Текст книги "100 великих загадок астрономии"
Автор книги: Александр Викторович Волков
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 29 (всего у книги 34 страниц)
Далекое прошлое и будущее космоса
Загадки Большого взрыва
Наша Вселенная возникла 13,7 миллиарда лет назад, порожденная Большим взрывом, и вот уже несколько поколений ученых пытаются понять этот феномен.
В конце 1920-х годов Эдвин Хаббл открыл, что все видимые нами галактики разлетаются – словно осколки гранаты после взрыва, Тогда же бельгийский астроном и богослов Жорж Леметр и выдвинул свою гипотезу (в 1931 году она была изложена на страницах «Nature»). По его мнению, история мироздания началась с того, что взорвался «первичный атом», и это породило время, пространство и материю (ранее, в начале 1920-х годов, советский ученый Александр Фридман, анализируя уравнения Эйнштейна, также пришел к выводу, что «Вселенная создавалась из точки» и это заняло «десятки миллиардов наших обычных лет»).
Поначалу астрономы решительно отвергли рассуждения бельгийского теолога. Ведь теория Большого взрыва как нельзя лучше сочеталась с христианской верой в Бога-Творца. На протяжении двух столетий ученые пресекали проникновение в науку любых религиозных домыслов о «начале всех начал». И вот Бог, изгнанный из природы под мерное покачивание колесиков ньютоновской механики, внезапно возвращается. Он грядет в пламени Большого взрыва, и трудно придумать более триумфальную картину его явления.
Большой взрыв не подчинялся законам точных наук
Но проблема была не только в богословии – Большой взрыв не подчинялся законам точных наук. Важнейший момент истории Вселенной пребывал за гранью познания. В этой сингулярной (особой) точке, расположенной на оси пространства-времени, общая теория относительности переставала действовать, поскольку давление, температура, плотность энергии и искривление пространства устремлялись в бесконечность, то есть теряли всякий физический смысл. В этой точке исчезали, превращались не в ноль, не в отрицательные величины, а в полное их отсутствие, в абсолютную беззначность, все эти секунды, метры и астрономические единицы. Эта точка – разрыв, который не преодолеть на ходулях логики или математики, дыра навылет во времени и пространстве.
Лишь в конце 1960-х годов Роджер Пенроуз и Стивен Хокинг убедительно показали, что в рамках теории Эйнштейна сингулярность Большого взрыва неизбежна. Но это не облегчило работу теоретиков. Как описать Большой взрыв? Что стало, например, причиной этого события? Ведь если до него вообще не было времени, то вроде бы не могло быть и причины, породившей его.
Как мы понимаем теперь, чтобы создать полную теорию Большого взрыва, нужно связать воедино учение Эйнштейна, описывающее пространство и время, с квантовой теорией, занимающейся элементарными частицами и их взаимодействием. Очевидно, пройдет не одно десятилетие, прежде чем удастся это сделать и вывести единую «формулу мироздания».
А откуда, например, взялось то грандиозное количество энергии, что породило этот взрыв величайшей силы? Может быть, она досталась нашей Вселенной от ее предшественницы, сжавшейся в сингулярную точку? Но тогда откуда та ее получила? Или энергия была разлита в первородном вакууме, из которого – «пузырьком пены» – выскользнула наша Вселенная? Или же Вселенные старшего поколения передают энергию Вселенным младшего поколения посредством черных дыр – тех сингулярных точек – в глубинах которых, может быть, рождаются новые миры, которые нам никогда не увидеть? В любом случае, Вселенная в таких моделях предстает «открытой системой», что не вполне соответствует «классической» картине Большого взрыва: «Не было ничего, и вдруг родилось мироздание».
А может быть, как полагают некоторые исследователи, наша Вселенная вообще… лишена энергии, точнее, ее совокупная энергия равна нулю? Положительная энергия излучения, испускаемого веществом, накладывается на отрицательную энергию гравитации. Плюс на минус дает ноль. Этот пресловутый «0» кажется ключом к пониманию природы Большого взрыва. Из него – из «нуля», из «ничего» – мгновенно родилось все. Случайно. Спонтанно. Просто так. Ничтожно малое отклонение от 0 породило вселенскую лавину событий. Можно привести и такое сравнение: каменный шар, балансировавший на тонкой, как шпиль, вершине какой-нибудь Джомолунгмы, внезапно качнулся и покатился вниз, порождая «лавину событий».
В 1973 году американский физик Эдвард Трион попробовал описать процесс рождения нашей Вселенной, используя принцип неопределенности Гейзенберга, одну из основ квантовой теории. Согласно этому принципу, чем точнее мы, например, измеряем энергию, тем неопределеннее становится время. Итак, если энергия строго равна нулю, то время может быть сколь угодно большим. Настолько большим, что рано или поздно в квантовом вакууме, из которого и предстоит родиться Вселенной, возникнет флуктуация. Это и приведет к стремительному разрастанию космоса, казалось бы, из ничего. «Просто Вселенные иногда рождаются, вот и всё», – так незатейливо Трион объяснил подоплеку Большого взрыва. Это был большой Случайный взрыв. Только и всего.
А может ли Большой взрыв повториться? Как ни странно, да. Мы живем в мироздании, которое все еще может плодоносить и порождать новые миры. Созданы несколько моделей, которые описывают «Большие взрывы» будущего.
Почему бы, например, в том же вакууме, породившем нашу Вселенную, не появиться новым флуктуациям? Возможно, за эти 13,7 миллиарда лет рядом с нашим мирозданием возникло бесчисленное множество миров, которые никак не соприкасаются друг с другом. В них действуют различные законы природы, существуют разные физические константы. В большинстве этих миров жизнь никогда не могла бы возникнуть. Многие из них сразу гибнут, испытывают коллапс. Но в некоторых Вселенных – по чистой случайности! – складываются условия, при которых может зародиться жизнь.
Но дело не только в том вакууме, что пребывает до начала «всех времен и народов». Чреватые будущими мирами флуктуации могут возникать и в вакууме, что разлит в нашей Вселенной, – точнее, в темной энергии, заполняющей ее. Подобную модель «обновляющейся Вселенной» разработал американский космолог, уроженец СССР, Александр Виленкин. Нам эти новые «большие взрывы» ничем не грозят. Они не разрушат структуру Вселенной, не выжгут ее дотла, а лишь создадут новое пространство за пределами, доступными нашему наблюдению и пониманию. Возможно, подобные «взрывы», знаменующие рождения новых миров, происходят в глубинах многочисленных черных дыр, усеивающих космос, считает американский астрофизик Ли Смолин.
Другой уроженец СССР, живущий на Западе, космолог Андрей Линде полагает, что мы сами способны учинить новый Большой взрыв, собрав в какой-либо точке пространства громадное количество энергии, превышающее некий критический предел. По его расчетам, космические инженеры будущего могли бы взять незримую щепотку вещества – всего несколько сотых долей миллиграмма – и уплотнить его до такой степени, что энергия этого сгустка составит 1015 гигалектронвольт. Образуется крохотная черная дыра, которая начнет расширяться по экспоненте. Так возникнет «дочерняя Вселенная» со своим пространством-временем, стремительно отделяющаяся от нашей Вселенной.
…В природе Большого взрыва много фантастичного. Но справедливость этой теории доказывает целый ряд природных феноменов. К ним относятся наблюдаемое нами расширение Вселенной, картина распределения химических элементов, а также космическое фоновое излучение, которое так и называют «реликтом Большого взрыва».
Что было до Большого взрыва?
Мир не существует вечно. Он родился в пламени Большого взрыва. Но было ли это уникальным явлением в истории космоса? Или повторяющимся событием, вроде рождения звезд и планет? Что если Большой взрыв – лишь фаза перехода из одного состояния Вечности в другое?
Многие физики говорят о том, что изначально было Нечто, а не Ничто. Быть может, наша Вселенная, – как и другие, – родилась из элементарного квантового вакуума. Но как ни «минимально просто» подобное состояние, – а меньше, чем квантовый вакуум, не дозволяют быть законы физики, – его нельзя все же именовать «Ничто».
Может быть, видимая нами Вселенная – лишь очередное агрегатное состояние Вечности? А причудливое расположение галактик и галактических скоплений – что-то вроде кристаллической решетки, которая в n-мерном мире, существовавшем до рождения нашей Вселенной, имела совсем иную структуру и которая может быть предсказана «формулой всего», разыскивавшейся еще Эйнштейном? И будет ли она найдена в ближайшие десятилетия? Ученые напряженно вглядываются сквозь стену Неведомого, оградившего наше мироздание, пытаясь понять, что же было за мгновение до того, как, по привычным для нас представлениям, не было ровным счетом ничего. Какие формы Вечного космоса можно вообразить, наделив время и пространство теми качествами, которые немыслимы в нашем мироздании?
Большой взрыв – лишь фаза перехода из одного состояния Вечности в другое
Среди самых многообещающих теорий, в которые физики пытаются втиснуть целую Вечность, можно назвать теорию квантовой геометрии, квантово-спиновую динамику или квантовую гравитацию. Наибольший вклад в их разработку внесли Абэй Аштекар, Тед Джекобсон, Ежи Левандовски, Карло Ровелли, Ли Смолин и Томас Тиманн. Все это – сложнейшие физические построения, целые дворцы, возведенные из формул и гипотез, – лишь бы скрыть таящуюся в их глубине и темноте прорву, сингулярность времени и пространства.
Окольные тропы новых теорий заставляют нас перешагивать через очевидные, на первый взгляд, истины. Так, в квантовой геометрии пространство и время, прежде дробимые бесконечно, вдруг разбиваются на отдельные островки – порции, кванты, меньше которых нет ничего. Все сингулярные точки могут быть вмурованы в эти «каменные глыбы». Само пространство-время превращается в переплетение одномерных структур – «сети спинов», то есть становится дискретной структурой, своего рода цепью, сплетенной из отдельных звеньев.
Объем минимально возможной петельки пространства составляет всего 10—99 кубического сантиметра. Эта величина настолько мала, что в одном кубическом сантиметре гораздо больше квантов пространства, чем тех самых кубических сантиметров в наблюдаемой нами Вселенной (ее объем составляет 1085 сантиметров в кубе). Внутри квантов пространства нет ничего, ни энергии, ни вещества – подобно тому, как внутри математической точки – по определению – не отыскать ни треугольника, ни икосаэдра. Однако если мы применим гипотезу о «субмикроскопической ткани Вселенной», дабы описать Большой взрыв, мы получим поразительные результаты, как показали несколько лет назад Абэй Аштекар и Мартин Боджовальд из Пенсильванского университета. Если заменить в Стандартной теории космологии дифференциальные уравнения, предполагающие непрерывное течение пространства, другими дифференциальными уравнениями, следующими из теории квантовой геометрии, то таинственная сингулярность исчезнет. Физика не заканчивается там, где начинается Большой взрыв, – таков первый обнадеживающий вывод космологов, отказавшихся принимать за истину в последней инстанции видимые нами свойства мироздания.
В теории квантовой гравитации предполагается, что наша Вселенная (как и все другие) родилась в результате случайной флуктуации квантового вакуума – глобальной макроскопической среды, в которой не было времени. Всякий раз, когда в квантовом вакууме возникает флуктуация определенных размеров, рождается и новая Вселенная. Она «отпочковывается» от той однородной среды, в которой образовалась, и начинает свою собственную жизнь. Теперь у нее – своя история, свое пространство, свое время, своя стрела времени.
В современной физике создан ряд теорий, которые показывают, как из вечно существующей среды, где нет Макровремени, но в отдельных точках которой течет свое микровремя, может возникнуть такой громадный мир, как наш.
Например, итальянские физики Габриэле Венециано и Маурицио Гасперини в рамках теории струн предполагают, что изначально существовал так называемый «струнный вакуум». Случайные квантовые флуктуации в нем привели к тому, что плотность энергии достигла критической величины, и это вызвало локальный коллапс. Он завершился рождением нашей Вселенной из вакуума.
В рамках теории квантовой геометрии Абэй Аштекар и Мартин Боджовальд показали, что пространство и время могут возникать из более примитивных фундаментальных структур, а именно «сетей спинов».
Экхард Ребхан из Дюссельдорфского университета и – независимо от него – Джордж Эллис и Рой Маартенс из Кейптаунского университета развивают идею «статической Вселенной», которую обдумывали еще Альберт Эйнштейн и британский астроном Артур Эддингтон. В своем стремлении обойтись без эффектов квантовой гравитации Ребхан и его коллеги придумали сферическое пространство, которое пребывает посреди вечной пустоты (или, если хотите, пустой вечности), где нет никакого времени. Ввиду некоторой нестабильности здесь развивается инфляционный процесс, что и приводит к горячему Большому взрыву.
Конечно, перечисленные модели умозрительны, но они принципиально соответствуют современному уровню развития физики и результатам астрономических наблюдений последних двух десятилетий. В любом случае, ясно одно. Большой взрыв был скорее рядовым, естественным событием, а не единственным в своем роде.
Помогут ли подобные теории понять, что же могло быть до Большого взрыва? Если Вселенная родилась, что ее породило? Где в современных теориях космологии проступает «генетический отпечаток» ее родительницы? В 2005 году Абэй Аштекар, например, обнародовал результаты своих новых расчетов (проделать их помогли Томаш Павловски и Парамприт Сингх). Из них явствовало, что если исходные посылки верны, то до Большого взрыва существовали то же самое пространство-время, что и после этого события. Физика нашего мироздания, словно в зеркале, отразилась в физике мира иного. В этих расчетах Большой взрыв, будто зеркальный экран, рассекал Вечность, располагая рядом несоединимое – естество и его отражение. И что подлинность здесь, что призрак?
Единственное, что можно разглядеть «с той стороны зеркального стекла», что Вселенная тогда не расширялась, а сжималась. Большой взрыв стал точкой ее коллапса. В этот момент пространство и время на мгновение пресеклись, чтобы вновь отразиться – продолжиться – фениксом восстать уже в знакомом нам мире, том мироздании, которое мы вымеряем нашими формулами, шифрами и числами. Вселенная буквально вывернула сама себя наизнанку, словно перчатку или рубашку, и с тех пор неуклонно расширяется. Большой взрыв не был, по Аштекару, «творением целой Вселенной из Ничто», а являлся всего лишь переходом из одной динамической формы Вечности в другую. Может быть, Вселенная переживает бесконечную череду «больших взрывов», и эти десятки миллиардов (или сколько там) лет, разделяющие ее отдельные фазы, – лишь периоды «космической синусоиды», по законам которой живет мироздание?
Мир законов природы
Мы видим, что мир живет по определенным правилам, именуемым «законами природы». Ученые открывают эти законы и формулируют их. Прогресс в науке тесно связан с подобными открытиями. Они помогают обобщать факты, объяснять происходящее, прогнозировать будущее. Многим кажется естественным, что в хаосе явлений, окружающем нас, угадывается стройный порядок, который ощутим на всех уровнях от Микрокосма до Макрокосма. Все мироздание живет по законам, скрепляющим его, как тело – скелет.
Но откуда взялись эти законы? Вечны ли они или со временем меняются? Слепо ли подчиняется им природа или может их нарушить?
На протяжении веков люди отвечали на эти вопросы, не задумываясь. Законы природы придумал Бог. Они действуют вечно. Стало быть, они возникли в момент сотворения мира, – говоря научным языком, во время Большого взрыва. И, очевидно, уже тогда они были «идеальными».
Но верится в такое с трудом. Можно ли предусмотреть все заранее? Для чего в момент зарождения Вселенной нам нужен закон, который «следил» бы за тем, чтобы некоторые металлы при температуре, близкой к нулю по шкале Кельвина, теряли свое электрическое сопротивление? О каких сверхнизких температурах шла речь в тот миг?
А если ответить по-другому? Может быть, законы природы «не сотворены» никем? Что если они исподволь формировались на протяжении многих миллионов лет? Мы знаем, что природа претерпевает эволюцию. Живые организмы приспосабливаются к окружающему их миру и соответственно меняются. Возможно, подобная эволюция происходит и в космосе. Элементарные частицы (протоны, электроны, нейтроны и иже с ними) каким-то образом «приноравливаются» друг к другу. Возникают определенные «правила общежития» этих частиц.
Может быть законы природы возникли в момент Сотворения мира, – говоря научным языком, во время Большого взрыва
Однако подобные идеи противоречат фактам, накопленным астрофизикой. Свет отдаленных галактик доносит до нас вести о том, какие законы действовали вскоре после «сотворения мира». Спектральные линии световых лучей свидетельствуют, что звезды в ту эпоху подчинялись тем же законам, что и теперь.
В спорах о сущности законов природы выделяется несколько партий.
Реалисты полагают, что законы природы существуют независимо от наших формулировок и определений. Они реальны, как стулья, полемически писал в своей книге «Мечта о единстве Вселенной» Стивен Вайнберг.
Разумеется, законы природы заслуживают куда большего уважения, чем любые предметы. Ведь последние все же не могут ускользнуть из-под нашей власти. Мы вольны переставить стул, передвинуть стрелку часов, раздробить каменную глыбу, а вот повлиять на законы природы не можем. Сколько мы ни наблюдаем за Солнцем, мы не в силах изменить, например, силу его притяжения. Мы зависим от законов природы, а они от нас – нет. Эти законы не выдуманы нами, а открыты. И подобно тому, как пустынный остров, затерянный в океане, существовал задолго до того, как его увидел человек, так и законы природы излагались на языке математики еще во время оно, а не только с тех пор, как их открыли. В этом убеждены и некоторые другие современные ученые, например, Александр Виленкин: «Надо полагать, что законы физики существовали “еще до того”, как возникла Вселенная». По его мнению, сам факт рождения Вселенной априори предполагает наличие определенных законов, по которым будет протекать ее развитие. Эта точка зрения близка традиции Платона, который верил в то, что за пределами видимого нами мира реально существует мир идей.
Позитивисты и номиналисты убеждены в обратном. «Физические теории – это лишь математические модели, которые мы конструируем, – заявляет Стивен Хокинг. – Мы не можем задаться вопросом, что такое действительность, ведь мы не в силах проверить, что реально, а что нет, не прибегая к помощи разного рода моделей». Подобное мнение не ново. Физик и философ Эрнст Мах, ставший когда-то объектом нападок первого классика ленинизма, призывал ограничиваться лишь простыми математическими описаниями эмпирических процессов, а философ Людвиг Витгенштейн в «Логико-философском трактате» полемично заявлял, что «в основе всего современного мировоззрения лежит ошибочное убеждение в том, что так называемые законы природы суть объяснения явлений природы».
Прагматики, избегая крайностей, присущих сторонникам обоих научных лагерей, считают законы природы неким полезным подспорьем, помогающим довольно точно описать природные феномены. «Меня интересует модель, которая наиболее эффективно объяснит наблюдаемые факты, – подчеркивает Пол Стейнхардт. – Соответствует ли она реальности, это пустой вопрос. Модели всегда упрощают реальность. По сути дела, нам не очень даже важна реальность сама по себе. Мы нуждаемся, прежде всего, в модели, которая описывает многообразие сложных феноменов с помощью самых простых концепций, понятных нашему разумению и позволяющих прогнозировать происходящее». Выступая перед студентами, Стейнхардт часто приводит следующий пример. По телевизору идет трансляция футбольного матча. В таком случае, пробуя предсказать, что произойдет в следующий момент, лучше всего полагать, что красочные пятна на экране – это подобия футболистов, и дальше руководствоваться знанием футбольных правил, нежели вспоминать об электронных схемах, электромагнитных полях – обо всем том, что порождает цветовые сигналы на экране монитора. «Реальность – это не всегда то, что вам хотелось бы, а вам хотелось бы понимания».
Простейшие законы природы – такие, как «зависимость силы тяготения от квадрата расстояния», – мы еще можем представить себе чисто геометрически. Но что прикажете делать с общей теорией относительности или квантовой физикой? С какой стати Матушке-Природе ведомы столь сложные конструкции, что они не доступны разумению большинства людей? Что если мы заблуждаемся, считая, что природа следует каким-то формулам? Закономерности ведь можно разглядеть в любом нагромождении случайных фактов.
Возможно, многие закономерности, принимаемые нами за неумолимые законы, являются лишь следствием нашей способности отыскивать определенные схемы в наблюдаемых процессах. На практике мы вынуждены пренебрегать многими факторами, мешающими проявлению этих законов. Зачастую законы идеализируют природу и следуют особенностям нашего мышления. Порой мы готовы скорее придумать их, чем открыть.
Что будет, если «закон сохранения энергии» перестанет вдруг соблюдаться – в Микромире ли, в Макромире? Нас это не смутит. В его незыблемости мы уверены. Мы тут же, походя, выдумаем новую форму энергии – какую-нибудь «энергию темного вакуума», – избавляющую нас от любых сомнений. И вот энергетический баланс восстановлен.
Так уже было недавно, когда масса видимой Вселенной оказалась недостаточной, чтобы соблюдались известные нам законы. Тогда логика рассуждений заставила нас признать, что мироздание на 95 % состоит из темного вещества и темной энергии. Подобные открытия побуждают некоторых заявлять, что вся физика – фикция.
На фоне этих сомнений наиболее практичными выглядят соображения «реалистов». Ведь, с их точки зрения, можно объяснить, почему одни научные теории являются истинными, а другие – ложными. Природа – вот безжалостный, неподкупный судья, решающий, верна теория или нет. Не бывает нескольких отличных друг от друга, но одинаково истинных теорий, описывающих некий феномен. Непременно одна из них берет верх, а другие, несмотря на всю свою убедительность, оказываются ложными.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.