Электронная библиотека » Александр Ватаманюк » » онлайн чтение - страница 3


  • Текст добавлен: 22 ноября 2013, 19:19


Автор книги: Александр Ватаманюк


Жанр: ОС и Сети, Компьютеры


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Глава 4
Сетевое оборудование

• Сетевой адаптер

• Концентратор

• Мост

• Коммутатор

• Маршрутизатор

• Модем

• Точка доступа

• Антенна

• Сетевой кабель

• Коннекторы, розетки, инструменты…


Компьютерная сеть не может существовать без сетевых устройств. Каждое из них имеет свое предназначение, что позволяет четко разделить функции поддержки работы сети. Обычный пользователь может даже не знать, какие именно устройства применяются. Единственное, с чем он сталкивается, – это сетевая карта, установленная (или встроенная) в материнскую плату его компьютера. Тем более не обязательно знать, как все это функционирует. Однако если вы любознательный человек, то знание основ работы сетевых устройств вам не помешает и даже пригодится. Кроме того, подобные знания будут совсем не лишними для человека, который будет выступать в роли администратора сети.

4.1. Сетевой адаптер

Чтобы пользователь мог подключиться к локальной сети, в его компьютере должно быть установлено специальное устройство – сетевой контроллер (адаптер, карта).

Сетевой адаптер выполняет множество заданий, самые главные из которых – кодирование информации и получение доступа к информационной среде с использованием уникального идентификатора (МАС-адреса).

Сетевые карты бывают в виде плат расширения, которые устанавливаются в соответствующий слот (рис. 4.1), или могут быть встроенными в материнские платы (рис. 4.2).

Рис. 4.1. Сетевая карта в виде платы расширения, устанавливаемой в PCI-слот


Рис. 4.2. Пример встроенной сетевой карты (два коннектора сверху в правой части)


Сетевые платы различаются по трем основным параметрам.

• Скорость передачи данных. Поскольку существуют сети с различными скоростями приема и передачи информации, естественно, существуют аналогичные сетевые адаптеры. Наибольшее распространение в странах СНГ получили сети Ethernet и Fast Ethernet, построенные на витой паре или коаксиальном кабеле (встречаются реже), имеющие пропускную способность 100 и 10 Мбит/с соответственно. Также в последнее время все чаще встречаются локальные сети, работающие со скоростью 1 Гбит/с. Как правило, сетевой адаптер с более высокой скоростью передачи данных также умеет работать и на более низких скоростях. К примеру, если сеть функционирует на скорости 10 Мбит/с, 100-мегабитный сетевой адаптер также будет работать на скорости 10 Мбит/с.

• Тип коннектора. Тип коннектора сетевой карты зависит от выбора сетевой топологии и кабеля, по которому происходит передача данных. Существует несколько типов коннекторов: RJ-45 для витой пары, BNC для коаксиального кабеля и ST, SC или FC для оптоволокна. Они существенно различаются по конструкции, поэтому использовать коннектор не по назначению невозможно. Хотя существуют комбинированные сетевые адаптеры, которые содержат, например, RJ-45– и BNC-коннекторы. Но поскольку сети на коаксиальном кабеле встречаются все реже, то и адаптеры такие попадаются нечасто. Сегодня сети на основе витой пары составляют примерно 90 %.

• Тип подключения к компьютеру. Сетевая карта может устанавливаться в PCI-слот или в USB-порт (рис. 4.3). Кроме этого практически любая современная материнская плата имеет интегрированный сетевой контроллер.

Рис. 4.3. Сетевая карта, подключаемая к USB-порту


Что касается сетевых адаптеров (рис. 4.4) для беспроводной сети, то по внешнему виду они практически не отличаются от проводных, за исключением наличия гнезда антенны – внутренней или внешней.

Рис. 4.4. Беспроводной сетевой адаптер


Что касается сетевых плат, которые подключают через USB-порт, они встречаются достаточно часто, особенно это касается беспроводных вариантов.

Часто на сетевой карте присутствует микросхема BIOS, с помощью которой можно даже производить загрузку компьютера или выводить его из спящего режима (функция WOL, wake up on LAN). В последнем случае сетевая карта должна быть подсоединена к материнской плате специальным кабелем.

4.2. Концентратор

Когда сеть содержит более двух компьютеров, для их объединения приходится использовать специальное устройство – концентратор. Свое применение он находит, как правило, в сетях на основе витой пары.

Концентратор (также используются названия «хаб», «повторитель», «репитер») – сетевое устройство, имеющее два и более разъема (порта), которое, кроме коммутации подключенных к нему компьютеров, выполняет и другие функции, например усиление сигнала.

Концентратор служит для расширения сети, и основное его предназначение – передача поступившей на вход информации остальным подключенным к нему устройствам сети.

Все подключенные к концентратору устройства получают абсолютно одинаковую информацию, что одновременно является и недостатком устройства – наличие нескольких концентраторов в сети засоряет эфир, поскольку концентратор не видит реального адреса, по которому нужно отослать сообщение, и вынужден передавать его всем.

В любом случае концентратор выполняет свою задачу – соединяет компьютеры, находящиеся в одной рабочей группе. Кроме того, он производит анализ ошибок, в частности, возникающих коллизий. Если одна из сетевых карт приводит к возникновению частых коллизий, порт на концентраторе, к которому она подключена, может временно отключаться.

Концентратор реализует физический уровень модели ISO/OSI, на котором работают стандартные протоколы, поэтому использовать его можно в сети любого стандарта.

Существует два основных типа концентраторов.

• Концентраторы с фиксированным количеством портов (рис. 4.5) – самые простые. Выглядит такой концентратор как отдельный корпус, снабженный определенным количеством портов и работающий на выбранной скорости. Как правило, один из портов служит для связи с другим концентратором или коммутатором.

Рис. 4.5. Концентратор с фиксированным количеством портов


• Модульные концентраторы (рис. 4.6) состоят из блоков, которые устанавливаются в специальное шасси и объединяются общей шиной. Возможна также установка концентраторов, которые не связаны между собой общей шиной, например, когда существуют разные локальные сети, связь между которыми не принципиальна.

Рис. 4.6. Модульный концентратор


Модульный концентратор выглядит практически так же, как концентратор с фиксированным количеством портов. Единственное возможное отличие – пластмассовый корпус. Количество портов в таких конструкциях не обязательно должно быть одинаковым. Кроме того, каждый концентратор может работать со своей топологией сети.

Преимуществом модульного концентратора является сосредоточение всех устройств в едином центре управления. Это позволяет быстро делать соответствующие настройки в случае любых изменений в сети.

Поскольку для создания сети в основном используют коаксиальный кабель и кабель на основе витой пары, соответственно существуют и концентраторы с BNC– и RJ-45-портами.

В зависимости от сложности концентратора на нем может присутствовать консольный порт (рис. 4.7), с помощью которого, используя специальное программное обеспечение, можно изменять некоторые параметры, конфигурировать порты или считывать их статистику.

Рис. 4.7. Концентратор с консольным портом (в левой части)


Концентраторы могут содержать разное количество портов – от 5 до 48. Чем их больше, тем дороже и функциональнее устройство. В частности, существуют конструкции, позволяющие управлять концентратором напрямую (то есть не используя консольный порт) или поддерживающие резервную линию соединения с другими устройствами.

Часто на концентраторе есть дополнительный порт, через который можно соединять другие сегменты сети, в частности сеть на коаксиальном кабеле, на основе витой пары или радиосеть.

4.3. Мост

Мост (также используются названия «свич», «переключатель») представляет собой довольно простое устройство (рис. 4.8), основное предназначение которого – разделение двух сегментов сети с целью увеличения ее общей длины (соответственно количеству подключенных повторителей) и преодоления при этом ограничения сетевой топологии.

Рис. 4.8. Беспроводной мост


В отличие от концентраторов, мост умеет передавать отдельные (отфильтрованные) пакеты, что позволяет уменьшить трафик информации.

Как правило, мост имеет два или больше портов, к которым подключают сегменты сети. Анализируя адрес получателя пакета, он может фильтровать сообщения, предназначенные другому сегменту. Пакеты, предназначенные для родного сегмента, устройство попросту игнорирует, что также уменьшает трафик.

Для построения сети используют три типа мостов:

• локальный – работает только с сегментами одного типа, то есть имеющими одинаковую скорость передачи данных;

• преобразующий – предназначен для того же, что и локальный мост, также работает с разнородными сегментами, например Token Ring и 100Base;

• удаленный – соединяет сегменты, расположенные на значительном расстоянии друг от друга, при этом могут использоваться любые средства соединения, например модем.

Мост может использоваться как в проводных, так и в беспроводных сетях.

4.4. Коммутатор

Коммутатор (рис. 4.9) объединяет в себе возможности концентратора и моста, а также выполняет еще некоторые полезные функции.

Рис. 4.9. Коммутатор


Например концентратор, получив от какой-либо сетевой карты пакет данных, не зная о том, кому он адресован, рассылает его по всем подключенным к нему сетевым устройствам. Не сложно представить, какой создается трафик, если в сети существует не один, а несколько концентраторов.

Коммутатор – более интеллектуальное устройство, которое не только фильтрует поступающие пакеты, но, имея таблицу адресов всех сетевых устройств, точно определяет, какому эти пакеты предназначены. Это позволяет ему передавать информацию сразу нескольким устройствам.

Поэтому для организации разветвленной сети концентраторы и коммутаторы используют совместно. Первые – для объединения компьютеров в одну группу, вторые – для организации эффективного обмена информацией между ними.

Коммутаторы работают на канальном уровне, что позволяет использовать их не только в разных типах сетей, но и объединять различные сети в одну.

Коммутатор может использоваться как в проводных, так и в беспроводных сетях.

4.5. Маршрутизатор

Главная задача маршрутизатора (роутера) – разделение большой сети на подсети. Он выполняет множество полезных функций и обладает большими возможностями. В нем сочетаются концентратор, мост и коммутатор. Кроме того, добавляется возможность маршрутизации пакетов. В связи с этим маршрутизатор (рис. 4.10) работает на более высоком уровне – сетевом.

Рис. 4.10. Беспроводной маршрутизатор


Таблица возможных маршрутов движения пакетов все время обновляется, что дает маршрутизатору возможность выбирать самый короткий и самый надежный путь доставки сообщения.

Одной из ответственных задач является связь разнородных сетевых сегментов локальной сети. С помощью маршрутизатора также можно организовывать виртуальные сети, каждая из которых будет иметь доступ к тем или иным ресурсам, в частности к Интернету.

Организация фильтрования широковещательных сообщений в маршрутизаторе выполнена на более высоком уровне, чем в коммутаторе. Все протоколы, которые использует сеть, беспрепятственно принимает и обрабатывает процессор маршрутизатора. Даже если попался незнакомый протокол, устройство быстро научится с ним работать.

Маршрутизатор может использоваться в проводных и беспроводных сетях. Часто функции маршрутизации ложатся на беспроводные точки доступа.

4.6. Модем

Модем также является сетевым оборудованием, и его до сих пор часто используют для организации выхода в Интернет.

Слово «модем» – сокращение от «модулятор» и «демодулятор».

Модем представляет собой устройство, которое имеет цифровой интерфейс связи с компьютером и аналоговый интерфейс для связи с телефонной линией (цифро-аналоговые и аналогово-цифровые преобразования).

Модем состоит из процессора, памяти, аналоговой части, ответственной за сопряжение с телефонной сетью, и контролера, который всем управляет.

Обмен информацией происходит по обычной телефонной линии в диапазоне частот 300-3400 Гц. Преобразование аналогового сигнала осуществляется достаточно просто – с определенной частотой его характеристики измеряются и записываются в цифровой форме по определенному алгоритму. В обратной последовательности идет преобразование цифровой информации.

Модемы бывают двух типов: внешние (рис. 4.11) и внутренние (рис. 4.12). Внутренние представляют собой плату расширения, которую обычно устанавливают в PCI-слот. Внешний же модем может подключаться к компьютеру через LPT-, СОМ-, USB-порт или вход сетевой карты.

Рис. 4.11. Внешний модем


Рис. 4.12. Внутренний модем


Модемы могут работать с телефонной линией, с выделенной линией и радиоволнами.

В зависимости от типа устройства и среды передачи данных отличается и скорость этой передачи. Скорость обычного цифро-аналогового модема, работающего с телефонной аналоговой линией, приблизительно 33,6-56 Кбит/с. В последнее время все чаще встречаются цифровые модемы, использующие преимущества DSL-технологии. При использовании таких модемов возможна работа на скорости до 24 Мбит/с. Еще одним неоспоримым плюсом этих модемов является то, что телефонная линия всегда остается свободной.

Для связи с другим модемом используются свои протоколы и алгоритмы. Большое внимание при этом уделяется качеству обмена информацией, поскольку качество линий при этом достаточно низкое.

Модем может использоваться как в проводных, так и в беспроводных сетях.

4.7. Точка доступа

Точка доступа (рис. 4.13) – устройство, необходимое для организации беспроводной сети в инфраструктурном режиме. Она играет роль концентратора и позволяет компьютерам обмениваться нужной информацией, используя для этого таблицы маршрутизации, средства безопасности, встроенный аппаратный DNS– и DHCP-сервер и многое другое.

Рис. 4.13. Точка доступа


От точки доступа зависит не только качество и устойчивость связи, но и стандарт беспроводной сети. Существует большое количество разнообразнейших моделей точек доступа с разными свойствами и аппаратными технологиями. Однако на сегодняшний день наиболее оптимальными можно считать устройства, работающие со стандартом IEEE 802.11g, поскольку он совместим со стандартами IEEE 802.11а и IEEE 802.11b и позволяет работать на скорости до 108 Мбит/с.

4.8. Антенна

В беспроводной сети антенна имеет огромное значение, особенно если к ней подключено активное сетевое оборудование: точка доступа, концентратор, маршрутизатор и т. д. Хорошая антенна позволяет сети работать с максимальной отдачей, достигая при этом своих теоретических пределов дальности распространения сигнала.

Антенны бывают внутренние (встроенные) и внешние (рис. 4.14) и отличаются в основном своей направленностью и мощностью. Так, узконаправленная антенна позволяет достичь более дальней связи, что и используют, когда необходимо соединить два удаленных сегмента беспроводной сети.

Рис. 4.14. Антенна для беспроводного оборудования


Широконаправленная антенна распространяет сигнал вокруг себя, что позволяет другим рядом установленным устройствам взаимодействовать друг с другом. Однако достичь каких-либо выдающихся результатов при этом не удается.

4.9. Сетевой кабель

Если в беспроводной сети для передачи данных используют радиоэфир, то в проводной сети, соответственно, кабель. Существует несколько типов кабелей, основными из которых являются кабель на основе витой пары, коаксиальный и оптоволоконный кабель.

Существует несколько категорий кабелей, каждая из которых имеет свои характеристики. Основными отличительными параметрами являются:

• частотная полоса пропускания;

• диаметр проводников;

• диаметр проводника с изоляцией;

• количество проводников (пар);

• наличие экрана вокруг проводника (проводников);

• диаметр кабеля;

• диапазон температур, при котором качественные показатели находятся в норме;

• минимальный радиус изгиба, который допускается при прокладке кабеля;

• максимально допустимые наводки в кабеле;

• волновое сопротивление кабеля;

• максимальное затухание сигнала в кабеле.

Все эти параметры входят в понятие категории кабеля. Например, кабель на основе витой пары бывает пяти разных категорий. В этом случае чем выше категория, тем лучше показатели кабеля, тем больше у него пропускная способность.

Коаксиальный кабель

Коаксиальный кабель (рис. 4.15) имеет отношение к таким стандартам сети, как «толстый» и «тонкий» Ethernet.

Рис. 4.15. Коаксиальный кабель


На рынке представлен достаточно широкий выбор коаксиального кабеля, однако для создания сетей используют только кабель разной толщины с волновым сопротивлением 50 Ом (телевизионный кабель имеет сопротивление 75 Ом).

Как видно из рис. 4.15, строение коаксиального кабеля следующее:

• центральный провод (жила);

• диэлектрический изолятор центрального провода;

• металлическая оплетка – экран (как правило, медный);

• внешний изолятор.

Чаще всего при построении сети применяют коаксиальный кабель марки RJ-58, хотя есть и другие, например RJ-8, RJ-174, RJ-178, РК-50 и т. д.

Кабель на основе витой пары

Кабель на основе витой пары (рис. 4.16) популярнее коаксиального, поскольку предлагает более высокие скорости передачи данных и лучшую расширяемость сети.

Рис. 4.16. Кабель на основе витой пары


Основу такого кабеля составляют пары проводников, которые не только скручены между собой, но и закручены вокруг остальных таких же пар.

Каждой паре соответствует своя цветовая гамма, например, первый из них – синий, другой – бело-синий. Кроме цветового отличия, каждая пара имеет свой номер и название.

При построении сети используют два типа кабеля – экранированный (Shielded Twisted-Pair, STP) и неэкранированный (Unshielded Twisted-Pair, UTP). Кроме того, кабели на основе витой пары делятся на шесть категорий, каждая из которых имеет определенные свойства. Чем выше категория, тем лучше характеристики кабеля. Например, для организации сети со скоростью передачи данных 100 Мбит/с используют кабель пятой категории.

Оптоволоконный кабель

Оптоволоконный кабель – кабель, строение которого коренным образом отличается от рассмотренных выше и любых других.

В качестве физической среды передачи данных по кабелю используют свет (фотоны), сформированный лазером. В этом заключается главное преимущество оптоволокна, поскольку полностью исключаются электрические наводки (помехи).

Таким образом, оптоволоконный кабель является самым защищенным, что очень важно для многих систем, например банков и государственных учреждений. Кроме того, учитывая низкое затухание сигнала, длина сегмента оптоволоконного кабеля значительно превосходит длину любого другого кабеля и может составлять более 100 км.

Однако достаточно высокая стоимость оборудования для формирования сигнала (света) и особенности прокладки (а именно обжим коннекторов) сдерживают широкое распространение этой технологии. Тем не менее там, где требуются скорость и защита, оптоволокно по праву заняло свое место.

Оптоволоконный кабель состоит из четырех частей: сердечника (сердечников), оболочки сердечника, прокладки и внешней оболочки (рис. 4.17). Главным является сердечник. Как правило, его изготавливают из кварца или специального полимера. Свет, проходя через сердечник, отражается от оболочки, что позволяет проводить кабель с изгибами любого угла.

Рис. 4.17. Оптоволоконный кабель


Для механической защиты кабеля используют специальную прокладку, сделанную из пластика и кевралового волокна, придающего прочность. Дополнительную устойчивость к разрушениям обеспечивает тефлоновый слой.

Для прокладки сетей используют два вида оптоволокна – одномодовое и многомодовое, которые отличаются толщиной сердечника и оболочки. В зависимости от толщины варьируется количество сердечников. Соответственно одномодовый кабель содержит один сердечник большей толщины, а многомодовый – несколько более тонких.

Однако главное отличие этих двух типов кабелей заключается в пропускной возможности. Хотя многомодовый кабель при прокладке позволяет создавать участки с большими изгибами, его пропускная способность хуже, так как свет меньше отражается от оболочки сердечника. Кроме того, длина сегмента при этом значительно меньше (примерно в 50 раз).

Пропускная способность одномодового кабеля намного выше, он и значительно дороже многомодового.

4.10. Коннекторы, розетки, инструменты…

Одного кабеля для создания сети мало. Нужны еще различные мелочи – коннекторы, розетки, короба, панели и т. п. и, конечно, разнообразные инструменты для обрезки и обжима кабелей. Понятное дело, что в случае использования беспроводной сети без всего этого можно обойтись. Исключение составляют лишь комбинированные сети (например, беспроводная сеть с сегментами проводной).

Ниже рассмотрены практически все инструменты и материалы, необходимые для создания сетей на коаксиальном кабеле и на основе витой пары. Оптоволоконная сеть не рассматривается, поскольку она требует слишком дорогостоящего оборудования и ее создание лучше оставить профессионалам.

Все необходимое для сети на коаксиале

Коннектор BNC. Коннектор BNC (Bayonet Nut Connector) применяют при построении сети на основе коаксиального кабеля для обжима его концов, идущих к сетевой карте или порту любого сетевого оборудования, которое имеет соответствующий разъем (рис. 4.18).

Рис. 4.18. Коннектор BNC и его составные части


Существует два типа коннекторов для обжима коаксиального кабеля. Наибольшее распространение получил коннектор, показанный рис. 4.18, для обжима которого используется специальный инструмент. Такой коннектор обеспечивает большую степень надежности, нежели другие, например использующие металлический колпачок, который накручивается на коннектор и прижимает его к кабелю.


Т-коннектор используют для соединения основной кабельной магистрали с сетевой картой компьютера или другого оборудования в сети, построенной на коаксиальном кабеле.

Внешне Т-коннектор (рис. 4.19) похож на обычный, но имеет отводы для вклинивания в центральную магистраль.

Рис. 4.19. Т-коннектор


Т-коннектор всегда используют в паре с коннектором (продлевает сегмент кабеля) или терминатором (закрывает сегмент) (рис. 4.20).

Рис. 4.20. T-коннектор, присоединенный к сетевой карте


I-коннектор (рис. 4.21) служит соединителем сегментов кабеля без применения активного оборудования.

Рис. 4.21. I-коннектор


Данный коннектор применяют, когда нужно, например, дотянуть кабель до компьютера, но его длины не хватает.


Терминатор (рис. 4.22) – устройство, которое устанавливают в конце сегмента с целью заглушить сигнал.

Рис. 4.22. Терминатор


Если терминатор не установить, то сигнал, поступая в никуда, может привести не только к задержкам неопределенной длительности, но и к выходу сети из строя.

Существуют разные инструменты для обработки коаксиального кабеля. При использовании коннекторов с накручивающимся колпачком достаточно иметь инструмент, показанный на рис. 4.23.

Рис. 4.23. Инструмент для обрезки кабеля и оголения его центрального проводника


Для обжима BNC-коннекторов необходимо иметь инструмент, показанный на рис. 4.24. Он сочетает в себе функции обрезного инструмента, а также обеспечивает возможность обжима центрального сердечника и металлического обжимного кольца.

Рис. 4.24. Инструмент для обжима коннектора BNC


Все необходимое для сети на основе витой пары

Коннектор RJ-45 (рис. 4.25) используют для обжима кабеля, основанного на витой паре.

Рис. 4.25. Коннектор RJ-45 (слева) и защитный колпачок (справа)


Если в случае с коннектором BNC обжим кабеля можно произвести без инструмента, то с RJ-45 это невозможно. Чтобы хорошо обжать кабель с таким разъемом, требуется достаточно сильно сжать ручки инструмента, который оголит проводники кабеля и прижмет их к проводящим дорожкам на коннекторе. Вручную это сделать не получится.

Колпачок, надевающийся на коннектор, используется не только для скрытия лишней оголенности проводников, но и защищает их от пыли и различных атмосферных явлений.


Розетка RJ-45. Розетки являются такой же частью компьютерной сети, как бытовые электророзетки в электросети. Это некое связующее звено, служащее в качестве контактной площадки. Прокладка сети стоит достаточно дорого, поэтому она должна быть максимально защищена от повреждений. Чтобы исключить возможность порчи сегментов кабеля, их рекомендуется скрывать в специальные короба, окнами из которых и служат розетки (рис. 4.26).

Примечание

При использовании коаксиального кабеля розетки не применяют.

Как и кабели, розетки делятся на категории, которые отличаются степенью защиты и другими требованиями к организации сети. На рис. 4.27 изображена розетка более низкой категории, чем розетка, показанная на рис. 4.26.

Рис. 4.26. Розетка


Рис. 4.27. Розетка одной из первых категорий


Одно из видимых различий между показанными розетками заключается в наличии специальных площадок для крепления проводников в первой (см. рис. 4.26), в то время как во второй (см. рис. 4.27) крепление производится с помощью обычных шурупов, что не гарантирует качества соединения.


Кросс-панель (рис. 4.28) используется в сети, построенной на кабеле, который основан на витой паре.

Кросс-панель служит в качестве связующего звена между кабельной системой и сетевым оборудованием.

Рис. 4.28. Кросс-панель


На передней ее части находится определенное количество разъемов RJ-45, которые при необходимости соединяются с портами RJ-45 на сетевом оборудовании, например концентраторе или маршрутизаторе.

Все приходящие к соответствующим разъемам на передней панели проводники монтируются в задней части кросс-панели.


Патч-кордом (рис. 4.29) называют провод длиной до 5 м, который соединяет выход сетевой карты компьютера с разъемом на розетке. Как правило, он более мягкий, чем Щ кабель, который идет от розетки к концентратору или другому сетевому оборудованию.

Рис. 4.29. Патч-корд


Такой кабель на обоих концах содержит коннекторы RJ-45, которые обжаты согласно принятым правилам в зависимости от выбранного стандарта и категории кабеля.


Кросс-кабель является «родным братом» патч-корда и отличается только меньшей длиной. Его применяют специально для подключения портов на концентраторе или другом сетевом оборудовании с разъемами на кросс-панели, которая физически связана с кабелем, ведущим к конкретному сетевому порту.


Инструменты для работы с витой парой. Для обжима кабеля на основе витой пары используют инструмент, подобный по принципу действия инструменту для обжима коаксиального кабеля. Данное приспособление позволяет обрезать кабель, снимать внешнюю оболочку и, конечно, обжимать коннектор, то есть втискивать жилы проводников в контакты разъема (рис. 4.30).

Рис. 4.30. Инструмент для обжима коннектора RJ-45


Часто этим инструментом можно обжимать разъемы для телефонной сети (RJ-11), более узкие и с меньшим количеством контактов.

При монтаже сетевых розеток используют специальный нож-вставку (рис. 4.31).

Рис. 4.31. Инструмент для зажима проводников в сетевой розетке


С помощью данного ножа можно вставлять проводники кабеля в контактные площадки сетевой розетки.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации