Электронная библиотека » Александр Ферсман » » онлайн чтение - страница 17


  • Текст добавлен: 1 июня 2020, 15:55


Автор книги: Александр Ферсман


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 17 (всего у книги 27 страниц)

Шрифт:
- 100% +

А между тем прошлое учит нас, что эти широты менялись. В течение почти двух миллиардов лет менялась жизнь нашей земной коры, изменялось положение полюсов, горные хребты сначала вздымали свои снежные вершины лишь в полярных странах, и постепенно складчатость перемещалась на юг, образуя такие хребты, как пояса Альп и Гималаев. Перемещались с севера на юг и большие моря, опоясывающие Землю; менялись пояса, менялись условия ландшафта. В каждом месте много раз сменялись моря горами, горы – пустынями и снова морями.

Так в долгой геологической истории Земли менялся и ход химических реакций и странствования отдельных атомов, а почвенные и поверхностные покровы в каждом данном месте земного шара есть лишь отражение тех химических судеб, которые испытывали атомы в долгие периоды разнообразной истории нашей Земли.

Сейчас мы знаем, что все живет, все течет, все меняется во времени и пространстве, и среди природы самым подвижным, постоянно ищущим новых путей является атом, первозданный кирпичик, из которого строятся самые замечательные постройки мира, который вечно ищет покоя и равновесия, покорный основным законам природных процессов.

Ищет – но не находит и не найдет никогда, так как в природе нет покоя, а есть только вечная материя в вечном движении…

Атомы в живой клетке

Простым глазом можно видеть, что угли слагаются из остатков растений.

Раковины ископаемых морских моллюсков образуют нередко пласты известняков. Но если мы рассмотрим известняки, мел, диатомит и многие другие так называемые осадочные породы под микроскопом, то увидим, что они часто сплошь состоят из остатков скелетов организмов микроскопической величины.

Одним словом, в геологии давно признана огромная роль населяющих земной шар организмов во всех процессах, которые происходят на поверхности Земли.

Живое вещество принимает большее или меньшее участие в таких геохимических процессах, как образование горных пород, концентрация или рассеяние отдельных химических элементов, осаждение веществ из воды, образование известняков из известковых скелетов организмов.

Но далеко не у всех морских организмов скелеты из извести. У некоторых, например губок, скелеты из кремнезема.

Но еще более существенно то, что в процессе жизни все организмы Земли, растения и животные, извлекают, поглощают или поедают и снова выделяют огромные массы различных веществ и как бы пропускают эти вещества через себя.

Скорость этого процесса особенно велика у самых мельчайших организмов: бактерий, простейших водорослей и других низших организмов.

Это связано с огромной скоростью их размножения. Они делятся каждые пять – десять минут.

Но и продолжительность жизни их невелика.

Подсчет показывает, что в этом процессе деления клеток захватывается количество вещества, во много тысяч раз большее того, которое находится в каждый данный момент во всех организмах Земли, растениях и животных или, как говорят, во всем живом веществе планеты.

Напомним, что зеленые растения на свету выделяют из своих листьев кислород и поглощают углекислоту. Кислород воздуха, образовавшийся таким путем, идет на окисление растительных остатков, окисляет некоторые горные породы, поглощается животными при дыхании.

Углекислота в растениях превращается в углеводы, белки и другие соединения. Представьте себе на момент, что на поверхности Земли, в ее морях и океанах, на равнинах и в горах исчезли все организмы. Что бы произошло?

Кислород связался бы остатками органического вещества и исчез бы из атмосферы. Состав ее стал бы другой. Микроскопических морских организмов с известковым скелетом не стало бы – следовательно, не стали бы образовываться пласты известняка и мела, перестали бы вздыматься меловые горы. Лик Земли совершенно преобразился бы и стал иным.

Геохимическая деятельность организмов чрезвычайно разнообразна. Разные организмы могут участвовать в самых различных процессах.

Для того чтобы выяснить геохимическую роль организмов, прежде всего необходимо знать их химический состав. Свое тело организмы строят целикам за счет веществ, извлекаемых тем или иным путем из окружающей их среды, – из воды, почвы и воздуха.

Очень давно было установлено, что главной составной частью всех организмов является вода – Н2О, в среднем около 80 %, причем несколько больше в растениях и несколько меньше в животных.

Поэтому элемент кислород в организмах занимает по массе первое место.

Совершенно исключительную роль играет в строении тела организмов углерод.

Углерод образует многие тысячи разнообразных соединений с водородом, азотом, серой, фосфором, из которых, в свою очередь, слагаются белки, жиры, углеводы, тела организмов.

Основным источником для этих углеродных соединений в живом веществе является углекислота. Далее, в организмах содержится значительное количество азота, фосфора, серы в виде сложных органических соединений.

Наконец, в организмах всегда находятся кальций – особенно в скелетах, – калий, железо и другие химические элементы.

Вначале полагали, что для всех организмов исключительное значение имеют десять – двенадцать элементов, находящихся в них в наибольших количествах.

Но позднее оказалось, что существуют организмы, которые помимо наиболее часто встречающихся десяти – двенадцати химических элементов концентрируют то железо, то марганец, то барий, то стронций, то ванадий, а также и многие другие редкие химические элементы.


Оолитовая руда


Так, обнаружилось, например, что кремний играет важную роль в жизни кремневых губок, микроскопических радиолярий, диатомовых водорослей, скелеты которых образуются из окиси кремния.

Железные бактерии концентрируют в своих телах железо. Открыты были бактерии, таким же образом концентрирующие марганец и серу.

В скелетах некоторых морских организмов обнаружили вместо кальция барий и стронций.

Некоторые организмы, например морские беспозвоночные оболочники, выбирают и накапливают атомы ванадия из морской воды и морского ила, где имеются лишь ничтожные следы этого элемента.

После гибели этих организмов ванадий в концентрированном виде остается в морских осадках.

Другие, как, например, водоросли, выбирают из морской воды йод, которого здесь миллионные доли процента. Затем йод с остатками морских водорослей поступает в морской грунт. В породе, впоследствии сложившейся из этого грунта, образуются йодные минерализованные воды. И мы добываем йод из пластовых вод, пробуривая глубоко породы там, где было когда-то море.

Геохимическая роль подобных организмов-концентраторов огромна.

Чем совершеннее техника исследования состава организмов, тем большее число химических элементов находим мы в них, правда, в очень малых количествах.

Вначале даже допускали, что серебро, рубидий, кадмий и другие химические элементы, обнаруженные в организмах, – лишь случайное загрязнение, но теперь твердо установлено, что практически в состав организмов входят все химические элементы. Весь вопрос в том, в каких количествах содержатся они в разных организмах. В настоящее время именно этот вопрос и занимает ученых.

Мы заранее можем сказать, что состав организмов далеко не повторяет состава окружающей среды – пород, вод, газов, вместе взятых.

Например, в почвах и породах находятся в значительных количествах титан, торий, барий и другие химические элементы, между тем титана в организмах в десятки тысяч раз меньше, чем в почвах, и тому подобное.

С другой стороны, в почвах, в водах мало углерода, фосфора, калия и других химических элементов, которые скапливаются в организмах в значительно больших количествах.

С геохимической точки зрения в настоящее время стало ясно, что главная масса тела организмов слагается из тех химических элементов, которые в условиях поверхности Земли – биосферы (области обитания организмов на нашей планете) образуют легкоподвижные соединения или газы. Действительно, углекислота, азот, кислород, вода – все это газы или жидкости легкоподвижные, доступные для организмов в процессе их жизни. Йод, калий, кальций, фосфор, сера, кремний и многие другие легко образуют растворимые в воде соединения.


Раковина аммонита, превратившаяся в минерал марказит (FeS2)


Зато титан, барий, цирконий, торий хотя и находятся в достаточном количестве в почвах и породах, не образуют в биосфере легко растворимых в воде и, следовательно, легко перемещающихся соединений. Они менее доступны или совсем недоступны организмам. Организмы их не накапливают. Они находятся в них в непропорционально малых количествах.

Очень мало в организмах и тех химических элементов, которых в биосфере недостаточно, как, например, радия, лития.

Химические элементы, находящиеся в организмах в очень малых количествах – порядка сотых долей процента и меньше, – называются часто микроэлементами.

В настоящее время признано, что физиологическая роль микроэлементов очень важна. Многие микроэлементы входят в состав физиологически важных веществ организмов, наподобие того как железо входит в состав гемоглобина крови, йод входит в состав гормона щитовидной железы животных, а медь и цинк – в состав ферментов животных и растений.

