именно минеральные подземные воды, образующие нередко при выходе на поверхность минеральные источники, часто целебные.

Тут мы можем встретить воды кальциевые, йодо-бромные, радиевые, литиевые, железистые, серные, магниево-борные и другие. Сами названия подсказывают, какое химическое соединение или химический элемент является основной составной частью их растворенного остатка.

Происхождение этих минеральных вод связано с растворением минеральных отложений подземными водами, с процессом выщелачивания горных пород разного состава.

Занимательная и вместе с тем очень важная научная задача – по химическому составу этих вод разгадать весь процесс образования вод. Над нею работают геохимики и гидрохимики.

Приведем таблицу состава морской воды (в процентах):



Однако в абсолютных цифрах это не так мало, золота, например, в морской воде находится миллионы тонн.

Ученые много раз пытались построить такую физико-химическую фабрику, которая сделала бы выгодной добычу золота из морской воды. Но до сих пор это еще не осуществлено.

Для морской воды характерна концентрация брома, йода и, конечно, хлора – очень важных для человека химических элементов.

Йод из морской воды поглощается водорослями и морскими организмами. Из водорослей и добывает человек основную массу промышленного йода.

Когда водоросли гибнут, содержащийся в них йод переходит в ил морского дна. Из ила моря постепенно образуются породы. Воды из них выжимаются, и образуются пластовые воды. В эти пластовые воды переходит и йод. При бурении на нефть часто вскрывают пластовые воды. Они богаты йодом и бромом.

В настоящее время из них научились получать эти элементы. Морская вода является неограниченным резервуаром брома, который в настоящее время в ряде мест уже начали добывать непосредственно из морской воды (как и магний).

Особенно интересна история атомов кальция в природных водах.

Природные воды часто бывают пересыщены ионами кальция, и тогда последний в виде карбоната кальция выпадает на дно, образуя известняки или мел.

В истории кальция большую роль играет углекислота. Избыток ее приводит к растворению, недостаток – к выпадению карбоната кальция из растворов. И если мы вспомним, что углекислоту поглощают зеленые растения, то станет ясна их роль в осаждении кальция из воды. Действительно, огромные острова в теплом море – атоллы – сплошь сложены из карбоната кальция, отложенного в результате жизнедеятельности морских растений, а также из известковых скелетов морских животных.

Этим примером мы хотели показать, что на состав природных вод оказывает значительное влияние и живое население водоема.

Без ознакомления с влиянием «живого вещества» на состав вод водоемов нельзя полно представить себе все процессы, которые привели к современному составу воды рек, озер, морей и океанов.

Атомы на поверхности Земли. От Арктики до субтропиков

Еще мальчиком я совершил путешествие из Москвы на юг Греции, и среди детских воспоминаний осталась на всю жизнь передо мной картина смены окрасок, которая развертывалась по мере того, как мы подвигались к югу.

Я помню ясный день в Москве, серую однотонную землю, серо-красные, бурые глины серозема Центральной России. Мне помнится затем более пестрая картина черноземной окраски окрестностей Одессы, освещенных яркими лучами весеннего южного солнца. Вспоминаю, как изменились эти краски, когда мы вошли в Босфор: синева воды, каштаново-бурые почвы, возделанные под виноградники. И, наконец, я как сейчас вижу пейзаж Южной Греции: темно-зеленые кипарисы, красные почвы и красные натеки окислов железа среди белоснежных известняков. Я помню, как резко врезалась в мое воображение эта картина смены цветов и как настойчиво просил я отца объяснить мне, почему же так меняются краски. Лишь через много лет я понял, что передо мной прошел один из величайших законов земной поверхности, закон тех окислительных химических процессов, которые так по-разному протекают на различных широтах Земли.

С тех пор мне пришлось очень много путешествовать по Советскому Союзу, начиная от сплошных лесов тайги, равнин, тундр и полярных океанов, вплоть до снежных высот «крыши мира» – Памира. И каждый раз передо мною снова, но в гораздо большем масштабе вставала картина этих разнообразных химических реакций и разной судьбы атомов на поверхности Земли от самой глубокой Арктики до знойных субтропиков.

Посмотрим на эту маленькую карту и отправимся по нанесенной на ней стреле в путешествие от островов Шпицберген до острова Цейлона в Индийском океане.

Вокруг старого архипелага Свальбард, в который входят острова Шпицберген, сплошные льды. Мертвая ледяная пустыня. Никаких химических реакций, породы не разрушаются в глины или пески, действие морозов распространяется вглубь, образуются грандиозные осыпи. Только изредка на птичьих базарах скапливаются остатки органической жизни, и потеки фосфатов являются почти единственными минералами среди сплошного льда. Столь же медленно протекают химические реакции южнее, в нашем Кольском или Уральском Заполярье. Как свежи все породы на Кольском полуострове! Вы можете в холодное утро в бинокль наблюдать породы за десятки километров так, как будто вы рассматриваете их в музее. Тоненькие пленки бурых окислов железа видны на огромных пространствах. Лишь в низинах накапливаются торфяники, медленно сгорает органическое вещество растений, превращаясь в бурые гуминовые кислоты, и весенние воды уносят их вместе с другими растворимыми солями, окрашивая пласты студнеобразных масс торфяников и сапропелей на озерах и болотах.

Южнее, в окрестностях Москвы, можно наблюдать другие химические реакции. Тут тоже медленно протекает сгорание органического вещества, те же бурные весенние воды растворяют железо и алюминий, белые и серые пески окружают окрестности Москвы, синие прослойки фосфатов яркими пятнами выделяются на пространстве огромных торфяников.

Далее к югу постепенно меняются краски, изменяется ход химических реакций, атомы попадают в новую обстановку. Мы видим, как черноземы Среднего Поволжья сменяют серые глинистые почвы Подмосковья. Мы видим, как постепенно яркое солнце видоизменяет поверхность Земли, вызывая все более бурные, все более энергичные химические процессы.


Схема нашего путешествия


Уже в Заволжье мы встречаемся с новыми природными реакциями: мы попадаем в огромный соляной пояс, который тянется от границ Румынии через Молдавию, по склонам Северного Кавказа, через всю Среднюю Азию и заканчивается на берегах Тихого океана. Накапливаются различные соли хлора, брома и йода. Кальций, натрий и калий являются металлами этих солей в лиманах и в умирающих озерах, десятки тысяч которых разбросаны на территории этого пояса. Здесь идет сложный процесс образования осадков. Еще южнее мы попадаем в область пустынь. Тут новая картина встает перед нашими глазами: огромные солончаки белыми полями пестрят среди зеленых пятен степной растительности, пересекаемых шоколадно-красными водами Амударьи. Яркие краски говорят нам о новых химических реакциях, атомы перемещаются и приобретают в песках новые химические равновесия. Одни накапливаются в виде песков, образующих пустыни, другие растворяются, переносятся ветрами и бурным тропическим дождем и оседают в солончаках и шорах среди пустынь.

Но еще более яркие краски мы видим в предгорьях Тянь-Шаня. Здесь бурные химические реакции встречаются на каждом шагу, и пути странствования атома на поверхности Земли очень сложны. Я не могу забыть моих впечатлений от тех ярких и пестрых цветов, которые бросились мне в глаза, когда я посетил впервые одно замечательное месторождение. В моей книжке о цветах камней я описал эту картину в следующих словах:

«Ярко-синие и зеленые пленки медных соединений покрывали обломки пород, то сгущаясь в оливково-зеленые бархатистые корочки ванадиевых минералов, то сплетаясь лазоревыми и голубыми тонами водных силикатов меди.

Пестрой гаммой тонов лежали перед нами многочисленные соединения железа – гидраты его окиси: то желтые, золотистые охры, то ярко-красные маловодные гидраты, то буро-черные сочетания железа и марганца; даже горный хрусталь приобретает здесь ярко-красные цвета „кампостельского рубина“ прозрачный барит делается желтым, бурым, красным „рудным баритом“; на розовых глинистых осадках пещер выкристаллизовываются красные иголочки алаита – свободной ванадиевой кислоты, а на белых костях человеческого скелета – яркие зелено-желтые листочки вновь образовавшегося минерала…»

Картина пестрых, ярких тонов незабываема, и геохимик с вниманием присматривается к ней, стараясь разгадать ее. Он видит прежде всего, что все соединения находятся в сильно окисленном виде, и самые высокие степени окисления марганца, железа, ванадия и меди характеризуют эти минералы; он знает, что этим они обязаны южному солнцу, ионизированному воздуху с его кислородом и озоном, разрядам электричества в часы тропических гроз, когда идет превращение азота в азотную кислоту.


Ландшафт Арктики


Но стрела уносит нас еще дальше за границы песков. Поднимаясь на высоту в 4 тысячи метров, вы снова попадаете в пустыню, но пустыню льда: вы здесь не видите ярких красок, ни странствований атомов, которые только что наблюдали в низинах Средней Азии. Перед вами почти такая же картина, как на Новой Земле или Шпицбергене. Всюду грандиозные осыпи механических осадков, свежие горные породы почти не знают химических реакций, и только кое-где среди снегов и льдов выцветы одиноких солей и скопления селитры.

Эта картина напоминает арктические пустыни; и лишь редкие грозы с сильными молниями говорят о жизни и образуют в воздухе разряды электричества, создают частицы азотной кислоты, оседающей в виде селитры в высокогорных пустынях Памира и в еще более грандиозных количествах в пустыне Атакама в Чили.

Но протянем нашу стрелу дальше, через высоты Гималаев, и мы снова увидим яркие краски южных субтропиков. Непрерывные теплые дожди сменяются тропическим сухим летом, и сложнейшие химические реакции происходят на поверхности Земли, перенося растворимые соли, накапливая громадные толщи красных осадков, руд алюминия, марганца и железа.

Дальше показываются кроваво-красные латеритные почвы Бенгалии. Иногда в диких смерчах поднимаются они вверх.

Вот шоколадно-красные тона почв тропической Индии; сверкают накаленные солнцем обломки пород, покрытые как бы полуметаллическим лаком, и только изредка видны залегания «ванн» белой и розовой соли, перемежая эту картину красных почв индийских субтропиков.

Еще живее и шире раскрывается картина странствования атомов на юге Индии, там, где изумрудно-зеленые воды Индийского океана омывают красные берега, а вулканические извержения базальта приносят из глубин свое дыхание.

Сложные химические образования на каждом шагу разнообразят картину морского дна, начиная с мелководного прибрежья с его раковинами, мшанками и кораллами, кончая глубинами с коралловыми рифами и грандиозными скоплениями коралловых известняков.

В глубинах, в иле, там, где накапливаются остатки скелетов живых организмов, образуются фосфорные соли в виде желваков фосфоритов.

Радиолярии с их панцирями из кремнезема, принесенного реками, строят свои ажурные раковинки, а фораминиферы, строя свои скелеты, поглощают барий и кальций. Так быстро сменяются атомы от Арктики до субтропиков, и так грандиозны процессы странствования отдельных элементов на поверхности Земли.

Что обусловливает это различие в ландшафтах Дальнего Севера и тропического Юга? Мы знаем сейчас, что оно вызвано действием солнечных лучей, выгоранием, обилием влаги и высокими температурами земли. Оно вызвано бурно развивающейся органической жизнью, требующей огромного количества различных атомов. Мощные скопления остатков живой клетки на горячем южном солнце разлагаются в углекислоту, которая насыщает воду своими кислыми растворами.

Скорость химических реакций повышается на юге во много раз, ибо мы, геохимики, хорошо знаем одно из основных правил химической науки, что в большинстве случаев увеличение температуры на каждые 10 градусов повышает вдвое скорость обычных химических реакций.

И нам становятся понятными и неподвижность атомов в арктической пустыне, и сложные пути их странствования в субтропиках и пустынях юга. Мы видим, что можно говорить о химической географии, что мир природы с ее разнообразием материков и стран связан прочными нитями с теми химическими процессами, которые идут вокруг.

Среди факторов, определяющих ход геохимических процессов, все большее значение приобретает сам человек. Его интенсивная деятельность за последнее столетие была связана со средними широтами, и лишь постепенно он начинает осваивать ледяные пустыни Арктики и Антарктиды и овладевать песчаными пустынями юга. Он приносит свои новые, сложные химические реакции и нарушает природные процессы, возбуждая новые движения и странствования нужных ему атомов. Новая химическая география давно уже наметилась установлением основ почвоведения, той науки, родина которой – Россия и будущее которой – плодородие наших полей. И мы вспоминаем, как в восьмидесятых годах прошлого столетия в небольшой аудитории Петербургского университета знаменитый «отец почвоведения» В. В. Докучаев в блестящих лекциях раскрывал увлекательные картины новой науки, рисуя те почвенные пояса, которые покрывают всю Землю, начиная с полярных тундр и кончая пустынями юга.

Тогда его прекрасное построение нельзя было еще перевести на язык химии. Но сейчас, когда химия мощно врывается в область геологической науки, когда агрохимики стали управлять жизнью растений и теми реакциями, которые происходят в почве, когда геохимики охватывают своими исследованиями все области странствования атомов, – мы начинаем понимать те сложные пути, которые проходит каждый атом в разных широтах нашей Земли.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации