Электронная библиотека » Александр Иванов » » онлайн чтение - страница 2

Текст книги "Химия – просто"


  • Текст добавлен: 4 декабря 2017, 11:20


Автор книги: Александр Иванов


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Алхимик Седзивой (1867). Художник Ян Матейко


О последствиях нетрудно догадаться. Разные князья стали добиваться его визитов. Так, из Праги Седзивоя пригласили в Штутгарт, где уже имелся свой придворный алхимик – лорд Иоганн Генрих фон Мюлленфельс. Последний долгое время пользовался всевозможными привилегиями и считался знаменитым алхимиком, но в действительности не имел ни малейшего представления о способах изготовления «философского камня». Конечно же, он сразу распознал в Седзивое опасного для себя конкурента, поэтому, притворившись доброжелателем, внушил тому, что в Штутгарте из него якобы хотят выбить тайну любой ценой, и надоумил бежать. Доверчивый Седзивой поддался уговорам, однако во время побега фон Мюлленфельс подло напал на него, силой отнял «философский камень», а самого взял в заложники. Благодаря проявленному коварству фон Мюлленфельс вскоре прослыл истинным адептом алхимии и был даже щедро награждён.

На его беду, Седзивою удалось бежать из плена и рассказать всем об обмане. Фон Мюлленфельса постигла закономерная кара – его повесили на «виселице алхимиков». Седзивой же дожил до 1646 года, но ни один эксперимент по превращению неблагородных металлов в золото больше не был у него удачным. Вот так закончилась одна из средневековых «Санта-Барбар», связанных с алхимией.


Алхимик читает рецепт своему ученику


Средневековые алхимики


Средневековые алхимики


Шли годы, и постепенно алхимия спустилась с высокого пьедестала науки до положения фокусничества. Известно ведь, что наука требует бережливого к себе отношения. Её цель – истина. Те же, кто использует науку для недостойных целей, сами, образно говоря, роют себе могилу.

Да, в Средние века поощрялись различные суеверия, подавлялась любая свободная мысль, для развития наук просто не было подходящей почвы. Вот почему алхимия, став опорой суеверия и обмана, из науки превратилась в лже-науку.

Но поскольку человеку свойственно заниматься самообманом, после «философского камня» люди ещё долго гонялись за разными новыми чудесами. Например, сначала увлеклись палингенезией, т. е. выращиванием (воспроизведением) растений из золы, а затем и вовсе замахнулись на создание (синтез) искусственного человека, так называемого «гомункулуса». А если вспомнить, что ещё совсем недавно (буквально в 2016 году) в Интернете были широко распространены и даже популярны видеоролики о создании гомункула в домашних условиях, останется лишь с горечью признать, что циклична не только история, но и, увы, человеческая глупость.



Объяснять тебе, мой дорогой читатель, что все эти мнимые чудеса – сплошной обман, надеюсь, не надо? На всякий случай приоткрою завесу тайны: во время подобных сеансов по «синтезу гомункулуса» сначала совершаются разного рода манипуляции с химическими веществами (их смешивают и подвергают различным воздействиям, сопровождая весь «мистический» ритуал «таинственными» пассами), а затем кто-нибудь из участников «эксперимента» просто-напросто ловко (незаметно) подбрасывает скелет ребёнка. И далее доморощенный «кудесник» начинает жарко всех уверять, что человечек появился благодаря его опыту, просто из-за отсутствия (или недостатка) пищи он, бедняга, умер.

Совершенно очевидно, что у людей, верящих в подобное мракобесие, начисто отсутствует критическое мышление. Однако если мы проведём параллели между Средневековьем и нашим временем, то легко убедимся, что общество за истекшие века не сильно-то и изменилось.

А теперь я расскажу тебе об одном эксперименте, который впоследствии послужил неопровержимым доказательством возможности превращения одних металлов в другие и вообще сыграл важную роль в развитии химии.

Опыт

Если острие стального ножа погрузить в голубой раствор медного купороса, то оно покроется красным осадком. Это осадок меди. В давние времена считалось, что железо таким образом полностью превращается в медь, однако позднее пришло понимание, что железо ножа всего-навсего частично замещается медью из медного купороса.


Случались и обманные превращения. Например, брали серебро, содержавшее примесь золота, и после многочисленных операций добывали из него золото. И выдавали это за превращение серебра в золото.

Именно примеси и загрязнения применявшихся ингредиентов в значительной степени способствовали иллюзиям самих алхимиков. В те времена не было химических реактивов марок ХЧ (химически чистый), ОСЧ (особо чистый) и других.

Однако всё-таки стоит отметить и положительные результаты, которых добились алхимики, пусть невольно и бессознательно. Тем не менее именно эти их достижения легли в основу фундамента, на который опирались открытия последующих поколений.

Перечислю главные достижения алхимиков. Итак, алхимики:

• усовершенствовали средства для «получения» химических явлений;

• увеличили число новых веществ, получаемых искусственным путём;

• изучили новые вещества и нашли им практическое применение.

Средневековые алхимики считали, что, подвергнув тело многократной очистке, можно отделить от него некоторые свойства и передать их другим телам. Проще говоря, алхимический процесс сводился для них преимущественно к очистке тел.

Давай посмотрим, насколько не чист (разумеется, в химическом смысле) окружающий нас мир. Возьмём для начала воду, которая, в зависимости от происхождения, обладает различными свойствами. Например, колодезная вода – жёсткая, дождевая – мягкая, морская – солёная, речная – пресная. Так вот, все эти свойства придаются воде примесями, которые она содержит!

Другой пример – воздух. Наше обоняние подсказывает нам, что горный воздух существенно отличается от городского. А в каком-нибудь парфюмерном магазине воздух «благоухает» так, что способен вызвать даже головную боль. Хотя, казалось бы, это всё тот же воздух, которым мы дышим. Однако и здесь, как и в случае с водой, разница «ароматов» воздуха обусловлена входящими в его состав примесями.

Ну и, наконец, невозможно пройти мимо драгоценных камней. Взять хотя бы опал. Если посмотреть на его химическую формулу, то мы увидим, что это обычный песок (SiO2). Однако отчего же он имеет столь много разнообразных оттенков?! Правильно. Радужно-пёструю окраску опалу придают содержащиеся в нём в небольших количествах примеси, то есть, грубо говоря, загрязнители.

Современная наука стремится к тому, чтобы выделить эти микрокомпоненты из общего хаоса, отыскать во множестве переменных явлений и свойств постоянные и неизменные элементы. И мы сможем это сделать, если с помощью различных методов разложим изучаемые тела на составляющие части, т. е. очистим их.

Так вот поиск и усовершенствование методов и способов очистки – это и есть главная заслуга алхимиков! Предлагаю выделить самые основные из них, ведь в дальнейшем они будут играть в химии очень важную роль.

Дистилляция и перегонка. Среди химических методов перегонка имеет, наверное, самое широкое применение. Она была известна ещё египтянам. После Гебера, о котором я рассказывал ранее, дистилляция стала самой обычной манипуляцией. Подробно описывать процесс перегонки, я думаю, не имеет смысла, так как ты, скорее всего, сам знаешь, о чём идёт речь: жидкость кипятится в одном сосуде (закрытом), а её пар конденсируется в другом (переходит из газообразного состояния в жидкое).


Возгонка


Осаждение


Фильтрация


Уже тогда «дистилляция» применялась для получения и очищения алкоголя, который тогда назывался винным спиртом (spiritusvini), поскольку получался перегонкой вина, а все улетучивающиеся из него вещества назывались спиртами, т. е. духами. Отсюда и происходит название spiritusvini – дух вина.

Возгонка (сублимация). Это частный случай перегонки. Например, возгонка йода. В те далёкие времена для дезинфекции применялась хлорная ртуть. Вот её-то и очищали методом сублимации.

Осаждение. Если к одному раствору добавить какой-то другой раствор (или вещество), то некоторые составные части раствора могут перейти в твёрдое состояние и выпасть в виде осадка.

Фильтрация. Она применяется для отделения осадка от раствора. Практически у каждого дома стоит фильтр для очистки воды. Вода, проходя через него, фильтруется (очищается) от твёрдой ржавчины, попадающей в водопровод из ржавых труб, а также от других различных примесей.

Кристаллизация. Её применяют для получения различных тел, растворённых в воде или других жидкостях. Наверняка ты видел опыты по выращиванию кристаллов из различных солей.

Все эти методы разложения различных тел на составляющие получили общее название, употребляемое и в настоящее время, – методы аналитической химии.

Что же ещё сделали алхимики для развития химии? Они увеличили число веществ, получаемых искусственным путём. Отдельно стоит отметить открытие соляной кислоты Василием Валентином (1394 – ок. 1450), а также серной и азотной кислот Гебером. Без этих реактивов немыслима сейчас ни одна химическая лаборатория.

Кроме того, в науку было введено понятие соли. Название поваренной соли обобщилось, и класс веществ, обладающих одинаковыми признаками и сходных по свойствам, стали называть солями.



Основным достижением алхимии можно также назвать знания о получении новых веществ из уже известных путём различных химических манипуляций. Впоследствии этот раздел химии получит название – синтетическая, или препаративная химия.

Вернёмся ненадолго к нашему дорогому Аристотелю, который выделил четыре элементарных свойства: тепло, холод, сухость и влажность. Чтобы объяснить различные состояния тел с научной точки зрения, алхимики добавили к четырём аристотелевским ещё три новых элементарных свойства:

• горючесть и изменяемость (её олицетворяла сера);

• неразрушимость, особенно при нагревании на огне (её олицетворяла соль);

• металличность, под которой подразумевался целый ряд свойств, таких как блеск, растяжимость и т. д. (её олицетворяла металлическая ртуть).

Таким образом, теперь уже 7 элементов – тепло, холод, сухость, влажность, горючесть, неразрушимость и металличность – считались составными частями любого вещества. Таковы были теоретические воззрения тех далёких времён.

А что же было на практике? Как применялись эти научные знания? Кто стоял за этими исследованиями?

Агрикола (1494–1555) – немецкий учёный, внёсший большой вклад в развитие тогдашней металлургии. Он подробно описал химические манипуляции, производимые в металлургической отрасли, а также ветер и воду – как важные геологические силы. Благодаря своим работам Агрикола по праву считается «отцом геологии».

Бёттгер (1682–1719) – саксонский алхимик, который изобрёл фарфор. Он, как и многие другие алхимики, занимался изготовлением золота. Польский король Август II заключил его в замок в Мейсене, чтобы тайна не стала доступна другим. Опыты по превращению металлов в золото Бёттгер проводил под руководством знаменитого естествоиспытателя фон Чирнгаузена. Видя, что усилия Бёттгера не увенчиваются успехом, наставник посоветовал ему заняться изобретением фарфора. Вскоре после этого фон Чирнгаузен умер (совпадение?!), и Бёттгер приписал заслугу изобретения фарфора себе. Разумеется, это принесло ему свободу и богатство. В Мейсене была построена первая в Европе фарфоровая фабрика. (Во время Второй мировой войны её чуть было не уничтожили, но это уже другая история.)


Замок Альбрехтсбург в городе Мейсене (Германия). Место расположения первой фарфоровой мануфактуры (1710–1863)


Саксонский фарфор


Совершенно новое направление химия получила благодаря успехам в медицине. Когда неудачные попытки искусственного получения золота и печальная участь, постигшая многих адептов алхимии, охладили стремления алхимиков в этом направлении, на первый план вышло искусство врачевания.

И основателем этого нового направления в химии стал Парацельс (1493–1541) – врач, профессор медицины, уроженец швейцарского города Эйнзидельна. Чудаковатый, странный, полный противоположных качеств (хороших и плохих) – примерно так можно охарактеризовать этого человека.


Филипп Ауреол Теофраст Бомбаст фон Гогенхайм (Парацельс)


Начальные знания по медицине, астрологии и алхимии Парацельс получил от отца-врача. Чтобы их расширить, он отправился путешествовать по миру. За время своих странствий Парацельс посетил много университетов Франции, Германии и Италии, заводов и копей, приобрёл многочисленных знакомых среди врачей и алхимиков. Можно сказать, что он обошёл половину Старого Света – от Швеции до Египта, от Португалии до Польши.


Врачи у постели умирающего человека, покрытого язвами. Внизу изображены медицинские инструменты


Медицинские инструменты


Средневековый врач


В 30 лет Парацельс возвращается на родину и полностью погружается в медицину. Превосходные результаты лечения делают его широко известным, и в 1526 году он получает место на кафедре естествознания и медицины в Базельском университете. Однако, в силу своего непростого характера, поссорившись с Базельской городской думой, он вскоре вынужден был оставить кафедру и покинуть страну. Так он и скитался по свету, пока в 1541 году не умер в Зальцбурге в самом бедственном положении.

Парацельс использовал в своих методах лечения различные яды (например, мышьяк), что, несомненно, способствовало развитию медицины. Однако пациентов он рассматривал как материал для опытов, обращался с ними бесцеремонно, а это было непозволительно. В итоге в 1566 году парижский парламент запретил врачам применять парацельсовские средства лечения.

Известно также, что Парацельс старался сделать свои знания доступными любому человеку и с этой целью читал лекции не по-латыни, как это было тогда принято, а на местном языке. Из всего выше сказанного уже можно сделать вывод, что Парацельс был неординарной личностью. Тем не менее, несмотря на все его, мягко говоря, «чудачества», влияние, которое он оказал на развитие химии и медицины, бесспорно.

До Парацельса в медицине использовались медикаменты греко-римского врача Галена, представлявшие собой в основном настойки и растительные эссенции. Парацельс же ввёл в медицину искусственные химические препараты. И тем, что сейчас люди лечатся не только бабушкиным вареньем, но и различными лекарствами, мы обязаны именно Парацельсу.

Итак, у алхимии появилась ещё одна задача – изготовление лекарств. В связи с этим занятия химией переносятся, образно говоря, из кухни алхимиков в аптекарскую лабораторию. И отцом фармации – науки о лекарствах, которая в дальнейшем послужит мощным фактором в развитии химических знаний, – стал, как ты уже понял, Парацельс.

Наука Парацельса, названная ятрохимией и считавшая лечение людей главной целью химии, не сразу была признана обществом. Между сторонниками и противниками нового направления разгорались жаркие споры, но победили, как мы теперь уже знаем, ятрохимики.

Хочу упомянуть также о последователе Парацельса – голландском химике Яне ван Гельмонте, заметно выделявшемся на фоне своих современников. Родился он в 1577 году в Брюсселе, изучал богословие, философию и медицину. Как и Парацельс, Гельмонт много путешествовал по Франции и Италии, а вернувшись в 1609 году на родину, поселился в деревне и полностью погрузился в научные исследования, которые и продолжал вести вплоть до самой смерти в 1644 году.


Ян-Батист ван Гельмонт


Если говорить о характере Ван Гельмонта, то он был полной противоположностью Парацельса. Если Парацельс незаслуженно присвоил себе степень доктора наук, то Ван Гельмонт добровольно отказался от степени магистра свободных наук, так как считал всякие титулы ничтожными. В отличие от поверхностных и неупорядоченных знаний Парацельса, Ван Гельмонт все полученные знания тщательно систематизировал. Но, несмотря на разницу характеров, оба эти человека работали во имя одной общей идеи – во имя реформы медицины.

Ван Гельмонт был горячим поклонником Парацельса и не мог смириться с воззрениями того времени об устройстве мира и тем, что всё состоит из тепла, холода, сухости, влажности, горючести, неразрушимости и металличности. Именно он впервые высказал мысль, что все тела и вещества состоят из других материальных тел. То есть, согласно его теории, путём различных химических манипуляций все вещества можно разложить на отдельные составляющие элементы.


Принятие лечебной ванны


Однако Ван Гельмонт был всё же далёк от современного научного представления о строении веществ. Он считал, что составной частью всех тел является вода. Доказывал это тем, что вода образуется при сжигании большинства горючих тел – воска, масла, винного спирта и т. д., и тем, что вода – это единственная составная часть растений, так как растение живёт только водой и пьёт из земли только воду. Кстати, данное утверждение считалось истинным вплоть до середины XIX века.



Рыбы, по мнению Ван Гельмонта, также состоят только из воды, так как, обитая в воде, только из неё могут получать полезные вещества для своих органов.

Однако Ван Гельмонт тоже был подвержен средневековому мистицизму и предрассудкам. Так, он приписывал главную роль во всех человеческих действиях особому духу по имени Архей. Причиной всех болезней, считал Ван Гельмонт, являются различные расположения Архея – лень, страх, гнев или слабость. Значит, и лечение болезней, делал он вывод, должно стремиться к задабриванию Архея, к воздействию разными средствами на его чувства.

Подводя небольшой итог, выделю основные этапы развития нашей науки.

• Первый период: от древнейших времён до IV века нашей эры

• Второй период: эпоха алхимии от середины IV века до первой четверти XVI века

• Третий период: период врачебной химии от первой четверти XVI века до середины XVII века


Поскольку далее наука будет развиваться достаточно быстрыми темпами, подведу черту под этими, уже известными нам периодами.

Итак, мы увидели, что первые зачатки химических познаний возникли в основном из-за материальных стремлений человека к улучшению условий своей жизни и что случайные открытия довольно быстро нашли себе практическое применение. Узнали также, что Аристотель был первым философом, занявшимся систематизацией научных знаний.

В период развития алхимии химия выделилась в отдельную отрасль, посвятившую себя получению золота. В начале XVI века, благодаря стараниям Парацельса, «золотая» цель уступает место «лекарственной», и внимание химиков сосредотачивается на лечении болезней.

Лишь в середине XVII века химия переходит из разряда вспомогательной науки, которую долго заставляли служить «чужим богам», в разряд самостоятельной науки, способной ставить перед собой конкретные задачи и успешно решать их опытным путём.

Но об этом я расскажу в следующей главе.

Глава 3
Флогистон и фанат Ломоносова

К середине XVII века в науке господствовала идеология Аристотеля. Всецело, безоговорочно, самодержавно. Аристотель заключил всю науку того времени в книги, очень долго служившие неприступной, непреодолимой стеной для прогресса. Признав науку Аристотеля, католическая церковь всячески её защищала, подавляя любые новые воззрения и препятствуя открытиям, так как считала их противоречащими аристотелевским догмам. К тому же средневековые учёные, в том числе химики, жили в основном на содержании богатых князей, поэтому находились в полной зависимости от их настроения. Разумеется, всё это не способствовало развитию свободного научного исследования.

И только церковная реформа XVII века положила конец столь ненормальному положению вещей, отведя науке подобающее ей место. Коперник, Галилей, Бэкон, Бруно (об их борьбе и достижениях тебе наверняка хорошо известно) стали первыми борцами за освобождение опытных наук. Коренное изменение общественных воззрений коснулось и химии: она наконец-то вырвалась из монастырских келий и подвалов на волю.


Химическая лаборатория Амброза Годфри, ассистента Роберта Бойля (XVIII в.)


Тогда же появились первые союзы свободных исследователей и учёных, а также учёные сообщества, на собраниях (прообразах современных научных конференций) которых оглашались новые открытия. Эти сообщества способствовали обогащению различных областей науки новыми идеями.

Наиболее известными среди таких сообществ были «Academia del Cimento» в Италии (1648 г.), «Royal Society of London» в Англии (1662 г.) и «Academia Caesareo-Leopoldina» в Германии (1672 г.). С небольшим отставанием от европейских стран в том же направлении двигалась и Россия: в 1724 году Пётр Великий учредил Петербургскую Академию, членами которой стали как русские, так и выдающиеся иностранные учёные (например, математик Эйлер).

По просьбе Михаила Васильевича Ломоносова (1711–1765), первого профессора химии Петербургской Академии наук, в 1748 году была построена первая русская химическая лаборатория.

Результаты своих исследований учёные распространяли с помощью таких периодических изданий, как «Известия», «Отчёты», «Записки», знакомя тем самым современников с успехами науки и усиливая интерес к научной работе. (В настоящее время подобной популяризацией занимаются различные научные журналы, так как у учёных просто нет времени доносить результаты своей работы до общественности.)

Руководящий состав Академии оказывал рядовым членам всестороннюю поддержку в борьбе с умственным консерватизмом власть имущих. Благодаря устраиваемым в Академии диспутам ложные взгляды исправлялись, приводя к торжеству истины. Это сейчас, в эпоху Интернета, невозможно понять, кто из спорящих до хрипоты «диванных экспертов» прав, а тогда свои слова и идеи приходилось отстаивать лицом к лицу.

Однако что же химия? Как всеобщий подъём в развитии наук отразился на конкретно её развитии?

На дошедших до нас старинных гравюрах химическая лаборатория выглядит так: за лабораторным столом сидит одетый по последней моде химик в парике и рассматривает на свет содержимое пробирки, рядом стоит, почтительно склоняясь, другой учёный (возможно, физик), а неподалёку молодые ассистенты готовят реагенты, устанавливают приборы для опытов, чистят химическую посуду.


Петербургская Академия наук


Химическая лаборатория XVIII века


К семи металлам, известным ещё алхимикам, довольно скоро добавились два новых – металлическая сурьма и висмут. Учёные поделили все металлы, исходя из их свойств, на благородные и неблагородные. Неблагородные (железо, медь, цинк, олово, свинец, сурьма, висмут) при нагревании горели и спустя какое-то время ржавели, а благородные (золото, серебро, ртуть) не горели и, соответственно, не ржавели.

Веществу, образующемуся при горении, было присвоено название «известь», и это вещество стало считаться составной частью металлов. Вообще, согласно научным взглядам того времени, все металлы состояли из извести и флогистона. Но о том, что такое «флогистон», я расскажу чуть позже.

Примерно тогда же все известные вещества были поделены на классы: извести, земли, соли, кислоты (минеральные, растительные, животные) и газообразные тела. Но в эту систему не вписывались три тела: вода (так как химики не были уверены, считать её элементом или сложным телом) и сера с фосфором, которые принимались за соединения серной и фосфорной кислоты с флогистоном. Как видишь, снова этот неведомый «зверь» флогистон. Но потерпи, мой друг, ещё немного.

Сначала хочу рассказать тебе забавную историю о том, как был открыт фосфор, применявшийся потом для изготовления спичек. Итак, фосфор был открыт в 1669 году алхимиком Брандом, который пытался отыскать «философский камень», но в итоге получил светящееся вещество. Бранд проводил опыты с человеческой мочой, так как полагал, что она, обладая золотистым цветом, может содержать золото. Поэтому сначала он в течение нескольких дней отстаивал мочу (до исчезновения неприятного запаха), а затем кипятил. После нескольких часов кипячения из мочи выделились крупицы белого вещества, которое очень ярко горело и вдобавок мерцало в темноте. Бранд назвал это новое вещество латинским словом phosphorusmirabilis, что в переводе означает «чудотворный носитель света». Открытие фосфора Брандом стало первым открытием нового элемента со времён античности.

Также давай вспомним, что ещё ранее Ван Гельмонт открыл разные виды воздуха, и это дало толчок к изучению газов и методов обращения с ними. Когда исследователи пришли к выводу, что в природе и лаборатории существуют и могут быть получены разные виды газов, они начали собирать сведения о них, изучать их свойства и давать им названия. В ходе их исследований были открыты следующие газы: двуокись углерода (открыл Блэк), водород (горючий воздух) и двуокись серы (открыл Кэвендиш) и хлор (открыл Шееле).

Прежде чем пойти дальше, давай посмотрим, какие вещества были известны в то время.

Если сейчас мы пользуемся таблицей Менделеева, то в период флогистона (опять загадочный флогистон!) система химических соединений выглядела так:

• I класс. Металлы: благородные (золото, серебро, ртуть) и неблагородные (железо, медь, цинк, олово, свинец, сурьма, висмут).

• II класс. Извести: железная известь, медная известь и цинковая известь.

• III класс. Земли: известковая земля, горькая земля и квасцовая земля.

• IV класс. Соли: поваренная соль, аммиачная соль, купоросы, квасцы, горькая соль и глауберова соль.

• V класс. Щелочные соли: слабые (поташ, сода), едкие (едкое кали, едкий натр) и летучие (аммиачный спирт).

• VI класс. Кислоты: минеральные (серная, соляная, азотная, фосфорная, борная), растительные (уксусная, щавелевая, яблочная, янтарная) и животные (молочная, мочевая).

• VII класс. Вода, сера, фосфор.

• VIII класс. Газы: углекислый газ, сернистый газ, водород, хлор, кислород и азот.

Теперь вернёмся к истории развития научных знаний того времени и вспомним такого учёного, как Роберт Бойль (1697–1691), наверняка известного тебе из уроков физики и химии. Бойль открыл закон давления (сжатия) газов и обосновал аналитическую химию, тем самым обессмертив своё имя как в физике, так и в химии.


Роберт Бойль


Если до Бойля различные химические вещества классифицировали лишь по блеску, окраске и другим физическим свойствам, то он убедительно доказал, что вещества необходимо различать по их «поведению» в аналогичных химических превращениях. Так, если два подобных вещества подвергнуть одинаковому химическому процессу, например горению, то и продукты их превращения должны быть подобны. Следовательно, мы вправе утверждать, что начальные вещества сходны между собою и принадлежат к одному классу. На этом принципе Бойль построил и научно обосновал теорию разложения тел, которая сразу же была признана основополагающей.

Однако наиважнейшей задачей науки в ту далёкую эпоху стало исследование химических явлений самих по себе, изучение химических превращений. И главным и первым предметом изучения стал огонь.

Химики считали, что огонь – не вещество, а явление, которое может принимать самую разнообразную форму. Так, дерево, уголь или бензин при сгорании не исчезают бесследно: они дают нам свет и тепло, а после полного сгорания оставляют иногда ещё и золу.

На основании этих фактов немецкий химик Георг Эрнст Шталь (1659–1734) примерно в 1700 году и сформулировал теорию… флогистона. Вот мы и добрались наконец до нашего таинственного «зверя»! Причём теория флогистона (если проще – теория горения) господствовала в науке до самого конца XVIII века.


Георг Эрнст Шталь


Согласно этой теории, все тела (независимо от их происхождения) содержат флогистон, который при горении превращается в свет и тепло. Если же некоторые вещества (например, дерево и уголь) состоят не из чистого флогистона, то после их сгорания остаётся зола. Проще говоря, эти вещества представляют собой смесь флогистона и золы.

Конечно, теория флогистона не могла объяснить суть всех известных тогда явлений. Например, остающаяся от сгорания некоторых металлов зола весила больше, чем первоначальный (подопытный) кусок металла (Me + O2 = MeO2), и тот факт, что составная часть может оказаться тяжелее суммарной массы вещества, требовал объяснения. Для устранения данного противоречия решено было предположить, что флогистон имеет отрицательный вес. (Именно поэтому и стали считать, что теплота имеет отрицательный вес.)

Для того времени теория флогистона служила не только простым описанием процессов горения, но и неоспоримой истиной. И всё бы оставалось как прежде, если бы не пришёл он – человек, разрушивший всю эту теорию одним взмахом пера. Человек, не опровергший теорию флогистона полностью, однако заменивший её более простой и более точной. Кто же это был?


Михаил Васильевич Ломоносов


Прежде чем назвать тебе его имя, скажу лишь, что этот человек был большим поклонником работ своего великого предшественника Михаила Васильевича Ломоносова, который, собственно, и провозгласил антифлогистонскую теорию первым, просто не был услышан. К мистеру Х, с твоего позволения, я вернусь чуть позже, а пока подробнее остановлюсь на личности и работах Ломоносова.

Михаил Васильевич Ломоносов был родом из простых крестьян и с детства отличался большой тягой к знаниям. Сейчас такое сложно себе представить, но он даже сбежал из дома, чтобы иметь возможность обучаться в школе. Впоследствии Ломоносов, как лучший ученик, был отправлен в Санкт-Петербургскую Академию наук, а оттуда командирован за границу, где и провёл 5 лет, занимаясь изучением металлургии и химии.

По возвращении на родину он представил на суд профессоров две свои диссертации, за которые позднее получил должность адъюнкта (заместителя профессора кафедры) Академии. Шесть лет после этого Ломоносов добивался средств на постройку химической лаборатории, и 12 октября 1748 года его мечта осуществилась. Построенная по плану Ломоносова первая русская химическая лаборатория имела 14 метров в длину, 11 метров в ширину и 4,5 метра в высоту.

Именно в этой лаборатории Ломоносов провёл ряд наиважнейших физико-химических исследований. (Забегая вперёд, скажу, что в те времена физхимия ещё не имела официального признания. Однако если ты и сейчас продолжаешь проводить между физикой и химией жирную границу, то я тебя огорчу: далеко на такой позиции ты не уедешь. Ведь именно на стыке этих двух наук находятся ответы на все часто возникающие в школе вопросы. И неважно, что из них первичнее – физика или химия. Будущее науки – именно за такой сложной и наукоёмкой дисциплиной, как физхимия.)

Итак, Ломоносов сделал целый ряд очень важных теоретических открытий, сильно опередив весь научный уровень той эпохи. Например, в 1742–1744 годах он изложил в диссертации (которая, увы, так и не была опубликована) новое понимание природы и свойств атомов. Более того, он заложил фундамент под закон сохранения энергии, а из опытов по обжигу металлов вывел закон сохранения материи (впервые поведав об этом в 1748 году в письме известному математику Л. Эйлеру).

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации