Текст книги "100 великих загадок астрономии"
![](/books_files/covers/thumbs_240/100-velikih-zagadok-astronomii-72264.jpg)
Автор книги: Александр Викторович Волков
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 30 (всего у книги 34 страниц) [доступный отрывок для чтения: 11 страниц]
Мир фундаментальных констант
Фундаментальные константы – основа теоретической физики, но их природа загадочна. Если бы хоть одна из них немного изменилась, в нашей Вселенной никогда бы не зародилась жизнь. Неужели мы живем в космосе, который и впрямь создан неким Творцом? А может, нам повезло, и мир случайно возник таким, каков он есть? Или наша Вселенная окружена мириадой параллельных миров, наделенных самыми разными свойствами?
Открытия, сделанные в последние десятилетия, заставляют говорить о невероятно точной юстировке «вселенского хаоса», сравнимой, хотя бы приближенно, с настройкой концертного рояля, где многие десятки струн должны издавать гармонично сплетающиеся звуки. О, если бы речь шла только о десятках струн, а не о протянувшемся в бесконечность мироздании! Итак, что было бы…
Если бы число пространственных и временных измерений было иным, то траектории движения планет и электронов стали бы неустойчивыми, а скорость распространения электромагнитных волн изменилась бы.
Если бы сильное взаимодействие, скрепляющее атомные ядра, оказалось на несколько процентов слабее или сильнее, то процесс термоядерной реакции в недрах звезд прекратился бы и не произошел синтез тяжелых элементов, не образовался углерод – основа всей известной нам жизни, а возможно, и не возникло никаких звезд.
Если бы слабое взаимодействие было несколько сильнее или слабее, то почти весь водород вскоре после Большого взрыва превратился бы в гелий, перестали взрываться сверхновые звезды, а ведь благодаря этим взрывам происходит синтез тяжелых элементов – основного сырья для новых звезд и планет.
Если бы электромагнитное взаимодействие, удерживающее, в частности, электроны возле атомных ядер, было в десятки раз сильнее, то атомы утратили бы стабильность, перестали существовать макроскопические тела, а химические реакции, обуславливающие зарождение жизни земного типа и ее эволюцию, протекали слишком медленно.
Если бы сила гравитации была несколько сильнее или слабее, то Вселенная давно бы пережила коллапс или настолько быстро расширилась, что такие звезды, как Солнце, просто не успели бы зародиться или срок их жизни не превысил бы миллиона лет.
Все чаще слышатся разговоры об «антропном принципе», о том, что мир устроен так, чтобы здесь мог жить человек. Если бы не было этой изначальной мировой гармонии, то Вселенная была бы «безвидна и пуста». Ученые не хотят верить в странное совпадение, в «ее величество Случайность», а потому ищут разгадку чуда. Чем объяснить согласие «космического оркестра»? У всякой случайности должна быть подоплека! Есть разные объяснения точной настройке «вселенского механизма».
Теория «мировой формулы». Все предопределено некой фундаментальной теорией – «формулой мироздания», обуславливающей все и вся. Мир – лишь форма проявления той изначальной сущности, что диктует константам их значения.
Теория «мирового ансамбля». Есть множество параллельных Вселенных, имеющих свои специфические параметры. Среди них – наша, чего доброго, единственная, где могла зародиться жизнь. «В физике допустимо, например, существование Вселенных, которые расширяются в любом направлении с разной скоростью или вращаются и ведут себя хаотично. Наша Вселенная, к счастью, довольно проста, – пишет Джон Бэрроу, профессор Кембриджского университета и автор книги «1 × 1 мироздания». – Она расширяется во все стороны с одной и той же скоростью».
Теория «Творца». Образ нашего мироздания предначертан свыше – Природой или некой сознательной силой, диктующей миру его свойства.
В каком-то роде эти объяснения даже не противоречат друг другу. Например, может существовать множество Вселенных, обладающих самыми разными свойствами, причем все их создал Бог, что, впрочем, не в силах доказать ни современные ученые, ни, может быть, и Он сам – что ж, на все воля и неволя Господня!
Однако на проблему можно взглянуть и с другой стороны. Что если мы живем в одном из множества миров – в лучшем из лучших/худших, которые все возникали совершенно случайно? Быть может, Природа необычайно расточительна в своих свершениях и наряду с нашим мирозданием породила мириаду миров, устроенных по другим принципам? И что если наша Вселенная приспособлена для жизни лишь потому, что наряду с ней есть бессчетное число миров, где не найти и следа человека, где он просто не мог появиться?
Гипотеза «параллельных Вселенных» – «Мультивселенной» – заставляет нас по-новому взглянуть на поразительно точное соответствие физических констант. Это чудо точности объяснимо лишь нашим положением наблюдателей. Находясь в том мироздании, где жизнь возможна, мы видим и впрямь, что она возможна, что этому благоволят законы физики – законы, действующие только в том «подлунном мире», где мы родились. Точно так же, если мы внезапно перенеслись хотя бы на Меркурий или Плутон, у нас вряд ли возникло бы желание говорить об «антропном принципе» – о «лучшем из миров». Лишь Земля точнехонько затесалась в ту область, где только и возможна жизнь. Природа сотворила бесчисленное множество «декораций», но наша жизненная драма будет сыграна на одних-единственных подмостках – там, где мы имели счастье родиться.
Теория «параллельных Вселенных» решительно порывает с представлением о нашем особом положении в этом мире. Когда-то Коперник дерзко заявил, что Земля – не «пуп мироздания». Времена меняются, и теперь весь наш космос – лишь бледная тень в бесконечном хороводе других миров.
Разумеется, эта теория диаметрально противоположна взглядам на Вселенную как место, исключительно приспособленное для жизни человека. И, наоборот, вера в «антропный принцип» выводит нас из многоликого морока миров и оставляет один на один с их Творцом, ведь этот принцип можно трактовать как новое слово в традиционном богословии, подправленном в соответствии с реалиями науки.
![](i_090.jpg)
«Антропный принцип» выводит нас из многоликого морока миров и оставляет один на один с их Творцом
«Так неужели Бог за миллиарды лет до Эйнштейна занимался тем, что самолично выводил сложнейшие формулы современной физики, чтобы описать образ мира?» – иронично ответствуют ученые, которым ближе теория «параллельных Вселенных». И с долей некоторого прагматизма добавляют, что, будь Бог и впрямь Зиждителем нашего мира, он явно просчитался, допустив нецелевое расходование средств. Все эти бессчетные галактики были, пожалуй, «материей, выброшенной на космический ветер». Нам на Земле отлично жилось бы и без них. Наша Вселенная устроена гораздо сложнее, чем того требует зарождение жизни. Если вероятность появления Солнечной системы, а значит, и жизни в ней, составляет 1: 101058 (один к десяти в степени десять в пятьдесят восьмой степени), как подсчитал Роджер Пенроуз, то вероятность появления нашей Вселенной гораздо ниже и равна 1: 1010123 (один к десяти в степени десять в сто двадцать третьей степени).
Но если бы даже удалось убедиться в том, что мы и впрямь живем во Вселенной, выстроенной по определенному проекту, то это все же не стало бы доказательством бытия Божьего. Ведь наш Универсум мог быть результатом грандиозного эксперимента, проводимого за его пределами, ну а мы – подопытным материалом, способным к саморазвитию. Разумеется, подобная гипотеза напоминает скорее эпизод научно-фантастического фильма. Для чего космическим инженерам множить миры? Ради любопытства? Ради желания сеять разумную жизнь? И как они провернули это дельце, дав толчок развитию жизни на миллиарды лет вперед? Тут умолкают и энтузиасты…
Странности космической инфляции
С начала 1980-х годов в теоретической космологии бурные споры вызывала гипотеза, которую предложил американский физик Алан Гут. Стремясь объяснить, как из «Ничто» произошло «Нечто», он сформулировал новую теорию рождения Вселенной. По его предположению, Вселенная сразу после Большого взрыва была заполнена ложным вакуумом. Для этой формы материи характерно большое отрицательное давление. Вызываемая им отталкивающая гравитация привела к очень быстрому, ускоряющемуся – астрофизики говорят «экспоненциальному» – расширению космического пространства. По различным оценкам, эпоха его расширения наступила через 10—43—10—35 секунды после Большого взрыва и завершилась уже через 10—33–10—30 секунды после «начала всех времен».
Ложный вакуум обладает очень высокой энергией, а потому в стремительно разраставшейся Вселенной скопилось неимоверное количество энергии. Когда процесс расширения прекратился, она высвободилась. По закону эквивалентности массы и энергии (помните знаменитую формулу Эйнштейна: E = mc2) последняя превратилась в вещество. Это превращение происходило по принципам квантовой физики, а они предполагают некоторую неопределенность, что и привело к флуктуациям энергии – и значит, массы – в различных уголках Вселенной. Там, где плотность оказывалась выше средней, под действием гравитации собиралось все больше вещества. Возникали скопления газа, из которых потом вырастали галактики.
![](i_091.jpg)
Американский физик Алан Гут
Скорость расширения Вселенной превышала скорость света. Этот факт не противоречит теории относительности, поскольку речь идет вовсе не о том, что какой-то объект движется вопреки законам Эйнштейна, а о том, что само пространство расширяется в подобном темпе. Гут назвал этот феномен «космической инфляцией» (от лат. inflatio, «вздутие»). За кратчайший миг размеры Вселенной, как показывают расчеты, увеличились в 1030—1050 раз. По окончании этой эпохи, длившейся долю секунды, эволюция Вселенной описывается уже уравнениями А.А. Фридмана в рамках стандартной модели Большого взрыва.
Теория инфляции естественным образом объясняет особенности начального состояния Вселенной, которые прежде казались такими загадочными. Вот некоторые ее следствия.
Например, одна лишь видимая нами часть мироздания содержит около 1090 частиц. И только гипотеза инфляции может объяснить, почему за неполных 14 миллиардов лет Вселенная достигла таких гигантских размеров. Ее быстрое расширение сопровождалось столь же стремительным делением частиц.
Мы обнаруживаем во Вселенной одни и те же структуры. В рамках стандартной модели Большого взрыва нельзя объяснить наблюдаемую однородность мироздания. Если же предположить, что в течение какого-то времени Вселенная расширялась со сверхсветовой скоростью, становится понятно, что до начала эпохи инфляции эти неимоверно удаленные теперь области находились рядом и могли взаимодействовать друг с другом, что и объясняет их однородность.
Еще одна особенность видимой нами части Вселенной: она является фактически плоской. Между тем, согласно общей теории относительности Эйнштейна, пространство искривлено. В этом не будет никакого противоречия, если предположить, что видимое нами пространство представляет собой лишь малую часть стремительно разросшейся Вселенной. Поэтому нет ничего удивительного в том, что космос кажется нам плоским. «Мысленно увеличьте искривленную поверхность сферы в огромное число раз. Это как раз то, что случилось с Вселенной во время инфляции, – комментирует этот феномен Александр Виленкин. – Нам видна лишь крошечная часть этой огромной сферы. И она кажется плоской точно так же, как Земля, когда мы рассматриваем небольшой ее участок».
Теория инфляции описывает также причину появления галактик и галактических скоплений. Они разрослись из флуктуаций плотности, которые возникли на месте квантовых флуктуаций. Почти моментально они превратились в громадные сгустки.
Наконец, еще один странный факт. В первые мгновения после Большого взрыва должны были появиться самые разные частицы, в том числе тяжелые магнитные монополи – магнитные заряды, несущие лишь один магнитный полюс. Пока они не найдены. Если же предположить, что Вселенная пережила фазу инфляционного расширения, то, очевидно, в видимой нами части космоса плотность магнитных монополей стала практически равна нулю. Она в миллиарды миллиардов раз меньше, чем следует из стандартной модели. Значит, их надо искать в других областях Вселенной.
Стремительное расширение Вселенной обусловило ее топологию. Очевидно, оно протекало в трех измерениях. Они и стали «теми тремя измерениями, которые характеризуют сегодняшнюю Вселенную, – пишет на страницах журнала «Scientific American» космолог Макс Тегмарк, профессор Массачусетсского технологического института. – Шесть остальных сейчас нельзя обнаружить либо потому, что они остались микроскопическими, либо потому, что материя сосредоточена на трехмерной поверхности девятимерного пространства».
Немалый вклад в разработку теории инфляции внесли также советские ученые Алексей Старобинский, Андрей Линде и их зарубежные коллеги – Пол Стейнхардт и Андреас Альбрехт.
В частности, Линде сравнил квантовый вакуум, из которого, по мнению многих космологов, родилась наша Вселенная, с мыльной пеной, усеянной множеством пузырьков: одни из них раздуваются, другие лопаются – одни миры рождаются, другие гибнут. По расчетам Линде, вероятность выживания нашей родной Вселенной составляла 50 %. Она могла либо постоянно расширяться, как накачиваемый воздухом шар, либо сжаться, как шар, из которого выпустили воздух.
Результаты наблюдений, проведенных в 1990—2000-х годах зондом COBE и зондом Уилкинсона, блестяще подтвердили гипотезу космической инфляции, хотя механизм этого процесса до сих пор не вполне ясен. Уточнять есть что. Никто не знает, как началось инфляционное расширение космоса и почему оно прекратилось. Существует уже более трехсот различных моделей этого процесса, хотя все это не меняет главного: космическая инфляция стала частью экспериментальной науки.
Кстати, теория инфляции, возможно, объясняет загадку фундаментальных констант, природу их удивительной гармонии. Система констант напоминает затейливо выстроенный карточный домик. Пока ни одна карта не дрогнет, неколебимо высится вся постройка. Но стоит изменить «положение хоть одной карты» – значение всего одной константы, как конструкция рухнет. Чем объясняется эта точность?
Что если в процессе инфляции отдельные части Вселенной начали жить по разным законам физики – отдельные, невероятно отдалившиеся друг от друга части Вселенной? Как явствует из Стандартной модели космологии, в нашем мироздании могут существовать регионы, которые заметно отличаются от видимой его области. Они, впрочем, находятся так далеко от нас, что поистине недостижимы. Можно сказать, что на контакт с ними наложен запрет. Так что весь спектр возможных миров готов уместиться в различных областях одной-единственной Вселенной, хотя в метафорическом смысле можно было бы говорить о «разных Вселенных».
Стоит также отметить, что, по мнению ряда исследователей, отрицательное давление, создаваемое темной энергией и заставляющее нашу Вселенную безудержно расширяться, в чем-то сродни тому физическому механизму, который вызвал ее инфляционное расширение. Идет ли речь лишь о кажущемся сходстве или о чем-то более глубоком?
Время первых звезд
Когда и как возникли первые звезды? Как они выглядели? Какими свойствами обладали? Какова была их масса? Можно ли сегодня отыскать эти звезды?
Все эти вопросы вызывают огромный интерес у астрономов. Как отмечают исследователи, «первые звезды подготовили сцену для всех последующих событий, которые протекали в нашей Вселенной и привели к формированию крупных структур». Пока еще ученым не удалось обнаружить «Адама и Еву звездного мира», но они уверены, что этот миг не за горами.
До появления первых звезд во Вселенной было довольно скучно. Во время Большого взрыва возникли лишь самые легкие химические элементы – водород и гелий, а также небольшое количество лития и бериллия. Все космическое пространство на протяжении долгого времени было заполнено чрезвычайно горячим непрозрачным газом. Лишь по мере того, как Вселенная расширялась, температура заполнявшего ее вещества падала. Наконец через 380 тысяч лет после Большого взрыва космос остыл до 3000 °C. Разрозненно сновавшие до этого протоны и электроны начали соединяться друг с другом, образуя отдельные атомы. Теперь излучение стало беспрепятственно распространяться. Туманную, беспросветную Вселенную залил наконец свет, видимый, впрочем, лишь… в инфракрасном и радиодиапазонах. Если бы человек мог перенестись в ту эпоху, то он ровным счетом ничего бы не разглядел. Все мироздание, с нашей точки зрения, по-прежнему окутывал мрак.
Потом, через 300 миллионов лет, в этом мраке стали вспыхивать первые, редкие звезды, словно лампы в городе, погрузившемся в ночную тьму. Космологи пока могут лишь моделировать протекавшие тогда события. Во многом приходится полагаться на гипотезы.
В то время важнейшую роль в мироздании играло темное вещество. Оно образовывало огромные сгустки – гало, где, подчиняясь его мощному притяжению, скапливалось еще и большое количество обычного вещества. Компьютерные модели показывают, что уже через 100 миллионов лет после Большого взрыва возникли первые карликовые галактики, представлявшие собой рассеянные скопления холодного темного вещества и горячих газовых масс – смеси водорода и гелия. В них не было звезд – они еще не сформировались. Эти галактики сливались друг с другом, образуя все более крупные объекты. Млечный Путь, как показывают расчеты, возник в результате постепенного слияния около миллиона подобных галактик.
Первые звезды начали зарождаться лишь после того, как газовые массы остыли. Это происходило в самых компактных и плотных гало. Первые звезды не были похожи на те звезды, что и теперь продолжают появляться в отдельных областях Млечного Пути. Они были очень крупными, весили в 100 и более раз больше, чем Солнце (по некоторым оценкам, их масса могла достигать 1000 солнечных масс). Их видимая поверхность была разогрета до 100 000 °C (температура внешних слоев Солнца – около 5500 °C).
Газовые массы, из которых состояли эти звезды, почти не содержали тяжелых элементов. Впрочем, и сегодня их концентрация чрезвычайно мала. На 3000 атомов водорода приходится всего по одному атому углерода и два атома кислорода. А ведь это самые распространенные тяжелые элементы во Вселенной! Теперь они играют важную роль в зарождении звезд.
![](i_092.jpg)
Первые звезды начали зарождаться лишь после того, как газовые массы остыли
Когда молекулярное облако сжимается под действием собственной гравитации, температура этого сгустка растет. Увеличивается и давление внутри облака, оно препятствует его дальнейшему сжатию. Тяжелые элементы служат охладителем, и потому процесс формирования звезды продолжается.
В ранней Вселенной таких охладителей не было. Тем не менее звезды возникали. В 2008 году свое решение этой загадки предложили японские астрофизики Наоки Ёсида и Кадзуюки Омукаи и их американский коллега Ларс Хернквист. В своей модели они рассматривали громадное гало, состоявшее из темного вещества. Находившееся в этом гало облако водорода и гелия постепенно сжималось, пока его температура не возросла до 10 000 °C. Давление раскаленного газа препятствовало его дальнейшему сжатию. Тем не менее возникла протозвезда, которая весила, правда, в сотню раз меньше, чем Солнце. Давление и температура в ее недрах еще долгое время были недостаточны для того, чтобы вспыхнула термоядерная реакция. Однако зарождавшаяся звезда продолжала притягивать окружающие массы газа. Модель, которую разработал Фолькер Бромм из Техасского университета, показывает, что всего за несколько тысяч лет масса этой звезды неимоверно возросла. Когда наконец она превысила 100 солнечных масс, ядро звезды уплотнилось настолько, что началась реакция термоядерного синтеза.
Этот сценарий, созданный усилиями нескольких групп ученых, объясняет, почему звезды первого поколения принципиально отличались от современных звезд. Они не только весили гораздо больше, чем Солнце, но и светили в миллионы раз ярче его. Это излучение пронизывало мощную пелену газа, окружавшую звезду, и разогревало ее. Каждая из этих звезд была окружена раскаленным газовым пузырем, порой достигавшим в поперечнике 15 тысяч световых лет. Диаметр нашей Галактики сейчас всего в несколько раз больше, чем диаметр одной-единственной звезды, которую обволакивал этот гигантский шлейф.
События, протекавшие тогда, недоступны наблюдению астрономов. Однако, как явствует из исследования отдаленных квазаров, эпоха первых звезд завершилась примерно через 800 миллионов лет после Большого взрыва. И еще одно выяснили ученые. Уже в эпоху первых звезд та смесь водорода и гелия, что заполняла космическое пространство, стала обогащаться всеми известными нам сегодня тяжелыми элементами, которые возникали после взрывов отдельных звезд.
Но как протекали эти взрывы? Были ли они похожи на взрывы современных сверхновых? Как показывают, например, компьютерные модели, звезда, чья масса лежала в диапазоне от 140 до 260 солнечных масс, взрывалась из-за особого феномена, который называется «нестабильностью пар». Первая сверхновая этого типа – SN 2007bi – была обнаружена лишь в 2007 году в карликовой галактике, расположенной на расстоянии 1,6 миллиарда световых лет от Земли. Механизм, приводивший к подобным взрывам, таков.
В течение нескольких миллионов лет в недрах звезды поддерживалось равновесие. Мощная сила гравитации стремилась ее сжать, а интенсивный поток излучения, исходивший из ее недр, не давал это сделать. Фотоны непрестанно сталкивались с атомными ядрами, создавая силу давления, распиравшую звезду. Когда же горючее в ее топке заканчивалось, она начинала сжиматься. При этом давление в ее недрах достигало такой громадной величины, что фотоны – по знаменитой формуле Эйнштейна, связывающей энергию и массу, – превращались в вещество. Каждая пара фотонов порождала другую пару – электрон и его античастицу, позитрон. Наконец в недрах звезды не оставалось фотонов. Теперь ничто не препятствовало дальнейшему коллапсу. Температура и давление в недрах звезды стремительно нарастали, вновь вспыхивала термоядерная реакция. В результате почти половина всей ее массы превращалась в тяжелые элементы. Следовал мощнейший взрыв, который астрономы сравнивают со взрывом водородной бомбы.
Почти все, что мы знаем о подобных звездах, – это результат компьютерного моделирования. Однако даже современные компьютеры могут ошибаться. Лишь наблюдения, которые будут проводиться с помощью космических телескопов нового поколения, дадут окончательный ответ на вопрос, что же происходило в эпоху первых звезд.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?