Можно было бы построить карту анатомического строения организмов с указаниями, где, в каких органах и тканях концентрируются химические элементы. Но нас сейчас занимает геохимическая роль организмов.

И мы должны согласиться, что разные организмы выполняют различные геохимические функции в зависимости от их способности концентрировать тот или иной химический элемент, или, иначе говоря, в зависимости от их химического элементарного состава.

«Кальциевые» организмы, из скелетов которых слагаются известняки, участвуют в геохимической истории кальция в биосфере; организмы, концентрирующие кремний, ванадий, йод, играют важную роль в истории этих атомов.

Перед нами стоит задача – изучить влияние организмов на геохимическую историю разных атомов в биосфере, оценить это влияние и использовать его.

Уже сейчас оказалось возможным отыскивать месторождения металлов, наблюдая за характером растительности данного места и находя известные растения – концентраторы этих металлов. Руда, лежащая под почвой, невольно заражает собою почву. В такой почве увеличивается содержание никеля, кобальта, меди, цинка, а следовательно, увеличивается и содержание их в растениях.

Поэтому сейчас анализируют содержание этих элементов в растениях. Если оно повышенное, роют канавы и закладывают шурфы. Так были открыты некоторые цинковые, никелевые, молибденовые и другие месторождения.

Организмы – растения и животные – «привыкли» к определенной концентрации тех или иных химических элементов в среде – водах, почвах, породах. Там, где их оказывается меньше или, наоборот, больше, организмы отвечают изменениями своей формы и роста. Недостаток йода в почвах, водах и продуктах в некоторых горных районах вызывает у людей и животных эндемический зоб, а недостаток кальция – ломкость костей, и так далее.

Это все указывает, какая тесная зависимость существует между так называемой мертвой природой и живым веществом.

Они связаны друг с другом общей историей атомов химических элементов.

И чем лучше и подробнее мы будем знать историю перемещения химических элементов – атомов – на Земле, тем ярче и точнее будем представлять себе геохимическую деятельность живых организмов, а для этого необходимо прежде всего знать их количественный химический элементарный состав.

Атомы в истории человечества

Прослеживая историю открытия химических элементов, мы наталкиваемся на странные и удивительные вещи. Первые элементы человек узнал попутно, не думая о них, даже не подозревая, что он владеет тайной, которая открыла бы острому уму важнейшие секреты природы. Трудно, с колоссальным усилием проникала в сознание почерпнутая из практики мысль о простых веществах, лежащих в основе строения всякой материи.

Алхимики не знали способа отличать простое тело от сложного, но они знали металлы и некоторые вещества, например мышьяк и сурьму. Вершины алхимической мудрости изложены в следующей записке алхимика:

 
Семь металлов создал свет
По числу семи планет.
Дал нам космос на добро
Медь, железо, серебро,
Злато, олово, свинец…
Сын мой! Сера их отец.
И спеши, мой сын, узнать:
Всем им ртуть родная мать!
 
(стихотворный перевод Н. Морозова)

Алхимики, а позднее некоторое время и химики называли металлы именами планет: золото – Солнце, серебро – Луна, ртуть – Меркурий, медь – Венера, железо – Марс, олово – Юпитер, свинец – Сатурн. Мышьяк и сурьма не считались металлами, хотя их свойства окисляться и возгоняться при нагревании были известны очень хорошо.

К сожалению, алхимики часто маскировали свои рецепты нелепыми и подчас трудно понимаемыми аллегориями.

Вот, например, «филозофическая рука алхимиков». Вы видите на ладони рыбу – символ ртути и огонь – символ серы. Рыба в огне – ртуть в сере, – по мнению алхимиков, первоисточник всех видов вещества.

Из соединения этих элементов, как пальцы из ладони, возникают пять главных солей, знаки которых стоят над пальцами: корона и луна – символ селитры; шестиконечная звезда – железный купорос; солнце – нашатырь; фонарь – символ квасцов; ключ – кухонная, или поваренная, соль.

Теперь понятно, что, когда алхимик писал: «взяв короля, его надо прокипятить…», – он имел в виду селитру, а кладя в реторту «фунт длинного пальца», он думал о нашатыре…

Алхимики также знали, что каждому металлу соответствует своя «земля», или «известь», и умели при помощи кислот эти «извести» (или, как мы говорим теперь, – «окислы») получать из всех металлов. Но они думали, что «извести» – более простые тела, а металлы – это соединения «известей» с «флогистоном», особым летучим началом огня.


«Филозофическая рука» алхимиков


Нужны были гений и трудолюбие Ломоносова и Лавуазье, чтобы доказать, что, наоборот, «ртутная известь» – сложное тело, состоящее из ртути и только что открытого Пристли газа кислорода, и что вес этого газа в точности равен прибавке в весе «ртутной земли». Годы этого открытия (1763–1775) по справедливости считаются годами начала современной химии и крушения алхимических фантазий, которые давно уже мешали научному изучению природы.

К этому времени было известно несколько десятков элементов: еще в 1669 году Бранд открыл фосфор, а в середине XVIII века были открыты кобальт, никель и научились из «цинковой земли» получать металл цинк. Наконец в 1748 году в Америке Антонио Улоа описал новый, похожий на серебро металл – «серебришко», или платину.

Но настоящая ревизия всех «простых» тел началась только в последней четверти XVIII и начале XIX столетия. В 1774 году были открыты кислород и хлор, и через десять лет, разлагая воду током от гальванических батарей, Кавендиш открыл водород и выяснил состав воды.

Дальнейшие открытия элементов шли закономерно: брали природное новое тело и разлагали его на составные части. В ряде случаев наталкивались на новые элементы. Так были открыты марганец, молибден, вольфрам, уран и цирконий, а также ряд других элементов.

В 1808 году Дэви усовершенствовал электролиз, а русский ученый Якоби усилил мощность тока и научился при помощи керосина и минеральных масел защищать продукты электролиза от окисления. Так были получены щелочные металлы в чистом виде, – были открыты калий, натрий, кальций, магний, барий и стронций.

За 14 лет, с 1804 по 1818 год, было открыто 14 элементов (кроме тех, о которых мы говорили, были открыты: йод, кадмий, селен и литий). За ними последовали бром, алюминий, торий, ванадий и рутений. А потом следует перерыв: нужны были новые методы исследований, старые уже исчерпали свои возможности.

Лишь когда в 1859 году был открыт спектральный анализ, снова последовали открытия, теперь уже таких элементов, которые были близки по свойствам к ранее изученным и не могли быть от них отличены старыми научными методами. Были открыты: рубидий, цезий, таллий, индий, эрбий, тербий и некоторые другие. Когда Д. И. Менделеев в 1868 году открыл свой знаменитый закон, ему уже было известно 60 элементов.

С этих пор наука получила твердую уверенность в существовании тех или иных элементов.

Оказалось, что у каждого элемента есть в таблице свое место, общее число всех элементов ограничено и пустые клетки – это еще не открытые элементы.

Для трех из них – экаалюминия (клетка № 31), экасилиция (клетка № 32) и экабора (клетка № 21) – Менделеев предсказал главные физические и химические свойства. Его предсказание блестяще подтвердилось, когда эти элементы были открыты. Экабор был назван скандием, экаалюминий – галлием, а экасилиций – германием.

Однако не следует думать, что прежде всего человечеству стали известны элементы, часто встречаемые в земной коре, а редкие – потом. Ничего подобного. Например, золота, меди и олова в земной коре очень мало, в то же время это были первые металлы, с которыми познакомились люди и которые были использованы в технической культуре. А между тем олова в среднем в земной коре несколько миллионных долей, меди – несколько десятитысячных, а золота так даже одна-две миллиардных.

И в то же время самые распространенные в земной коре элементы, как, например, алюминий, составляющий 7,45 % земной коры, были открыты очень поздно; алюминий еще в начале XX столетия считался редким металлом.

Причина здесь кроется в другом, а именно, насколько легко металл образуется в самородном виде и часто ли встречаются скопления с преобладанием этого металла, так называемые месторождения.

Способность собираться, концентрироваться в одном месте – вот что облегчило открытие и использование металлов в технике для потребностей человечества.

Открытие каждого нового элемента знаменует начало изучения его свойств, сперва химиками в лаборатории. Это, так сказать, первое знакомство. При этом химики ищут особенности элемента, его отличительные, оригинальные черты.

Например, разве не любопытно, что удельный вес лития – 0,53, так что этот металл плавает даже в бензине? А у осмия, наоборот, – 22,6, так что он в сорок раз тяжелее лития. Разве не любопытно, что галлий плавится всего при 30 °C, но температура кипения его (2300°) лежит далеко за пределами тех высоких температур, которые обычно употребляются в технике. «Что же тут любопытного?» – спросите вы. Попробуем рассказать.

Сначала о галлии. Применяя высокий нагрев в лабораториях и на заводах, инженеры и химики всегда хотят знать, до какой температуры нагревается проба или изделие. Конечно, прежде всего надо измерить температуру. Но вот беда: до 360° измерить очень просто, но при более сильных нагревах возникают затруднения: ртуть при 360° кипит, и ртутные термометры не годятся. А вот галлий годится. Если взять тугоплавкое кварцевое стекло и наполнить градусник расплавленным галлием, то таким термометром можно мерить температуру почти до 1700°, а галлий еще и не думает кипеть. Если найти более тугоплавкие стекла, то можно измерить температуру и в 2000°.

Теперь о весе. Вес, тяжесть – нечто гнетущее, прижимающее к земле. Вес сопротивляется движению, скорости, подъему на неизведанные высоты. А человек хочет двигаться быстро по земле, хочет летать по воздуху, как птица. Для этого надо победить тяжесть, и человек ищет легких и прочных конструкций, легкого и прочного материала. И вот особенно подходящими оказались два металла: алюминий с удельным весом 2,7 и магний, удельный вес которого 1,74.

В современном самолете большая часть его деталей состоит из алюминия, или, вернее, из его сплавов с медью, цинком, магнием и другими металлами. Но такое господствующее положение алюминий приобрел не сразу, а в упорной борьбе за улучшение своих качеств – прочности, твердости, упругости и устойчивости против огня и окислителей. Когда были преодолены трудности получения металлического алюминия, то он первым делом завоевал кухню. Легкие и чистые неокисляющиеся кастрюли, ложки и кружки – вот на что были истрачены первые его запасы. В технике его вначале не применяли, – да и куда, казалось, годится этот мягкий, не особенно прочный, не паяющийся, легкоплавкий металл? Алюминий завоевал мир только после того, как был изготовлен дюралюминий – твердый сплав, полученный «кухонным способом»: в тигель с алюминием добавляли попеременно различные металлы, и каждый новый сплав исследовался на прочность и другие качества.

Никто не мог в то время объяснить, почему 4 % меди, 0,5 % магния и незначительные примеси других металлов превратили мягкий, податливый алюминий в чудесный дюраль, прочный и способный закаливаться, как сталь. Замечательные свойства дюралюминия проявляются не сразу, и это значительно облегчает и упрощает его обработку. После закалки дюраль остается мягким еще несколько дней. За это время он «набирается сил», пока внутри сплава происходит перемещение медных частиц, образующих скелет дюралюминия. Но имеются и другие сплавы, которые кое в чем даже лучше дюраля. Таков, например, русский кольчугалюминий, по прочности превосходящий дюраль.

Внедрение дюраля и других легких сплавов имеет колоссальное значение для всех видов транспорта. Вес вагона метро или трамвая, сделанного из алюминия, на треть меньше, чем изготовленного из стали. В стальном трамвайном вагоне на одно пассажирское место приходится около 400 килограммов мертвого веса. А если металлическую конструкцию трамвая выполнить из алюминия, то вес на пассажирское место снизится до 280 килограммов.

История магния очень любопытна: он, можно сказать, был открыт два раза. Первый раз его открыл Дэви, и с тех пор он более ста лет считался одним из самых бесполезных металлов. Он шел лишь на елочную пиротехнику, в виде лент и порошка. Но в XX столетии было обнаружено, что этот «игрушечный» металл обладает такими замечательными свойствами, что его применение может вызвать настоящий переворот в различных областях техники.

Алюминий дал человеку настоящие крылья. Но человеку мало только летать – ему надо летать как можно дальше. И вот, если вес металла, из которого сделан самолет, сделать еще легче, скажем, на 20 %, то это лишняя тонна бензина в запасе и, стало быть, лишние тысячи километров полета. Но где же найти металл более легкий, чем алюминий?

И вот вспомнили про магний. Ведь его удельный вес 1,74 г, то есть на 35 % меньше, чем алюминия. Однако у магния нет тех качеств, которые нужны для строительного металла, то есть крепости и в особенности сопротивляемости к окислению; магний даже кипящей водой разлагается, отнимая от нее кислород и превращаясь в белый порошок – окись магния. Да и на воздухе он горит лучше дерева. Но конструкторы и химики не пришли в отчаяние: они знали, что сплавы – вот что поможет им найти металл с нужными свойствами. И действительно оказалось, что самые небольшие прибавки меди, алюминия и цинка лишают магний горючести и придают ему прочность, равную прочности дюраля. Все сплавы, содержащие более 40 % магния, называются электронами. В электроны, кроме магния, входят еще алюминий, цинк, марганец и медь.

И вот теперь, в XX веке, магний был открыт второй раз и сразу же завоевал себе прочное место как металл самолетостроения. Особенно обширно его применение для авиамоторов. Их части из магниевых сплавов обладают большой прочностью и неутомимостью.

Разве металлы «устают»? К сожалению, да. Стальная пружина, разгибаясь и сгибаясь сотни тысяч раз, теряет упругость, становится хрупкой и ломается – «устает». Вал мотора, «старея», ломается. И вот техника открыла, что некоторые сплавы «неутомимы»; и у них атомы разных металлов так хорошо подошли друг к другу, что, несмотря на удары, сцепление их не ослабевает. Таковы сплавы с магнием.

Конечно, одно самолетостроение не исчерпывает всех возможностей использования магния. Он широко применяется в автомобилестроении. Инструменты и части машин из магниевых сплавов отличаются большой прочностью и легкостью: они в пять-шесть раз легче стальных при той же, а иногда и большей прочности.

Магний – очень распространенный в земной коре металл, он встречается всюду. Подобно железу, он легко образует месторождения. В больших количествах магний содержится в морской воде, в соленых озерах, например у крымских берегов в водах Сиваша.

Главная руда магния – карналлит (двойная хлористая соль калия и магния), и наш Советский Союз исключительно богат им. Крупные запасы его в Соликамском месторождении лежат пластами под землей на глубине 100–200 м от поверхности. Карналлит рвут аммоналом, рубят отбойными молотками в шахтах и поднимают на поверхность.

Здесь еще нужно с ним много повозиться, чтобы отделить магний от хлора, с которым он тесно связан. Для этого карналлит надо расплавить и пропустить через него постоянный ток. Электричество разорвет связь между магнием и хлором, и белый металл живыми струйками польется в изложницы.

Сейчас пришло время добывать магний и из морской воды, в которой 3,5 % солей, и из них одна десятая часть магния. Таким образом, один кубометр морской воды содержит 3,5 кг металлического магния.

Добыча его очень проста: фильтрованная морская вода наливается в чаны, куда подсыпается гашеная известь, и тогда, в виде мути, выпадает гидрат окиси магния. Его отстаивают, а воду сливают. Осадок сушат на фильтрах, нейтрализуют соляной кислотой и окончательно обезвоживают. Полученный хлористый магний идет на электролиз в плавленом виде, примерно при 700°, как и карналлит. Вот и весь процесс.

Но магний не только строительный металл. Его способность гореть, развивая при этом огромную температуру, до 3500°, тоже не забыта техникой. Магний – важная составная часть в специальных бронзах. Магнеалюминиевая пыль – самая сильная смесь для зажигательных бомб. Магний очень нужен промышленности, и ему предстоит блестящее будущее.

Но вернемся к самолетам. Есть и еще «летающий» металл, к освоению которого самолетостроители сейчас только приступают. Это бериллий. Его удельный вес 1,82, но он устойчивее и «крепче» магния.

Сплавы бериллия превосходят по качествам все сплавы, до сих пор применяемые в самолетостроении. Инструменты из этих сплавов работают без шума и не дают искр.

Бериллий повышает качества магниевых сплавов, сообщая им особую прочность и неокисляемость. Незначительная присадка бериллия к магнию устраняет необходимость защищать металлический магний от окисления при разливке.

Но встает вопрос: а нет ли сплавов еще более легких?

Вспомним о металле литии. Ведь его удельный вес 0,53, то есть как у пробки. А между тем, прибавленный в небольших количествах к сплавам алюминия и магния, он придает им особую твердость.

К сожалению, еще не найдено стойких сплавов с большим количеством лития. Но искать их стоит, так как литий – распространенный металл, его в земной коре столько же, сколько цинка, и он встречается в значительных количествах в некоторых месторождениях в виде минералов сподумена и литиевых слюд.

Следовательно, если бы, например, сплавы лития с бериллием оказались подходящими, литий можно добыть в достаточных количествах. Но работы по изучению литиевых сплавов еще не увенчались успехом, – это является задачей сегодняшнего дня.

Литий встречается в минеральных водах, и врачи приписывают водам, богатым литием (как, например, воды Виши во Франции), особо целебные свойства. Но все же наиболее заманчивой является перспектива получения легкого, прочного и неокисляющегося металла для самолетов.

Легкие металлы и сплавы, однако, еще далеко не заменили в настоящее время черные металлы – железо, сталь и их сплавы ни в транспорте, ни во многих других видах промышленности. Поговорим об этих «старичках», которые, однако, еще очень бодры, крепки и дают все новые сплавы отличных качеств.

Если учесть все сложные, так называемые легированные, стали, то мы увидим, что они состоят из ряда близких между собой металлов – железа, титана, никеля, кобальта, хрома, ванадия, марганца, молибдена и вольфрама. Все эти сплавы в основе своей – «стали», то есть состоят из углеродистого железа, качества которого существенно улучшены «легированием», или прибавкой редкого металла.

Идя по пути замены части железа редкими металлами, технологи пришли к сплавам, в которых уже нет железа. Таков, например, стеллит, состоящий из вольфрама, хрома и кобальта. Этот сплав явился родоначальником широко известных теперь сверхтвердых сплавов, принесших в технику невиданные скорости резания металла – сначала 70–80, а теперь и сотни метров в минуту.

Вольфрам породил сверхтвердые сплавы и мощную технику резания металлов. Вольфрам и молибден дали сотни новых марок сталей, небывалых по прочности, жароупорных, броневых, рессорных, снарядных, бронебойных и тому подобных.

Нет, пожалуй, ни одной отрасли техники, в которую не проникало бы коренных изменений в связи с раскрытием свойств таких редких металлов, как вольфрам, молибден и другие.

Впрочем, название «редкие» – для них уже пережиток. Если учесть их содержание в земной коре, то молибдена в два, а вольфрама даже в семь раз больше, чем свинца. Какие же они редкие! А в промышленности они тоже уже становятся обычными, и их добыча сильно растет, догоняя добычу других, обычных, «нередких» металлов.

Стальные сплавы с молибденом применяются для изготовления орудийных стволов и лафетов. Марганцево-молибденовая сталь применяется как материал для брони и бронебойных снарядов.

Конструкторы автомобилей и самолетов предъявляют три основных требования к металлу: максимальная упругость, большая вязкость, высокое сопротивление длительным сотрясениям и частым ударам. Рост потребления молибдена за последние годы как раз и объясняется широким применением его в валах, шатунах, опорных механизмах, авиамоторах, трубах, особенно в соединении с хромом и никелем.

Другой вид использования молибдена – высококачественное литье из серого чугуна. Ничтожная прибавка в 0,25 % молибдена повышает физические свойства чугуна, в частности сопротивление на изгиб и на растяжение, а также твердость.

Вольфрам и молибден в виде тонкой проволоки используются в значительном количестве в электротехнике для вакуумных ламп. Из вольфрама готовят нити накаливания ламп. Температура плавления вольфрама 3380°, наивысшая из температур плавления металлов. Только углерод, один-единственный элемент, плавится при еще более высокой температуре – при 3500°. К вольфраму близки по температуре плавления два элемента: тантал (3000°) и рений (3170°). Из молибдена, температура плавления которого 2625°, делают крючочки, поддерживающие раскаленный вольфрамовый волосок в электрических лампах.

Мы видим, что мало открыть элемент, – его надо изучить, открыть в нем то качество, которое особенно ценно в изделиях, и тогда элемент как бы вторично открывается и делается полезным и необходимым. Вот, например, вольфрамовые контакты в автомобильных моторах, где тонкая, в десятую миллиметра, пластиночка из вольфрама обеспечивает электрический контакт в прерывателе, работая безотказно сотни часов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации