Электронная библиотека » Александр Городницкий » » онлайн чтение - страница 4


  • Текст добавлен: 21 декабря 2014, 15:50


Автор книги: Александр Городницкий


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Чем глубже опускается под воду человек, тем дольше проходит декомпрессия. Так, чтобы подняться с глубины, например, 300 метров, требуется около 12 суток. Но даже такой медленный подъем в гипербарическом комплексе не позволяет на 100 % вывести пузырьки инертного газа из организма. Это приводит к целому ряду профессиональных болезней – так называемых кессонных заболеваний.

В тех местах организма, где хорошее кровоснабжение, декомпрессия обеспечивает полное очищение, но туда, где по каким-либо причинам пузырьки уже побывали, трудно добраться. Поэтому у каждого профессионального водолаза есть свои больные точки – у корней зубов, в коленных суставах. Тем не менее, эта работа не считается одной из самых опасных. Космонавты, альпинисты и водолазы находятся только во втором десятке списка опасных профессий. Первые места занимают рыбаки прибрежного лова и мотоциклисты. Но, безусловно, профессия водолаза одна из самых тяжелых. Бытует даже поговорка, что настоящий водолаз должен быть толстым, тупым и лысым. Толстым потому, что у него не будет переохлаждения, жир защитит от холода под водой. Тупым – потому что он все время должен двигаться в замедленном режиме и думать тоже не очень быстро, чтобы, не дай бог, не принять неправильного решения. Ну а лысым, вероятно, чтобы шлем было легче надевать.

Смертельная опасность никогда не была причиной, заставляющей прекратить исследования. Человек любит рисковать и побеждать. Но сейчас приходится оглядываться и на экономическую сторону дела. Поэтому прекратили свое существование американские, французские, немецкие подводные лаборатории. Погружения водолазов остались только недлительные, с целью проведения каких-то конкретных технических или аварийно-спасательных работ. Там, где это возможно, применяются роботы.

За тысячелетия своего обитания на суше человек ухитрился все уничтожить вокруг себя. Вырубить леса, уничтожить пищевые запасы, отравить экологию вокруг себя. А за спиной у нас океан, где все эти запасы как будто беспредельны. Может, действительно стоит туда переселиться? Уже сейчас в Японии, например, разработан вполне реальный проект плавучего острова.

Так, сможет ли человек жить под водой? На этот вопрос нет однозначного ответа. С одной стороны, человечество может создать подводные города и жить в них. Это будут высокотехнические сооружения, которые обеспечат себя кислородом и пищей. Но никогда не сможет человек жить в открытой воде на больших глубинах из-за кессонной болезни. И не возникнет ли тогда с человеком обратный эволюционный процесс?

В известном романе-антиутопии «Галапагосы» американского писателя Курта Воннегута потомки потерпевших кораблекрушение и оставшихся на Галапагосских островах людей в течение следующего миллиона лет видоизменились, превращатившись в тюленей: у них вытянулись тела, появились жабры. Однако не боязнь превратиться в морское млекопитающее останавливает многих исследователей Мирового океана, а возникновение подводных городов. Даже пионер в строительстве подводных домов капитан Кусто к концу жизни пришел к выводу, что этого делать не следует. Человек привык жить на земле, а морская вода – иная среда, чуждая и более агрессивная, к ней непросто привыкнуть. В океане можно решать конкретные научные задачи, совершать подводные экскурсии, но полностью переселиться в его глубины почти невозможно.

 
Уходит в воду водолаз.
О чем он думает, когда
Над головой его, кружась,
Соединяется вода?
Среди своих подводных дел,
Где неизвестность – что ни шаг,
О чем он думает, надев
Непроницаемый колпак?
Воды зеленое вино
На глубине сжимает грудь.
Не так уж сложен путь на дно,
Но потрудней обратный путь.
Чтоб солнца праздничную медь
Увидеть в гавани опять,
Он должен в камере сидеть
И сжатым гелием дышать.
Уходит в воду водолаз.
Он знает – через много лет,
Устав от межпланетных трасс,
И мы пойдем ему вослед.
Забудет внук о царстве вьюг,
Гудящих неизвестно где,
И вековой замкнется круг
И разойдется по воде.
 
Рыба плавает по компасу

Как совершают далекие и сложные путешествия через океаны и моря рыбы? Как они ориентируются в безбрежных морских просторах, не всплывая наверх? Вопрос далеко не праздный. Много лет назад мне самому пришлось немало потрудиться над проблемой определения подводной лодкой своего места без всплытия, в подводном положении. Задача эта оказалась очень сложной. А рыбы, причем, что удивительно, низшей группы – акулы, миноги, угри, сельди, корюшки и другие, свободно ориентируются в глубинах океана и всегда попадают, куда им надо.

Современные исследователи пришли к выводу, что для такой сложной навигации рыбы, а возможно и другие морские животные, должны иметь свой биологический компас и биологические часы. При этом механизмы действия этих биологических приборов непонятны. Они должны быть связаны со способностью каких-то внутренних систем организма реагировать на факторы внешней среды. В процессе многовековой эволюции все живые организмы на Земле постепенно освобождались из-под власти случайных влияний, вырабатывая определенную защитную реакцию против них. Одновременно они учились использовать те внешние факторы, которые были постоянными или носили периодический характер. Именно такие постоянные факторы могли помочь органическому формированию двух главных приборов, необходимых каждому мореплавателю: компаса и часов. Многое ученые считают, что таким постоянным внешним фактором является магнитное поле Земли. Но как это доказать?

В далеком 1969 году, когда я еще работал в Ленинграде, в геофизическом отделе Научно-исследовательского института геологии Арктики, меня вызвала к себе начальник нашего отдела, профессор Раиса Михайловна Деменицкая (1912-1997), женщина острого и нестандартного мышления и такого же, нередко взрывного, характера. Она предложила мне вместе с группой сотрудников немедленно отправиться в Калининград, чтобы проверить это предположение экспериментально на биологической станции местного Научно-исследовательского института рыбного хозяйства и океанографии. Научная мотивировка ее инициативы была весьма необычная. В то время в большой моде были так называемые магнитные браслеты, которые якобы снижали кровяное давление и помогали успешно бороться с гипертонией. Такой же браслет носила и она, и была им очень довольна. Изложив мне научную идею нашей поездки – подтверждение влияния магнитного поля на навигацию рыб и, видимо, не встретив достаточного, по ее мнению, ответного энтузиазма в выражении моего лица, она привела в заключение главный научный довод, полностью исключающий всякие сомнения: «Видите? На меня магнитное поле действует, а на рыбу нет? Что ж я, по-вашему, хуже рыбы?» При такой постановке вопроса возражать начальству было опасно, и мы стали собираться в дорогу.

В наших опытах, которые проводились на биологической станции на Куршской косе, принимали участие биологи из Института рыбного хозяйства и океанографии В.А. Ходоровский и С.И. Глейзер. Испытуемыми были мальки европейского угря. Этот угорь населяет прибрежные воды Европы от Скандинавии до Гибралтара. Живет он обычно от 6 до 19 лет в пресной речной воде больших и малых рек. Затем взрослые половозрелые угри уходят на нерест в далекое Саргассово море, пересекая весь Атлантический океан по неизменному маршруту – с северо-востока на юго-запад. Как они ухитряются не сбиваться с пути и строго держать намеченный курс? Не зависит ли их ориентация в пространстве от земного магнитного поля? А если зависит, то как? Иначе говоря, могут ли рыбы ориентироваться по магнитному полю Земли?

Для опытов отобрали мальков, особей длиной около 10 сантиметров. Мы должны были определить влияние геомагнитного поля на их ориентацию в воде, а также определить, наблюдаются ли суточные ритмы в поведении рыбы, в ее двигательной активности. Другими словами, есть ли у угрей биологический компас и биологические часы. Опыты проводились в специальном огромном аквариуме-лабиринте, который сверху напоминает пчелиные соты. Он состоит из семи шестигранных секций, стенки которых образуют каналы, сходящиеся по три в один узел. Таким образом, рыба, двигаясь по любому из каналов, непременно окажется в узле, и ей придется выбирать один из двух других каналов, расположенных под одинаковыми углами к первоначальному пути. Если есть какой-то внешний фактор, подсказывающий рыбе, куда повернуть – направо или налево, то она повернет именно туда, а если нет, то выбор поворота окажется случайным. А это значит, что рыба пройдет все каналы лабиринта примерно одинаковое число раз. При этом все 24 канала, распределенные равномерно по площади лабиринта, параллельны трем осям, лежащим в плоскости под углами 120 градусов друг к другу.

Задача состояла в том, чтобы зафиксировать, сколько раз в определенный отрезок времени в каждый из трех каналов (а от каждого узла их отходит только три) заплывает рыба. Все случаи суммировались, и полученные величины сравнивались между собой. Если на рыбу не влияют никакие внешние факторы (запах, тепло или звук), то в каждом канале она должна побывать примерно равное число раз. Лабиринт именно так и устроен: ни свет, ни тепло, ни звук в него не проникают. Если в этих условиях есть различие в частоте появления рыбы в разных каналах, значит, на нее что-то действует извне, какой-то постоянный фактор. Таким единственным постоянным фактором является земное магнитное поле, которое должно быть однородным. Если магнитное поле меняется вдоль каждой оси, то число заплывов угря в каждый из трех каналов не изменится. Это характерное свойство лабиринта дает своеобразный внутренний контроль для экспериментов. Лабиринт устроен так, чтобы определить действие на угря лишь постоянных силовых полей. Планируя этот эксперимент, необходимо было заранее посчитать, сколько времени угорь должен находиться в лабиринте, чтобы запись его пути была наиболее достоверна. Сразу фиксировать направление движения угря или дать ему освоиться? В какой момент рыба проявит самую уверенную ориентацию? Для ответа на эти вопросы провели несколько опытов.

С момента запуска угря в лабиринт счетчик регистрировал частоту его появления на каждой из трех осей и через каждые пять минут делалась отметка времени. Угорь в лабиринте двигался непрерывно до «ночной» остановки, которая у разных угрей наступала в разное время. Десятки тысяч опытов позволили установить, что в первые пять минут пребывания в лабиринте угорь четко ориентировался по направлению запад – восток. Затем это направление сглаживалось. Создавалось впечатление, что угорь сначала «определяется» по магнитному полю Земли, а потом ведет себя сообразно новой обстановке. Если действительно на движение угря влияет геомагнитное поле, что же происходит в отсутствие этого поля?

Для компенсации земного магнитного поля лабиринт-аквариум с рыбами помещали в деревянный каркас, обмотанный медным проводом, так называемыми кольцами Гельмгольца. Проходя через обмотки такой катушки, электрический ток создавал индуцированное магнитное поле, обратное по направлению магнитному полю Земли. Так достигалась компенсация, при которой внешнее магнитное поле было равно нулю. Как только угорь появлялся в лабиринте, в течение первых пяти минут фиксировались его заплывы во все каналы. Для этого применяли специально разработанные методы подсчета, использующие расчет биноминального распределения случайных величин. Каждый цикл проводился с 24 различными особями.

Результаты опытов показали, что без влияния магнитного поля Земли вероятность появления балтийского угря на всех осях примерно одинакова. В то же время в магнитном поле Земли число перемещений угрей в направлении северо-восток – юго-запад намного больше, чем число их перемещений в других направлениях. Достоверность такого перемещения составляет 95 %. Вместе с тем частота появления угрей в направлении северо-запад – юго-восток значительно меньше средней. С той же степенью достоверности можно утверждать, что угри в симметричном лабиринте выбирают направление северо-восток – юго-запад и избегают направления юго-восток – северо-запад.

То, что эта разница в направлениях вызвана именно влиянием геомагнитного поля, наглядно подтверждается полным отсутствием направленного движения угря при его компенсации. В этом случае все направления относительно сторон света для угря становятся равноценны. Следовательно, магнитное поле Земли играет важную роль в ориентации европейского угря в океане. Это весьма интересное утверждение, в свою очередь, ставит перед учеными множество других вопросов. Например, если рыба чувствует магнитное поле, то какие различия в напряженности и в направлении геомагнитного поля она может воспринимать как разные? Иначе говоря, различает ли европейский угорь географические широты по их магнитным характеристикам?

Опыты, проведенные в Калининграде и Ленинграде, показали, что рыбы способны вводить «поправку на широту». Калининградские угри предпочитали путь с северо-востока на юго-запад, а ленинградские упорно выбирали направление северо-северо-восток – юго-юго-запад. Получается, что угорь, как опытный штурман, пользуется специфической тонкой компасной системой, различающей даже небольшие расхождения в широте. И совершенно естественным выглядит стремление рыбы выбрать преимущественное направление с северо-востока на юго-запад, совпадающее с направлением миграции в сторону Саргассова моря. Обращает на себя внимание, что эта способность наблюдается уже у мальков. Мальки угря появляются на свет, снабженные компасом для дальнего океанского плавания. Поэтому можно говорить о генетически закрепленной способности к ориентации в магнитном поле Земли, которая передается от одного поколения угрей к другому.

Во время эксперимента на побережье Балтийского моря под Калининградом был также поставлен вопрос о том, как влияет на ориентацию угря в магнитном поле время года, время суток, температура воды и ее состав. Одинаково ли ориентируются голодные и сытые рыбы? Казалось бы, что разные эти условия должны были бы повлиять на ориентацию угрей в геомагнитном поле, но наблюдения этого не подтвердили, – ничего не мешало упорному компасному чутью упрямых мореплавателей. Ну, а раз у животного, рыбы или птицы есть компас, то должны как будто быть и часы, ведь время и пространство неразрывно связаны. И еще один интересный вопрос: не влияют ли на двигательную активность угря суточные вариации магнитного поля?

Чтобы ответить на этот вопрос, специалисты Института океанологии имени П.П. Ширшова РАН предприняли попытку выявить временные ритмы двигательной активности угрей. Наблюдались периоды бодрствования, сна и активного движения рыб в течение суток. Угрей запускали в лабиринт в первые пять минут каждого часа и регистрировали все их движения. Через три дня опыт повторили. Сравнивая поведение рыбы за несколько суток, ученые выявили определенные ритмы с периодом в одни сутки. Существование суточного цикла позволило предположить, что природа снабдила угрей своеобразным «часовым механизмом». В то же время суточные вариации магнитного поля никакого влияния на двигательную активность рыб не оказали.

Таким образом, эксперименты показали, что рыбы имеют все, что необходимо моряку в океане: магнитный компас и часы. И хотя проблема навигации животных и, в первую очередь, рыб еще далека от своего разрешения, от этого она не становится менее привлекательной. Попытка решить ее на основе изучения геофизических полей в будущем может дать совершенно неожиданные результаты…

 
Как над этим научный ни трудится люд,
Не разгадана тайна земная:
Рыбы знают, куда в океане плывут,
А подводная лодка не знает.
Из Саргассова моря плывут они к нам,
Без особых притом приключений,
Пролагая свой путь по магнитным полям,
И, возможно, по полю течений.
 
 
Под тяжелым покровом морской синевы,
В океане – от Оста до Веста,
Ни один командир не сумеет, увы,
Не всплывая, найти свое место.
Под поверхностью водной, где чаячий гам,
И волны серебристой изгибы,
Рыба жизнь в своем брюхе несет к берегам,
А подводная лодка – погибель.
 
 
От науки устав, пожилой и седой,
Почему, догадался я все же,
Рыба может свой путь отыскать под водой,
А подводная лодка не может.
Потому что в краю, где отлив поутру
И туманами бухты одеты,
Будет рыба метать золотую икру,
А подводная лодка – ракеты.
 
Стоит ли есть рыбу из Балтийского моря?

Стоит ли есть рыбу из Балтийского моря? «А почему бы и нет?» – переспросит читатель. Вопрос этот, однако, прост только на первый взгляд. В конце 40-х годов прошлого века на Балтике произошли весьма драматические события, которые сейчас, в начале XXI столетия, грозят превратить ее в море экологической катастрофы.

В 1997 году в порт одного из прибалтийских польских городов вошел траулер, судно было разгружено, и рыбу развезли по магазинам. К вечеру пятеро членов экипажа оказались в больнице. Поставленный диагноз подтвердил отравление ипритом. В городе началась паника. В срочном порядке из магазинов был изъят товар, ставший смертоносным. Скорее всего, рыбаки подцепили вместе с рыбой контейнер или снаряд, после чего вся рыба была заражена ипритом.

Иприт – наиболее распространенный химический реагент, применявшийся как боевое отравляющее вещество во время Первой мировой войны. Для этих целей он производился в огромных количествах. И подавляющее большинство запасов отравляющих веществ всех государств, имевших химическое оружие, составлял именно иприт. Впервые он был применен германской армией в июле 1917 года против англо-французских войск около бельгийского города Ипр, откуда и получил свое название. Это очень дешевое и эффективное оружие массового поражения. Но в ходе Второй мировой войны немцы так и не рискнули его применить. После краха Третьего рейха союзники встали перед проблемой, что делать с химическим оружием гитлеровской армии – бомбами и снарядами с ипритом. На оккупированной территории Германии было обнаружено 296 103 тонны химического оружия. К тому моменту на вооружении химических войск вермахта были мины, снаряды и авиационные бомбы различных калибров, а также шашки ядовитого дыма, химические фугасы и даже ручные гранаты. Помимо этого вермахт был достаточно хорошо оснащен специальными машинами для осуществления быстрого заражения местности с помощью стойких отравляющих веществ. В немецких военных арсеналах были накоплены огромные запасы химических боеприпасов, которые были снаряжены ипритом, фосгеном, дифосгеном, адамитом и люизитом.

На Потсдамской мирной конференции стран антигитлеровской коалиции в 1945 году было принято решение об уничтожении этого химического оружия. В результате в Балтийское море, его заливы и проливы было сброшено 267,5 тысячи тонн бомб, снарядов, мин и контейнеров, в которых содержалось 50-55 тысяч тонн боевых отравляющих веществ четырнадцати видов.

Захваченное на территории Западной Германии хим-оружие английские и американские оккупационные войска затопили в четырех районах прибрежных акваторий Западной Европы: в Скагерраке недалеко от шведского порта Люсечиль, на норвежском глубоководье недалеко от Арендаля, между материком и датским островом Фюн и недалеко от Скагена, крайней северной точки Дании. Всего же в шести районах на морском дне было похоронено порядка 302 875 тонн различных отравляющих веществ, или приблизительно одна пятая от общего запаса отравляющих веществ. Помимо этого не менее 120 тысяч тонн различного химического оружия было затоплено в неустановленных местах на территории Атлантики и в западной части пролива Ла-Манш, еще, как минимум, 25 тысяч тонн химического оружия были вывезены в СССР.

Считалось, что корабли и ящики с бомбами и снарядами будут захоронены грунтом и, таким образом, обезврежены. Получилось, однако, иначе: за десятки лет химически агрессивная морская вода в результате коррозии разъела металлическую оболочку бомб и снарядов, и иприт стал просачиваться наружу. Сильные морские течения, омывающие берега Балтийского моря, включая Ботнический и Финский заливы, разнесли ядовитые вещества по всем районам Балтики. Что касается осадков, то они действительно захоронили утопленные суда, что отнюдь не помешало вымыванию иприта, но стало серьезной помехой для обезвреживания этого смертоносного груза.

По сей день никто точно не знает, где и сколько судов было затоплено. В 2003 году на научно-исследовательском судне Института океанологии имени П.П. Ширшова РАН «Профессор Штокман» были начаты систематические экспедиции в Балтийское море и район пролива Скагеррак на участки, где происходило затопление химического оружия. С помощью комплекса геофизических методов, и прежде всего высокоточной морской градиентной магнитной съемки, специалисты лаборатории Геомагнитных исследований океана, которую я тогда возглавлял, смогли обнаружить довольно много затонувших кораблей, в том числе судно длиной более 100 метров. Отбор проб воды и грунта в районе его затопления показал значительное присутствие следов иприта и люизита – отравляющего вещества кожно-нарывного действия, полученного в конце Первой мировой, но на ее полях не применявшегося.

В следующем, 2004 году в том же районе были обнаружены еще два судна. Съемки, сделанные камерой подводного аппарата, показали страшную картину: разрушенные борта судов, развороченные взрывами палубы, сорванные крышки люков, трюмы, забитые боеприпасами. При этом использовалась магнитная аппаратура, изготовленная в нашей лаборатории, потому что отечественной промышленностью она практически не выпускается.

В течение нескольких лет был проведен систематический мониторинг в районах массового захоронения химического оружия. Теоретически угроза экосистеме, конечно, существует, поскольку на дне могли войти в контакт с водой сильные яды, придуманные людьми. Известно, что большая часть отравляющих веществ являются нестойкими соединениями и разлагаются вследствие гидролиза, то есть химического взаимодействия с водой. Однако многие ученые считают, что такое вещество, как иприт, характеризуется слабым взаимодействием с водной средой и поэтому может быть опасным. Мнения разделились.

Доктор физико-математических наук профессор Вадим Тимофеевич Пака из базирующегося в Калининграде Атлантического отделения Института океанологии считает, что источники иприта опасны только в непосредственной близости от них, но далекого проникновения в водную среду они иметь не будут. В то же время еще в 60-е годы XX века британский генетик Шарлотта Ауэрбах (1899-1994) открыла специфические свойства боевых отравляющих веществ, в частности иприта, который на генетическом уровне может воздействовать на процессы, происходящие в человеческом организме. Даже крайне незначительная доза иприта (одна – две молекулы), попав в организм, может сбить его генетический код, вызвав мутации через три-четыре поколения!

На самом деле, опасность действительно существует. Ядовитые вещества после контакта с водой могут оказаться гораздо токсичнее, чем первичное отравляющее вещество. И целый ряд этих новых образующихся ядов в условиях высокого давления на морском дне, превышающего десять атмосфер, а также низкой придонной температуры, которая в жаркий период равна одному-двум градусам, разлагается не так быстро, остаются устойчивыми и могут эффективно действовать и на рыб, и на человека.

Помимо этого яды дальше уже становятся частью водной среды и биоты, в ней обитающей. Дело в том, что с самими осадками химическое оружие может перемещаться на большие расстояния. Существуют так называемые потоки наносов, когда вещество волочит течением по дну. Опасность распространения химического оружия в Балтийском море связана, прежде всего, с ними.

Необходимо обязательно взять образцы затопленного оружия, чтобы понять, в каком состоянии среднестатистический образец. Без этого невозможно спрогнозировать дальнейший ход событий. Мы до сих пор не знаем, какая часть первоначально затопленного химического оружия подверглась воздействию воды. Эта опасность грозит следующим: иприт, ушедший в воду, сорбируется микроорганизмами, в том числе и планктоном; рыба ест планктон, а человек ест рыбу.

Нередко для обнаружения химически опасных объектов на морском дне используется метод, который называется «гидролокация бокового обзора», мы получаем акустические картинки поверхности морского дна как акустические фотографии. На них отчетливо видно, что все дно буквально исчиркано донными орудиями лова: тралами, сетями, то есть рыбаки постоянно скоблят морское дно в этих районах. Это представляет самую большую угрозу, потому что даже в тех случаях, когда оружие самозахоронилось, то есть ушло в грунт, каким-нибудь тяжелым тралом или другим промысловым приспособлением его можно оттуда вытащить.

И все-таки среди ученых нет единодушия в вопросе, насколько опасна рыба из Балтийского моря: лосось, скумбрия, треска, салака – и опасна ли она вообще. Когда мы проводили свои исследования в проливе Скагеррак зная, что под нами находятся суда с затопленным химическим оружием, то, поймав спиннингом балтийскую рыбу, употребляли ее в пищу только после того, как с помощью подводной видеоаппаратуры наблюдали буйную жизнь в морской пучине. А вот что говорит вице-адмирал, доктор технических наук профессор Тенгиз Николаевич Борисов: «Все, что выловлено в Балтийском море, я бы не рекомендовал употреблять в пищу, особенно молодежи, которая планирует обзавестись потомством, да и людям в возрасте, которые не хотят каких-то новообразований в своем организме. Балтийская рыба, к сожалению, находится в зоне риска».

Мы уже говорили вначале о том, что возможна ситуация, когда рыбаки цепляют сетями снаряды или бомбы с ипритом, и тогда опасность заражения человека возрастает во много раз. Морскую рыбу можно назвать мигрантом – очень редко такая рыба держится на какой-то одной территории. Рыбы-мигранты, возможно, не могут принять на себя влияние химического оружия, но появляется еще один очень неприятный момент. Микробиологи говорят о том, что в этих зонах есть очень серьезные изменения, мутации микроорганизмов, их поражение. Через эти микроорганизмы в конце концов яд может добраться и до рыбы.

На сегодняшний день эта проблема приобрела политический аспект, точнее экономический: кто же будет есть рыбу из Балтийского моря, если оно станет территорией экологической катастрофы? Мнения разделились. Так, Дания, Бельгия, Швеция, Германия – страны, в которых доходы от рыболовства составляют внушительную часть национального бюджета, естественно, не заинтересованы в том, чтобы подобная информация просочилась в прессу и стала достоянием общественности.

В 2004 году я делал доклад о результатах поисков затопленных судов с химическим оружием на борту в Генте, на Международной конференции, посвященной опасности распространения химического оружия в Балтийском море, которая проходила под эгидой НАТО. На конференции голоса также разделились. Большая часть ученых, представлявших прибалтийские государства, в том числе страны – члены специальной Хельсинкской комиссии по защите морской среды Балтийского моря, старалась доказать, что ничего страшного не происходит, иприт понемногу растворится в воде и перестанет представлять угрозу. Наша с профессором В.Т. Пакой озабоченность по этому поводу была встречена в штыки: русские, дескать, специально раскручивают проблему, чтобы заработать денег.

Однако все не так просто. Вот характерные реплики немецких ученых, прозвучавшие на том заседании. Профессор Базенер говорил: «Должен сказать, что как раз сегодня вечером я ел рыбу. Мы в Германии также едим рыбу из Балтийского моря. Это не вопрос – можно ли есть рыбу. Просто существуют определенные районы, где надо ограничить улов и быть осторожными. Но по большому счету, я говорю да». Его коллега профессор Ленц утверждал: «Вопросы захоронения химического оружия в последние годы активно обсуждаются в Германии. И как раз реакция на обсуждение проблемы родилась с идеей изучения и мониторинга взятия проб субстанций, находящихся в районах затопления судов. Но среди населения бытует мнение, что это недостаточно. Я лично могу сказать, что, если проблема затронет немцев, протест будет так велик, что государство предпримет все, чтобы с этим разобраться. Главное, чтобы не было поздно».

В отличие от западных ученых, их российские коллеги серьезно обеспокоены ситуацией в Балтийском море. Так как нет надежных способов проверки качества морепродуктов именно с точки зрения мутагенности, с точки зрения экологических возможных заболеваний, то формально надо было бы просто запретить в пищу употребление балтийской рыбы и прочих морепродуктов. Однако запретить вылов 2,5 миллиона тонн рыбы в год суммарно и подорвать экономику трех-четырех десятков стран, наверное, никто никогда не решится. Поэтому будет делаться все, чтобы доказать, что никакой опасности не существует.

Одно дело – обнаружить места захоронений, хотя и это достаточно сложно, но если они найдены, неизменно встает вопрос, что делать дальше с находящимися там отравляющими веществами? Извлечь их на поверхность или надежно захоронить на морском дне? Как ни странно, но лучше всего оставить все на месте затопления, устроив специальные саркофаги, которые ограничат проникновение ядовитых веществ в балтийскую воду. Именно такие проекты сейчас должны обсуждаться и реализовываться. Попытка подъема истлевшего смертоносного груза на поверхность, наоборот, может привести к обратному результату – залповому выбросу иприта.

Современные технологии позволяют решать эту проблему быстро, эффективно и дешево. Очевидно, что строительство саркофагов на такой глубине практически исключается, но вполне возможно использовать корпуса затопленных судов в качестве опалубки и заливки туда связующего вещества – возможно, легкого цемента. По мнению Т.Н. Борисова, разработанные варианты позволяют залить участок захоронения легким составом, который будет проникать во все щели, во все зазоры между боеприпасами. Он бетонируется, схватывается и создает монолит, который уже не представляет опасности.

Естественно, наибольшую опасность представляет залповый выброс, когда одновременно огромное количество иприта пойдет из прохудившихся снарядов и бомб в воду. С одной стороны, такая вероятность как будто не очень велика, но с другой – представим себе внешнее воздействие – оно может быть самым различным: допустим, землетрясения, гигантская волна, наконец, террористический акт. США и Великобритания засекретили всю информацию первоначально на пятидесятилетний срок, а в 1997 году американское и британское министерства обороны продлили этот срок еще на двадцать лет. Но если террористы пронюхают о месте затопления судов, загруженных бомбами под завязку, то последствия могут быть необратимыми.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации