Текст книги "Удивительная Солнечная система"
Автор книги: Александр Громов
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
Рис. 19. Сравнительные размеры Земли и крупнейших транснептуновых тел
Наконец, в-третьих, объект должен расчистить окрестности своей орбиты, то есть он должен быть гравитационной доминантой, не допускающей существования рядом с собой других тел сравнимого размера, кроме его собственных спутников и тел, находящихся под его гравитационным воздействием.
Легко видеть, что Плутон удовлетворяет первому и второму условиям. Менее очевидно то, что он не удовлетворяет третьему, однако это факт. Если масса Земли в 1,7 млн раз превышает суммарную массу всех других тел на ее орбите, то масса Плутона составляет лишь 7 % от массы всех других тел на его орбите. Так что, увы, Плутон не проходит в планеты.
Решением MAC Плутон был причислен к плутоидам – семейству транснептуновых астероидов. Термин «плутоиды» был введен в 2008 году. В качестве астероида Плутон получил номер 134 340, что выглядит вопиющей несправедливостью по отношению к столь крупному космическому телу – на сегодняшний день второму, а может быть, и первому по величине в Солнечной системе, если не считать планеты и их спутники. Однако астероиды нумеруются по мере их отождествления, и коль скоро Плутон был отождествлен как астероид лишь в 2006 году, то…
А впрочем, не надо обижаться за бывшую планету. Плутону в высшей степени безразлично, к какой категории космических тел причислят его мыслящие существа, обитающие очень далеко от него на близкой к Солнцу и, с его «точки зрения», нестерпимо горячей планете…
Но что же находится далеко за Плутоном? И где вообще пролегают границы Солнечной системы? Долгое время в умах большинства людей, далеких от астрономии, откладывалась одна из многих фальшивых истин, столь характерных для мировосприятия обывателя: граница проходит примерно по орбите Плутона. Но уже орбита Седны говорит нам о том, что границы эти лежат гораздо дальше. Где же?
Там, где гравитационное притяжение Солнца уравновешивается гравитационным притяжением ближайших звезд, не ближе. От орбиты Плутона до дальней периферии Солнечной системы, до расстояния не менее 100–200 тыс. а.е.[13]13
Астрономическая единица (а.е.) равна среднему расстоянию от Земли до Солнца, то есть 149,6 млн км. Внутри Солнечной системы это удобная в качестве стандарта расстояния величина – не слишком большая и не слишком маленькая. – Примеч. авт.
[Закрыть], где уже начинает сказываться притяжение соседних звезд, простирается облако Оорта, названного так в честь замечательного голландского астронома. Облако это состоит из миллиардов (вероятно, до 100 млрд) преимущественно ледяных тел, но общая его масса оценивается всего-навсего в 10 % массы Земли.
Пояс Койпера представляет собой просто внутреннюю часть облака Оорта.
Облако Оорта отнюдь не дискообразное, о чем говорят хотя бы орбиты плутоидов и приходящих с дальней периферии комет с почти параболическими орбитами и большими наклонами к эклиптике – а ведь ядра комет суть не что иное, как случайно залетевшие во внутренние области Солнечной системы тела облака Оорта. По-видимому, облако Оорта представляет собой несильно сплюснутый сфероид. Отсюда возникают интересные вопросы, касающиеся формирования этой прорвы ледяных тел. Существуют как гипотезы о том, что тела пояса Оорта сформировались из самых внешних частей газово-пылевой оболочки, в центре которой сформировалось Протосолнце и протопланетный диск, так и гипотезы, согласно которым эти тела формировались гораздо ближе к Солнцу, в самом протопланетном диске, и были выброшены из него гравитационным воздействием планет-гигантов. Однозначного ответа пока нет.
Расширим поле зрения до ближайших звезд. Ближайшая к нам звезда – упомянутая выше Проксима Центавра – слабый, невидимый невооруженным глазом красный карлик, входящий в тройную систему Альфа Центавра. До нее от нас 1,295 пк, или несколько более 4,2 светового года, или примерно 268 тысяч а.е. Второй по удаленности звездой является одиночный красный карлик, известный как Летящая звезда Барнарда. До нее 1,82 пк, или 5,9 светового года. Летящей эта звезда называется из-за рекордно быстрого собственного движения среди звезд – более 10 угловых секунд в год. Отнюдь не мала и радиальная составляющая скорости; достаточно сказать, что через 8000 лет ближайшей к Солнцу звездой станет именно звезда Барнарда, а не Проксима Центавра.
Вообще собственные движения звезд хоть и малы, но для ближайших звезд весьма заметны на больших промежутках времени. Например, нынешнее угловое склонение той же Альфы Центавра равно примерно минус 60°, то есть увидеть ее невозможно не только из средних, но и из субтропических северных широт. Однако древним египтянам эта звезда была хорошо знакома: в IV тысячелетии до н. э. она располагалась на небе всего в 30° южнее небесного экватора. Небесные объекты с таким склонением можно прекрасно наблюдать даже Крыму, не то что в Египте.
Чуть далее звезды Барнарда располагаются чрезвычайно слабый красный карлик Вольф 359 и еще один красный карлик, о котором практически нечего сказать, но следующая за ним по удаленности от Солнца звезда заслуживает всяческого внимания. Это Сириус, ярчайшая звезда нашего неба. Находясь в южном полушарии, он лишь в зимние месяцы невысоко поднимается над горизонтом в средних широтах; в северных же районах России и вовсе не виден. Но как бы низко над горизонтом Сириус ни висел, он сразу обращает на себя внимание. Глаз неастронома порой готов спутать Сириус с планетой – столь велик его блеск. Мы помним, что Гиппарх условно разделил звезды по блеску на 6 классов, отнеся к первому классу самые яркие звезды небосвода. Но Сириус настолько ярок, что не относится к первой звездной величине, не относится он и к нулевой. Его блеск -1,46m, и он значительно опережает по блеску второй яркий «фонарь» звездного неба – Канопус (-0,72m). Но что такое Сириус, сточки зрения астронома?
Ничего особенного: рядовая звезда главной последовательности, спектрального класса Ai, не очень массивная и не очень горячая. Менее яркая Вега куда массивнее и горячее. Просто-напросто Сириус находится куда ближе к нам, чем Вега, до него всего 8,6 светового года (до Веги – более 27). Ясно, что слабосильный фонарик на близком расстоянии даст более мощный световой поток, чем далекий прожектор. Хотя среди звезд, находящихся в радиусе 5 пк от Солнца, Сириус – первый по блеску. Второе место занимает желтоватый Процион (спектральный класс F5,11 световых лет), третье – компонент А системы Альфа Центавра. Солнце находится на почетном четвертом месте, а всего в радиусе 5 пк находятся более 50 звезд. Отсюда видно, что большую часть звездного населения Галактики (а мы не имеем никаких оснований думать, что тот участок Галактики, где находится Солнце, какой-то особенный) составляют оранжевые и красные карлики, что и неудивительно: ведь и в земной природе всякой мелочи куда больше, чем крупных объектов. Как правило, яркие звезды неба находятся от нас далеко и ярки вследствие своей высокой, а в некоторых случаях просто колоссальной светимости, а не близости к нам.
Для пущей наглядности посмотрим, как будет выглядеть звездное небо для гипотетического астронома, находящегося в системе Альфы Центавра. Из ярких звезд сильно изменят свое местоположение лишь Сириус и Процион. Вега и Арктур сместятся менее, приблизившись на центаврианском небе к крыльям Лебедя, а также произойдет смещение некоторого числа неярких звезд. Появится красная звездочка 5-й величины – Проксима. Ах, да, появится новая яркая звезда в созвездии Кассиопеи близ границы с Персеем – наше Солнце. На небе Альфы Центавра оно будет занимать вполне достойное восьмое место по блеску.
И только. В целом центаврианский астроном мог бы пользоваться нашими звездными картами, держа в уме некоторые поправки к ним. Расстояние до ближайших звезд весьма и весьма мало по сравнению даже с той сравнительно небольшой областью Галактики, которую мы наблюдаем в качестве Млечного Пути и россыпи звезд по обе стороны от него.
Галактика наша, как известно, спиральная и гигантская (даже сверхгигантская). Она имеет в поперечнике около 30 кпк, или 100 тысяч световых лет (обширная периферия, занятая темной материей, не в счет). Еще Галилей, направив свою весьма примитивную трубу на Млечный Путь, обнаружил, что он состоит из мириадов слабых звездочек. Уильям Гершель понял, что наша звездная система сплюснута – правда, он недооценил степень этой сплюснутости и решил почему-то, что Солнце находится близ центра системы. Однако простым глазом видно, что Млечный Путь гуще всего в созвездии Стрельца, а в противоположной точке неба он и у́же, и слабее. Значит, Солнце находится не в центре Галактики, а смещено к краю?
Так и есть. Еще лет 50 назад считалось, что расстояние от центра Галактики до Солнца составляет 10 кпк, то есть Солнце ближе к краю, чем к центру Галактики. Позднее произошел некоторый пересмотр, и теперь считается, что Солнце находится примерно в 8 кпк от центра Галактики. Впрочем, все равно получается, что Солнце несколько ближе к краю, чем к центру.
Но где находится Солнце по отношению к спиральным рукавам Галактики? Их четыре, и они отходят попарно от бара, имеющего протяженность порядка 7–8 кпк (более ранние оценки длины бара в 3–4 кпк оказались заниженными). В рукаве мы, вне рукава или вообще где?
В середине прошлого века считалось: однозначно вне рукава. Ведь в рукавах сосредоточены колоссальные по массе облака газа, там идет активное звездообразование, там много молодых горячих бело-голубых звезд, своим мощнейшим ультрафиолетовым излучением ионизирующих газ на расстоянии в несколько парсеков или даже десятков парсеков от себя, там небо должно просто светиться от множества ярких звезд и эмиссионных туманностей! Нет, конечно же, мы находимся примерно посередине между двумя соседними рукавами в бедной звездами области Галактики. Ну разве велика плотность звезд, равная примерно 0,1 звезды на кубический парсек? Курам на смех! А ведь именно такая звездная плотность наблюдается в окрестностях Солнца…
Однако еще в 1879 году американский астроном Бенджамин Гулд обратил внимание на то, что яркие звезды на небе распределены не равномерно, а концентрируются к некой полосе или поясу. Если бы этот пояс, получивший название пояса Гулда, совпадал с полосой Млечного Пути, в этом не было бы ничего удивительного – однако между ними угол в 18°. Поначалу от явления отмахнулись, сочтя его обыкновенной флюктуацией, но прошло время – и выяснилось, что пояс Гулда существует на небе не «просто так».
Вспомним: звезды редко рождаются поодиночке, предпочитая появляться на свет группами – рассеянными скоплениями.
Но там, где происходит массовое звездообразование, рождается не одно рассеянное скопление, а несколько, образуя звездную ассоциацию. Ассоциации, в свою очередь, могут быть сгруппированы в сверхассоциацию или даже в звездный комплекс – образование с характерным поперечником в 600 пк, обычно содержащее одну-две сверхассоциации и несколько ассоциаций, а всего в комплекс входят миллионы звезд. Разумеется, не все эти звезды являются ровесниками звездного комплекса, многие из них гораздо старше и оказались внутри комплекса по чистой случайности – но «первую скрипку» в комплексе играют не они, а молодые звезды, родившиеся более-менее одновременно (с разницей, определяемой скоростью волн звездообразования, прошедших сквозь комплекс).
Так вот: то, что мы наблюдаем на небе как пояс Гулда, является типичным звездным комплексом, имеющим форму грубого сплюснутого сфероида. Его поперечник составляет 750 пк, а Солнце находится в 150 пк от его центра. Возраст комплекса оценивается в 30 млн лет. Разумеется, Солнце оказалось внутри комплекса случайно и не обязано своим рождением волнам плотности, некогда прокатывавшимся сквозь газово-пылевую материю комплекса. Однако факт есть факт: мы находимся в звездном комплексе. А где они располагаются?
Наблюдения показывают ясно: в спиральных галактиках звездные комплексы находятся в спиральных рукавах. Звездные комплексы просто-напросто нанизаны на рукава, как бусины на нить. Наблюдающаяся (особенно в галактиках типа Sc) фрагментированносгь рукавов это подтверждает. Каждый фрагмент – это звездный комплекс.
Что же выходит – раз звездные комплексы расположены в спиральных рукавах и в некотором роде формируют их, то и Солнце находится в спиральном рукаве?
И да, и нет. Солнце действительно находится между основными спиральными рукавами Галактики, но вспомним, что рукава галактик типа Sb (или SBb) имеют ответвления – не столь резкие, как у галактик Sc, но все-таки. В одном из таких ответвлений, получившем название местного рукава Ориона – Лебедя, и находится «наш» звездный комплекс вместе с Солнцем.
Любопытно, что два соседних рукава (Персея и Киля – Стрельца) имеют угол закрутки в 10–12°, что нормально для галактики типа Sb. Рукав же Ориона – Лебедя имеет угол закрутки в 20°, что дополнительно подтверждает: этот рукав является лишь отрогом, ответвлением рукава Киля – Стрельца. (Кстати, именно рукав Киля – Стрельца мы по сути и видим, наблюдая прозрачной безлунной ночью Млечный Путь.) Больший угол закрутки нашего местного рукава вполне естествен: ведь при том же угле закрутки, что у основных рукавов, никаких ответвлений не было бы вообще…
Так что мы все-таки находимся не в скучной относительной пустоте между рукавами – мы в рукаве, пусть местном и второстепенном. Хорошо это или плохо?
Трудный вопрос. Конечно, находясь в поясе Гулда, а не вне его и, следовательно, в каком-никаком рукаве, мы можем любоваться гораздо более красочным звездным небом, чем располагаясь в межрукавье. С другой стороны, в рукавах чаще вспыхивают сверхновые, а близкий взрыв звезды ничего хорошего нам не принесет. Как всегда, нет ни худа без добра, ни добра без худа.
5. Летим, но куда?
В этой главе нам придется вернуться на Землю, чтобы затем вновь устремиться в глубины дальнего космоса. Мы рассмотрели наше звездное окружение, но куда и как движемся мы сами? Как движется Земля? Как, почему и куда движется Солнце, волоча за собой выводок планет и тьму мелких космических тел? Почему движение происходит так, а не иначе?
Начнем с Земли. Как всем известно со времен Коперника, наша планета вращается вокруг своей оси. Полный оборот она делает за 23 часа 56 минут 4,1 секунды. Казалось бы, эта величина далековата от привычных 24 часов – не хватает почти четырех минут! Но за сутки планета успевает пройти по орбите почти целый угловой градус, поэтому для того, чтобы вновь повернуться к Солнцу точно тем же боком, ей требуется еще немного времени. Так что указанная величина есть не что иное, как звездные сутки, а не средние солнечные сутки (средние – потому что вследствие эллиптичности орбиты Земля движется вокруг Солнца с непостоянной скоростью). Но точно ли «выдерживаются» звездные сутки?
Нет, не точно. Вам, наверное, случалось узнавать из СМИ, что служба времени перевела стрелки часов на одну секунду вследствие того, что Земля стала вращаться несколько медленнее? Такие сообщения поступают редко, но они все же поступают. И действительно, вращение нашей планеты понемногу замедляется. Но по какой причине? Любой раскрученный предмет на Земле, будь то детский волчок или велосипедное колесо, постепенно перестает вращаться из-за трения – но трение Земли о межпланетную космическую среду настолько мало, что о нем смешно и говорить. Так в чем же дело?
В Луне. Удаляясь от Земли примерно на 3 см в год, она тормозит вращение Земли. «Из физики» совершенно ясно, что суммарная механическая энергия системы «Земля – Луна» должна оставаться постоянной. Переходя на более высокую орбиту, Луна увеличивает свою потенциальную энергию, а за счет чего? За счет увеличения орбитальной скорости. Ведь и конструкторам ракетно-космической техники приходится обеспечивать ракете-носителю большую скорость, если они хотят вывести спутник на более высокую орбиту. Экипажи космических станций используют для повышения орбиты разгонный импульс, а никак не тормозной. Увеличение орбитальной скорости любого объекта приводит к повышению его орбиты (где, кстати, скорость объекта сразу падает по законам Кеплера). Но за счет чего разгоняется Луна?
За счет приливов. Сила тяготения Луны вызывает не только морские приливы; под ее действием вся Земля вытягивается наподобие яйца, пусть и на совсем небольшую величину, измеряемую десятками сантиметров. Такое перестроение в вязком теле не может быть мгновенным, а движение Луны сильно отстает от вращения Земли. Как следствие, приливной горб на земной поверхности не направлен точно к Луне, а опережает ее примерно на 3 ч. Сила тяготения, вызванная приливным горбом, разумеется, крайне мала, но зато действует она постоянно, передавая Луне чрезвычайно слабую, но все же заметную на больших интервалах времени силу, направленную в сторону ее движения. «Противосила» же тормозит вращение Земли, и так же неспешно. Например, на рубеже палеозоя – мезозоя, когда еще и динозавров-то не было, в земных сутках было 22 ч., а не 24, как сейчас. Постепенное замедление вращения Земли было доказано изучением линий роста палеозойских кораллов. Можно предположить, что в самый ранний период истории Земли сутки продолжались лишь 4 ч. В нашу эпоху продолжительность суток увеличивается в среднем на 0,0017 с за столетие.
На скорость вращения Земли оказывает влияние не только Луна. Существуют и более слабые солнечные приливы, также тормозящие вращение нашей планеты. Есть и чисто земные причины, влияющие на вращение Земли.
Гравитационная дифференциация недр – одна из них. При опускании тяжелых элементов в земное ядро по закону сохранения момента количества движения должно происходить ускорение вращения – однако оно с большой лихвой компенсируется влиянием Луны и Солнца. Хотя, впрочем, явления типа отламывания больших кусков океанических плит при их погружении под материковые плиты, сопровождающиеся глубокофокусными землетрясениями, сопровождаются также скачкообразным изменением длительности суток, которое легко можно измерить.
Кстати, теория дает несколько большее значение векового замедления: 0,0023 с за столетие. Есть предположение, что разницу в 6 мс за столетие следует отнести за счет перераспределения масс внутри Земли в меридиональном направлении, однако для проверки этой гипотезы необходимы длительные исследования.
Скорость вращения Земли испытывает также периодические и нерегулярные колебания. Причина периодических колебаний, вызванных космическими причинами, в целом понятна: и Земля, и Луна движутся по эллиптическим орбитам, вследствие чего приливные силы то немного ослабевают, то вновь усиливаются. Так, например, существуют колебания с периодом 27,3 суток (период обращения Луны) и 13,7 суток (полумесячные колебания). То же и с системой «Земля – Солнце», только с меньшей амплитудой. Землетрясения, нарушения привычной картины морских течений (вроде квазипериодической активности течения Эль-Ниньо) и даже сезонные перемещения воздушных масс и изменения снежного покрова приводят к небольшим, но вполне поддающимся измерению вариациям скорости вращения нашей планеты.
Иногда, правда, случаются и необъяснимые скачкообразные изменения скорости вращения Земли, но всегда на очень маленькую величину. С чем они связаны, покажут будущие исследования.
Ну а что же с осью вращения? Автору не раз приходилось с изумлением узнавать из «научно-популярных» телепередач о возможности (и даже чуть ли не неизбежности) резкого – на десятки градусов – изменения положения географических полюсов планеты. Земля вдруг ни с того ни с сего начнет вращаться вокруг иной оси – и всем живущим на нашей планете придется весьма несладко. Самое странное то, что этот болезненный бред подчас повторяется людьми, изучавшими физику не только в школе, но и в вузе.
Так и хочется повторить вслед за чеховским персонажем: «Этого не может быть, потому что этого не может быть никогда». Лишь масштабная космическая катастрофа вроде столкновения Земли с телом сравнимых размеров может резко сдвинуть ось вращения планеты, но при такой катастрофе сдвиг оси – это последнее, от чего может погибнуть человеческая цивилизация. Она погибнет от других причин. Но главное – в обозримом космосе нет достаточно крупных тел, способных столкнуться с Землей и натворить подобных бед. А если такие тела где-нибудь и существуют (например, в поясе Койпера), то они не имеют вредной привычки нарочно искать столкновения с Землей. Ось вращения Земли не менялась рывком никогда, исключая, может быть, гипотетическое столкновение с планетоидом, породившее Луну, и не изменится.
А вот медленный дрейф земной оси действительно происходит. Никакими жуткими катаклизмами он нам не грозит, ибо все живые существа, начиная с примитивных простейших архея и кончая нами, преспокойно живут с этим дрейфом, совершенно не замечая его. Речь идет о прецессии и нутации.
Вам случалось в детстве запускать волчок, причем не тот, что прикреплен осью к основанию, а тот, который свободно бегает по полу? Если да, то вы наверняка заметили, что ось вращения волчка испытывает движения по окружности, гораздо более медленные, чем вращение самого волчка. Такое вращение оси называется прецессией. Формулы, описывающие прецессию, довольно громоздки, но можно объяснить и «на пальцах»: прецессия тем сильнее, чем менее симметрично вращающееся тело или чем значительнее какая-либо сила, действующая на тело со стороны. Поскольку абсолютно строгой симметрии не существует, как не существует вообще ничего абсолютного, все вращающиеся тела, даже гироскопы, изготавливающиеся особо тщательно, испытывают прецессию. Земля несколько асимметрична как по форме, так и по распределению плотности в ее недрах. Вдобавок она в целом представляет собой сплюснутый сфероид, а ее ось наклонена к эклиптике. Луна своим притяжением стремится развернуть Землю «экватором к себе». То же самое, только слабее, делает Солнце. В сумме эти причины более чем достаточны для прецессии оси вращения Земли.
В результате ось вращения Земли описывает конус, вершина которого находится в центре Земли, а ось перпендикулярна эклиптике. При этом угол наклона земной оси к эклиптике остается постоянным и равен 63° 34”. Сейчас северный полюс мира находится вблизи Полярной звезды, но не точно совпадает с ней, что хорошо знают любители астрономии, вынужденные «выставлять на полюс» полярные оси своих монтировок. Для противоположного полушария роль «полярной» может играть невзрачная звезда Сигма Октанта. 3000 лет назад северный полюс мира находился близ «ковша» Малой Медведицы (а не близ крайней звезды «ручки», как сейчас), а спустя 12 тыс. лет роль Полярной звезды с успехом сможет выполнить Вега (Альфа Лиры). Вообще же полный оборот ось вращения Земли совершает примерно за 26 тыс. лет.
Помимо прецессии имеют место мелкие – порядка нескольких угловых секунд – колебания оси вращения Земли около среднего положения. Такие колебания называются нутацией и вызываются тем, что прецессионные силы все время меняются как по величине, так и по направлению. Они уменьшаются, когда Солнце и Луна находятся близ плоскости земного экватора, и вновь увеличиваются, когда склонения этих небесных тел имеют наибольшую величину.
И это еще не все: имеют место блуждающие движения земных полюсов, вызванные тем, что само тело Земли смещается относительно оси вращения. Движения эти ничтожны по величине и не идут ни в какое сравнение с выдуманными «резкими изменениями наклона земной оси». Оба полюса Земли плавно перемещаются, описывая грубые окружности того или иного радиуса, но никогда не покидая условного квадрата со сторонами около 30 м. В квазипериодическом характере движения полюсов выделяются 12-месячный и 14-месячный периоды.
Следующее движение, в котором участвует Земля, это движение вокруг общего центра масс с Луной. Строго говоря, неверно утверждать, что Луна обращается вокруг Земли, – корректнее говорить, что оба тела обращаются вокруг общего центра масс, делая полный оборот за 27,32 суток. Поскольку Земля массивнее Луны примерно в 81 раз, центр масс системы «Земля – Луна» находится под земной поверхностью на расстоянии 4672 км от центра Земли по направлению к Луне. В своем движении по орбите вокруг Солнца Земля описывает отчетливо волнообразную кривую, хотя, конечно, эта волнообразность имеет гораздо меньшую амплитуду, чем у Луны.
Как указывалось ранее, Земля движется вокруг Солнца по эллиптической орбите, делая полный оборот за 365,256363 суток (звездный год) и имея среднюю орбитальную скорость 29,79 км/с. Естественно, и это движение происходит не вокруг центра Солнца, а вокруг общего центра масс Солнечной системы. Несмотря на то что Солнце в 750 раз массивнее всех остальных тел Солнечной системы, вместе взятых, можно показать, что центр массы Солнечной системы нередко выходит за границы Солнца. Естественно, наибольшее смещение центра масс относительно положения Солнца происходит при так называемом параде планет, когда большинство планет выстраивается по одну сторону от Солнца. Само собой, наиболее сильно «перетягивают на себя одеяло» планеты-гиганты Юпитер и Сатурн.
Как следствие, Земля, даже если вычесть влияние тяготения Луны, все равно движется не по строго эллиптической орбите, а совершает сложные волнообразные движения вокруг кеплеровского эллипса. Существуют гипотезы и даже теории (например, теория Миланковича) о периодических изменениях земной орбиты, связанных с увеличением или уменьшением среднего расстояния от Земли до Солнца. Как бы ни были незначительны эти изменения, ими в принципе можно попытаться объяснить ледниковые периоды в истории Земли; более подробно углубляться в эти теории мы не будем. Отмечу лишь, что в таких движениях орбиты Земли в принципе нет ничего невозможного.
Звезды движутся, и Солнце, являясь звездой, тоже должно двигаться. Движение «неподвижных», как казалось ранее, звезд обнаружил в 1718 году Эдмунд Галлей, сравнив современные ему положения нескольких звезд с их координатами в каталоге Птолемея и учтя прецессию. Обнаружились «разночтения». Если бы они имели характер общей поправки, можно было бы предположить, что не учтено еще одно, пока неизвестное, движение земной оси, – но смещения звезд относительно их положений в каталоге Птолемея имели разновеличинный и разнонаправленный характер, следовательно, могли быть объяснены лишь собственными движениями звезд. В те времена наивные представления о «хрустальном своде небес», куда звезды приколочены наподобие гвоздиков, давно уже ушли в прошлое, и Галлей был не слишком удивлен своим открытием. В течение последующих десятилетий были измерены собственные движения многих звезд. В большинстве своем они малы, однако известно более 100 звезд с годичным движением более двух секунд дуги. Рекордсменом, как указывалось ранее, является Летящая звезда Барнарда с годичным смещением, превышающим 10 угловых секунд.
Но как определить, куда и с какой скоростью движется Солнце? Если предположить, что звезды движутся достаточно хаотично, то собственное движение Солнца (и нас вместе с ним) должно приводить к тому, что звезды должны как бы разбегаться прочь от апекса Солнца (так называется точка на небосводе, куда направлено движение нашего светила) и, напротив, стремиться к противоположной точке небосвода. Разумеется, положение апекса Солнца определится этим методом тем точнее, чем больше движущихся звезд будет учтено.
Однако Уильям Гершель, проделавший эту работу в 1783 году, вывел апекс Солнца из собственных движений всего-навсего 13 звезд и получил результат, близкий к современному. Сыграла ли свою роль интуиция гениального англичанина или просто повезло – трудно сказать. Хотя везение – штука такая, что не любит доставаться кому попало. Принятое в наше время положение апекса Солнца – в созвездии Геркулеса недалеко от границы с созвездием Лиры. Относительно ближайших звезд Солнце движется от Голубя к Геркулесу со скоростью 19,5 км/с.
Надо особо отметить, что это движение возникло лишь вследствие отличия движения Солнца и ближайших звезд вокруг центра Галактики от кругового и разными углами наклона их орбит. Так, например, если переместить орбиту Марса на то же среднее расстояние от Солнца, что у Земли, и пренебречь взаимным тяготением двух планет, то сразу же выяснится, что планеты имеют заметные скорости относительно друг друга, хотя обе обращаются вокруг Солнца. То же самое, только в гораздо больших масштабах расстояний, наблюдается в звездном окружении Солнца. Увлекая за собой планеты, наше главное светило движется вокруг галактического центра, во-первых, не по окружности и даже не по эллипсу, а по сложной траектории, а во-вторых, плоскость орбиты Солнца (если тут вообще можно говорить о плоскости) наклонена относительно галактического диска.
Здесь необходимо пояснение. Звезды в Галактике движутся преимущественно не по кеплеровским законам, предписывающим меньшие орбитальные скорости на больших расстояниях. Картина движений звезд в Галактике гораздо более сложная, обусловленная, во-первых, тем, к какой подсистеме – плоской или сферической – принадлежит звезда. Измерив в свое время лучевые скорости шаровых скоплений, астрономы были удивлены: оказалось, что эти «звездные колобки» движутся относительно нас со скоростями порядка 200–250 км/с, причем в одну сторону. Что-то тут было не так. Вскоре пришла догадка: это мы движемся с такой скоростью относительно сравнительно малоскоростных шаровых скоплений. А в чем состоит принципиальная разница между звездным населением в окрестностях Солнца и шаровым скоплением? Прежде всего – в принадлежности к разным подсистемам. Солнце – звезда второго поколения – родилось и движется в галактическом диске, тогда как шаровые скопления концентрируются к центру Галактики и в пределах диска могут оказаться только случайно. Следовательно, «плоская» подсистема вращается значительно быстрее «сферической» подсистемы.
Многочисленные исследования полностью подтвердили этот тезис. Но и внутри галактического диска звезды обращаются вокруг центра Галактики с неодинаковыми и чаще всего не кеплеровскими скоростями. Лишь в самых центральных областях галактического ядра, где преобладает тяготение «центрального монстра», звезды движутся по орбитам, в первом приближении похожим на кеплеровские. Но чем дальше от центра, тем меньшее влияние оказывает «центральный монстр» (напомним: в нашей Галактике его масса оценивается в 3 млн масс Солнца) и тем сильнее влияет на всякий движущийся объект тяготение галактического диска.
Открывший вращение Галактики голландский астроном Оорт (тот самый, чьим именем названо облако ледяных тел на дальней периферии Солнечной системы) вывел простую и красивую формулу скорости тела, движущегося в галактическом диске, как функцию его удаленности от центра Галактики. Из формулы Оорта следует, что до некоторого (довольно значительного) расстояния от центра Галактики скорости звезд будут возрастать линейно, но затем функция испытает перегиб, и на краю галактического диска скорости звезд уже будут падать с расстоянием от центра, причем чем дальше, тем больше это будет похоже на кеплеровское распределение скоростей. Оно и понятно: если орбита звезды пролегает на краю галактического диска, то основная масса галактики сосредоточена внутри орбиты и может быть в первом приближении сведена в точку; влиянием же масс, находящихся снаружи орбиты, можно и пренебречь.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?