Текст книги "Квантовая механика и парадоксы сознания"
Автор книги: Александр Никонов
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]
Этот нездоровый смех квантовым физикам решительно не понравился. Неужели самая проверенная и самая работающая на практике теория – квантовая – на самом деле неполна? – задумались они.
Через много лет, один английский физик по фамилии Белл придумал мысленный эксперимент, из коего вывел формулу, получившую в физике его имя, – «неравенство Белла», согласно которой (формуле) можно поставить реальный физический опыт и проверить, кто прав – Бор или Эйнштейн.
Чтобы не растерять читателей из-за долгого и муторного объяснения статистических закономерностей, я не буду пускаться в принципы построения неравенства Белла. Просто скажу, что еще в далеком 1964 году Белл, который, похоже, придерживался эйнштейновских взглядов, хотя и не особо это озвучивал, поскольку к тому времени они уже считались в физике неприличными, вывел математическое выражение, которое могло бы доказать, есть у частиц в микромире какие-то скрытые параметры или их конкретные свойства возникают только после замера. Тогда проверить неравенство Белла экспериментальным путем было невозможно. Но через пару десятилетий неравенство Белла было проверено опытным путем – и проверено неоднократно, после чего отсутствие скрытых параметров и полнота квантовой механики были доказаны.
Квантовая теория безупречна. Ее математика безупречна. И только та самая физическая реальность в эту математику почему-то не укладывалась. Реальность эту математику ломала.
– Почему, – спросите вы, – если реальность в виде эксперимента квантовую механику как раз подтвердила? Что тогда означает ваша фраза «реальность в квантовую механику не укладывалась»?
Часть 2. Иллюзорность реальности
Волны пробегают, исчезая без следа,
Катится слепая, неразумная вода,
Долгие-предолгие бега из ниоткуда в никуда.
А. Иващенко, Г. Васильев
Глава 1
Странные квантовые эксперименты
Давайте же наконец признаемся, что именно так сильно взбесило творца теории относительности в квантовой механике и почему он столь упорствовал в ее неприятии! Ну, ведь не косный же дурачок был Эйнштейн! Что ему мешало проявить тот же безграничный физический либерализм, что и Бору: взять и пригласить в свое мыследопущение, в свой внутренний физический мир играющего в кости бога – мировую случайность?
Но гениальный мозг Эйнштейна сразу уловил, в чем главная беда квантовой механики с ее непредсказуемостью. Эта страшная беда состояла в ее нелокальности! Эйнштейн моментально смекнул, раньше многих, что квантовая механика убивает физическую реальность.
Что это значит? О-о, это требует осмысления!
Мы с вами люди тертые, нас на мякине не проведешь, мы понимаем, что никакого колдовства, чудес и магии не бывает. Силой воли дверь не откроешь, нужно подойти к ней и толкнуть. Или палкой дотянуться. На худой конец подойдет и полевое воздействие на расстоянии – как между магнитом и скрепкой – тут важно дотянуться до объекта воздействия веществом или полем. А если предмет воздействия от тебя в миллионе световых лет, то как ты на него повлияешь? Ладно, не будем брать космические масштабы… Если в ста километрах находится радиоуправляемая мина, которую вам нужно взорвать, вы должны послать радиосигнал. И когда он долетит до мины со скоростью света, мина взорвется. Но не раньше. Сигнал должен дойти! Скорость света – самое быстрое, что может быть, учил Эйнштейн. Природа так устроена, что ничего быстрее скорости света не летает. 300 тысяч километров в секунду – это предел для распространения любого сигнала.
Теория относительности была многократно проверена, и с тем, что ничто в мире, никакой сигнал на свете не может перемещаться быстрее света, никто из физиков давно не спорит. Это на сегодня твердо установленный факт.
Магии не бывает, волшебное воздействие на расстоянии – силой мысли, одним только голым желанием или с помощью магических штучек – невозможно. Никакого дальнодействия не существует. Только близкодействие: подойти и толкнуть или послать управляющий полевой сигнал.
А в квантовой механике Эйнштейн опытным глазом снайпера сразу углядел дальнодействие, которое даже назвал «жутким». Он, кажется, первым увидел то, чего не видел и не осознавал о ту пору еще никто в мире. И вот как раз разоблачению этого «жуткого дальнодействия» и был посвящен придуманный им ЭПР-парадокс.
Следите за мыслью великого физика!.. Если Бор и его банда утверждают, что классическая физическая реальность (то есть частицы со своими конкретными свойствами) возникает из Великой Непредсказуемой Квантовой Потенции с помощью акта наблюдения/замера, то получается, что две запутанные частицы, которые разлетелись на миллион километров, как-то незримо остаются связаны друг с другом, раз измерение одной частицы мгновенно творит тоже самое свойство у другой частицы, которую никто не трогал и которая находится в миллионе километров отсюда! Мгновенно! Быстрее скорости света!
Собственно, весь мысленный эксперимент с ЭПР-парадоксом был просто развернутым и расширенным описанием обычной и привычной уже к тому времени физикам редукции волновой функции, когда «размазанное» по всему пространству волновое облачко при воздействии на него вдруг мгновенно стягивается в точку. В каком именно месте стянется, предсказать невозможно.
Эйнштейн, Подольский и Розен наивно полагали, что их мысленный эксперимент ловко привел квантовую физику к противоречию, а любителей копенгагенской интерпретации к проигрышной альтернативе: либо квантовая механика неполна, либо существует то самое «жуткое дальнодействие», по сути – чистая магия. Телепортация!
Эта троица в 1935 году и подумать не могла, что когда-нибудь техника дойдет до такого уровня, что их мысленный эксперимент можно будет реализовать. И уже после появления неравенства Белла первым поставил эксперимент по проверке этого неравенства Ален Аспект, подтвердивший: да, неравенство Белла нарушается, а это значит, что:
– никаких скрытых переменных не существует, дорогой Эйнштейн;
– квантовая механика полна, дорогой Эйнштейн;
– мгновенное дальнодействие существует, дорогой Эйнштейн.
Подобные опыты были многократно повторены и позднее, причем иногда их так и называют – опыты с квантовой телепортацией.
Вот краткое описание одного из таких опытов, проведенных в Женеве в 2008 году. Два сцепленных или запутанных между собой фотона, свойства которых взаимосвязаны, рассылаются по оптоволоконным кабелям в разные стороны (в данном случае фотоны разлетелись друг от друга на 18 км). После чего у одного из фотонов замеряется спиральность. Не углубляясь в детали того, что такое спиральность, скажем лишь, что она может быть либо +1, либо –1. Причем, поскольку наши фотоны «родственны», то если у левого спиральность –1, то у правого +1 (и наоборот), поскольку в сумме их спиральность должна равняться нулю.
Квантовая механика гласит, а опыт Аспекта по проверке неравенства Белла подтверждает, что в полете фотон обладает сразу всеми свойствами, то есть находится в суперпозиции свойств – имеет и спиральность +1 в потенции, и -1 в потенции. И только физический замер присваивает фотону какое-то конкретное свойство. То есть если мы намерили у левого фотона +1, то в то же самое мгновение у правого, находящегося в 18 км от него, возникает свойство -1. Которого раньше не было, поскольку правый фотон также находился в суперпозиции свойств.
Позже на Канарских островах фотоны растащили вообще по разным островам, расстояние между которыми достигало 144 км. С тем же результатом: произошла «телепортации» свойств одного фотона другому, и произошла она мгновенно, то есть со скоростью, в десятки тысяч раз превышающей скорость света.
Был также проведен и прямой опыт по мгновенной телепортации квантовых свойств от частицы А к частице С через посредство частицы В.
И ничего в этом страшного для Эйнштейна нет, потому что передается не информация, а состояние. Поясняя широкой публике этот феномен передачи с бесконечной скоростью, везде пишут – и пишут правильно! – что таким вот мгновенным образом нельзя передавать информацию и создавать на этом свойстве средства мгновенной связи.
Для людей, не очень понимающих тонкости квантовой механики, все сказанное необязательно представляется удивительным. Они могут сказать:
– А что тут такого? Просто замерив в одном месте значение, мы сразу узнали, что происходит в тысячах километров. Ну и что? Представьте, что какой-то шутник разделил пару носков и разослал их своим друзьям на разные континенты. Тогда, открыв в Америке свою посылку и увидев там левый носок, я мгновенно узнаю, что в Австралию пришла посылка с правым носком. Ну и что тут удивительного?
А то здесь удивительного, что аналогия с носками не проходит. Она в корне ошибочна. Я в который уже раз хочу повторить важнейшую вещь: в случае с носками мы знаем, что в посылке до замера уже лежал либо левый, либо правый носок. А фотон находится в суперпозиции свойств, то есть одновременно имеет все возможные значения и никакого конкретного, реального. Его реальность создается замером.
Чтобы яснее продемонстрировать эту парадоксальность квантовой механики, гениальный Шрёдингер, имя коего носят уравнение и кот, придумал свой знаменитый мысленный эксперимент с мяукающим млекопитающим, о котором мы поговорим ниже. А сейчас продолжим рассмотрение разных квантовых экспериментов, чтобы попривыкнуть малость к необычностям квантовой механики.
Самый простой квантовый эксперимент мы уже знаем, его рисунок был дан выше – с полупрозрачным зеркалом и понятным результатом: 50 на 50. Давайте теперь чуть-чуть усложним схему.
Несмотря на появление дополнительных зеркал, принципиально тут ничего не поменялось – фотоны по-прежнему ведут себя как частицы с вероятностью выпадения орла или решки – или проникая сквозь полупрозрачное зеркало, или отражаясь от него и попадая в первый или второй детекторы. То есть летят только по одному из двух возможных путей.
Рис. 12
Уважаемый Нильс Бор учил, подняв вверх указательный палец: квантовые объекты обладают свойствами и волн, и частиц одновременно, и какую сторону медали мы увидим, зависит лишь от экспериментальной установки… В связи с этим возникает вопрос: а можем мы внести какие-то изменения в нарисованную выше установку, чтобы увидеть не корпускулярные, а волновые свойства тех же фотонов?
Можем! Вот, пожалуйста…
Поставим на пути пересечения лучей еще одно полупрозрачное зеркало. Причем, меняя настройки установки (сдвигая на полволны фазу на разных плечах фотонных маршрутов), мы можем добиться того, что все фотоны будут попадать только в один детектор, а в другой – никогда. Почему? Потому что волны, попадая на второе полупрозрачное зеркало, в результате сдвига по фазе суммируются так, что в сторону одного детектора они складываются, а в сторону второго – гасятся. Что прекрасно демонстрирует нам не корпускулярную, а волновую природу света. То есть получается, что фотон, как волна, летит по обоим путям сразу и интерферирует сам с собой.
Рис. 13
Наверняка, вам это уже не удивительно, тем более что Бор все объяснил: наблюдаемое свойство зависит от экспериментальной установки.
Но вот в чем не замечаемый многими парадокс… Когда фотон «решает», как ему нужно себя повести, чтобы удовлетворить экспериментатора – по одному пути лететь как частица, или по двум как волна? В какой момент им принимается это решение? Тут ведь вот какая закавыка: когда фотон прилетает на первое полупрозрачное зеркало, он ведь еще не знает, что происходит впереди на его пути – стоит там второе полупрозрачное зеркало или нет. Если оно есть, все фотоны послушно полетят по двум путям одновременно как волны, и на втором полупрозрачном зеркале сложатся сами с собой, дав все прилеты только в один детектор. Если же второго полупрозрачного зеркала нет, фотоны еще на первом полупрозрачном зеркале должны будут случайно выбирать только один путь и шлепаться равновероятно то в один детектор, то в другой.
Они что, обладают даром предвидения? Или им из будущего сигнал приходит, как надо действовать?
А ведь этот эксперимент можно раздуть до космических масштабов! Физик Уилер предложил следующий мысленный эксперимент. Если в качестве прибора использовать галактику, за которой спряталась звезда, излучающая фотоны в сторону Земли, то за счет так называемого гравитационного линзирования фотоны обогнут галактику с обеих сторон и полетят дальше. Если теперь на их пути поставить полупрозрачное зеркало, то окажется, что фотон шел по двум путям сразу – слева и справа от галактики. А если не ставить, получается, что он шел только по одному пути. И свой выбор, как передвигаться, фотон сделал, выходит, сотни миллионов лет назад, когда подлетал к гравитирующей линзе галактики. Но тогда на Земле еще жили динозавры, не было никаких ученых, которые через сотню-другую миллионов лет будут решать – ставить им зеркало или нет.
Космический вариант эксперимента с отложенным (на полмиллиарда лет) выбором.
Рис. 14
Неужели ученые влияют своим современным решением на прошлое фотона? Нет, конечно! Равно как не влияют на прошлое фотонов и другие опыты – широко известные лабораторные эксперименты с отложенным выбором и эксперименты с квантовым ластиком, о которых в популярной прессе часто пишут, будто «ученые доказали, что будущее влияет на прошлое».
Разумеется, не влияет! Хотя иллюзия такая создается. Но это именно иллюзия, вызванная однобоким пониманием квантовой механики, когда наивный экспериментатор всерьез полагает, будто фотон и вправду принимает решение, как ему передвигаться: в виде частицы по одной из двух траекторий или по двум путям сразу в виде волны.
Так что же происходит на самом деле? Как в действительности летят фотоны – по двум путям или по одному?
На самом деле фотоны летят по всем возможным путям сразу. А происходит при этом уже известная нам квантовая нелокальность. Пролетев по всем путям и столкнувшись с чем-то реальным, то есть классическим, объект под названием квант мгновенно стягивается в точку в непредсказуемом, но вполне конкретном месте. Даже если перед столкновением имел размеры в половину вселенной.
– Как это – в половину вселенной!? – спросите вы.
Да очень просто. Представьте себе, что квант, разделенный полупрозрачным зеркалом, полетел в разных направлениях по двум путям одновременно. И разлетелся на миллиард световых лет. После чего одна его «половинка» хлопнулась обо что-то. Все! Выбор сделан! Та, вторая «половинка», исчезает или, если хотите, «стягивается» в ту точку, в которой фотон реализовался как частица.
Почему слово «половинка» взято в кавычки? Потому что половинки кванта не бывает. Квант неделим. И даже разлетевшись на миллиард миллиардов километров он представляет собой не два независимых кусочка себя, а единый объект. Который мгновенно схлопывается практически в точку. Причем, квант можно растащить не на два «кусочка», а на сколько угодно «частей», раскидав их полупрозрачными зеркалами в разные углы вселенной.
Я долго думал: давать в этой суперпопулярной книге квантовые опыты с отложенным выбором и стиранием квантовой информации или не усложнять текст. Но опыты эти настолько на слуху и так бурно обсуждаются публикой, интересующейся квантовой механикой, что я решил немного о них рассказать.
Итак, начнем плясать от экспериментов с отложенным выбором. Их идея состоит вот в чем: а давайте уже после того, как фотон «принял решение» стать частицей и идти по одному пути или остаться волной и двигаться по обоим путям, внесем в установку изменение! Допустим, у нас установка рассчитана на регистрацию частиц, а после того, как квант в нее вошел, мы ему на пути подлянку устроим – вставим полупрозрачное зеркало, чтобы зарегистрировать его как волну!
Долгое время такой опыт не представлялось возможным осуществить чисто технически, потому что свет слишком быстр и, как только он входит в начало установки, через мгновение из нее выходит с готовым результатом. Но потом хитромудрость человеческая позволила извернуться и такой опыт провести. С понятным результатом: если свет входит в установку для частичного (корпускулярного) замера, и уже после прохода им первого полупрозрачного зеркала экспериментаторы подло меняли условия, чтобы сбить свет с толку, и ставили второе полупрозрачное зеркало, фотон словно бы тоже менял свое решение, послушно показывая интерференцию.
Разновидностью этого опыта является опыт с так называемым квантовым ластиком. Он основан на запутывании квантов (создании фотонов с «родственными» свойствами), получении квантовых характеристик и последующем стирании этой информации внутри установки. Звучит непонятно, завлекательно и весьма интригующе, поэтому гранты на такие эксперименты получить можно, но смысла в них немного, потому как великий Бор уже все нам объяснил по этому поводу.
В чем же заключается этот «отложенный выбор с ластиком»? Схема установки показана ниже. Она непроста, и, если вам не хочется с ней разбираться, смело можете пропустить этот кусок книги, ничего по смыслу не потеряете.
Итак. Слева лазером подается фотон на две щели. Далее у него два пути – верхний и нижний. Но сразу после экрана установлен кристалл бета-бората бария, который обладает интересным свойством: из одного фотона делает два с вдвое меньшими энергиями (вдвое меньшей частотой). Соответственно два фотонных потока расщепляются на четыре. Верхняя пара «лучей» направляется в главный датчик – D0. По нему определяется интерференционная картина либо ее отсутствие. Нижняя пара «лучей» с помощью призмы направляется на полупрозрачные зеркала и от них либо отражается (с вероятностью 50 %), попадая в детекторы D4 и D3, либо проходит насквозь и с помощью обычных зеркал скрещивается на третьем полупрозрачном зеркале, задача которого – «смешать информацию», то есть сделать срабатывание датчиков D1 и D2 «непонятным». В смысле при срабатывании этих датчиков непонятно, откуда в них пришел луч – от нижней щели или от верхней, потому что с равной вероятностью третье полупрозрачное зеркало может как отразить фотон, так и пропустить.
Рис. 15
В чем прикол эксперимента? Кристалл бета-бората дает нам два спутанных ортогонально поляризованных фотона. Фотоны, идущие на главный детектор, называются сигнальными, а идущие в нижнюю часть установки – контрольными.
Из схемы ясно, что если срабатывает детектор D3, значит, фотон прилетел из нижней щели. Если D4 – из верхней. А вот срабатывание D1 и D2 ни о чем не говорит. Видно также, что нижний путь из обоих щелей длиннее верхнего (до главного детектора), то есть вниз сигнал попадает после срабатывания D0. (Физики даже прикинули, на сколько позже – на 8 наносекунд.)
И что же получается? Сначала разделившийся на двух щелях исходный фотон «расчетверяется» на кристалле, затем срабатывает датчик D0 (с него потом снимается информация, был ли этот фотон волной, то есть прошел ли он через обе щели, внеся вклад в интерференционную картинку, либо он как частица пролетел только через одну щель и внес свой вклад в корпускулярную картину – за это различение отвечает специальный электронный счетчик совпадений). А потом, после срабатывания D0, срабатывают датчики контрольных фотонов.
Датчики D1 и D2 специально поставлены, чтобы убрать информацию о том, через какую щель пролетел фотон. То есть мы эту информацию запросто могли бы получить, если бы не ставили всех этих полупрозрачных зеркал, а поставили вместо них просто два датчика D3 и D4. Но схема усложнена специально для уничтожения информации. И когда датчики D1 и D2 срабатывают, это означает, по идее, что мы в этом случае ничего не знаем о пути прохождения фотона, а значит, он имеет право оставаться волной и, стало быть, запутанный с ним фотон чуть ранее шлепнулся о главный датчик D0 интерференционно. Такова была идея.
Так и оказалось! Если информация о пути прохождения фотона после срабатывания датчика D0 стиралась, то ранее, чем это произошло, фотон, еще не зная о том, что информация о нем в будущем сотрется, смело позволял себе остаться волной, словно получал сигнал из будущего о том, как сработают полупрозрачные зеркала – скроют от исследователей информацию о пути прохождения фотона или нет.
Разумеется, это «обратновременное» влияние – иллюзия. На которую и клюют разные корреспонденты. Фактически все происходит так, как и должно происходить, – именно первое попадание в главный датчик и определяет дальнейшую судьбу сцепленного фотона, сдвигая вероятность его фиксации теми или иными нижними датчиками. Вот и все.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?