Электронная библиотека » Александр Викторович Волков » » онлайн чтение - страница 13


  • Текст добавлен: 27 марта 2014, 04:20


Автор книги: Александр Викторович Волков


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 34 страниц)

Шрифт:
- 100% +
Могут ли планеты Солнечной системы сталкиваться друг с другом?

Четыре с половиной миллиарда лет назад любая планета Солнечной системы могла стремительно уменьшиться в размерах или, наоборот, увеличиться. После катастрофы, пережитой Землей, у нее появился спутник – Луна, буквально сотворенный «из ее ребра». Испытав подобный удар, Меркурий, как полагают астрономы, лишился «скальпа» – значительной части коры и мантии. Возможно, после такой же катастрофы Венера свернула с привычной орбиты и стала вращаться в обратную сторону, а спутник, по одной из гипотез, сопровождавший ее, начал не удаляться от планеты, как Луна – от Земли, а постепенно сближаться с ней, пока не рухнул на Венеру. В этом космическом бильярде поучаствовал даже затерянный на окраине Солнечной системы Нептун. Все более удаляясь от Солнца, он бесцеремонно разогнал мельтешившую вокруг толпу комет и астероидов. Далекое прошлое, как уверилось большинство астрономов, было временем непредсказуемых коллизий. В этой реке времени, как в зеркале вод, грозит отразиться далекое будущее.

Далекое прошлое Солнечной системы было временем непредсказуемых столкновений


В начале 2008 года французский астроном Жак Ласкар опубликовал результаты исследования, которое с некоторой долей вероятности обещает нашей планетной системе немалые трудности – возвращение хаоса древних времен.

Конечно, шансы такого развития событий невелики. И все же, когда астрономы пытаются моделировать, что произойдет с Землей, например, через 40 миллионов лет, иногда случаются и кошмары. В одном-двух случаях из 100 Земля оказывается на пути Меркурия или Марса. Следует удар, выжигающий все, что останется живого на нашей планете.

…В начале 1990-х годов Ласкар уже привлек внимание, опубликовав сенсационную работу под названием «Хаотические процессы в Солнечной системе». Ему удалось рассчитать, как будут меняться орбиты планет (за исключением Плутона) на протяжении 25 миллиардов лет. Период этот в пять раз длиннее того промежутка времени, в течение которого существует наша Солнечная система. Уже через пять миллионов лет поведение ряда планет становилось непредсказуемым. Поэтому Ласкар не стал скрупулезно высчитывать координаты небесных тел. Он изменил метод вычислений. Его интересовало другое: каким образом в далеком будущем станут меняться формы орбит, по которым движутся планеты.

И на этот раз оказалось, что орбиты планет-гигантов являются чрезвычайно стабильными. Поведение этих небесных тел и через миллиарды лет будет напоминать надежную работу курантов. Как заведенные, они продолжат кружить близ Солнца. А вот другие планеты то и дело сбивались с верного пути.

Новая работа Ласкара подвела итог многолетним расчетам. Она содержала 1001 модель, описывающую перспективы Солнечной системы. Кажется, все случаи жизни были явлены в этом калейдоскопе предначертанного бытия. Так вот, примерно в 20 случаях орбита Меркурия со временем все менее напоминала круговую. Эту планету притягивал к себе Юпитер – она спешила к нему, бросаясь наперерез другим небесным телам. Так иной пешеход, не замечая опасного движения машин, перебегает на другую сторону улицы. В этих моделях «под колеса» Земле и Марсу бросался Меркурий. Эксцентриситет его орбиты превышал 0,6 (при эксцентриситете, равном нулю, планета движется по круговой орбите, а равном единице – по параболе).

20 случаев – 2 процента. Много это или мало? В мире астрономических событий, где все подолгу идет своим чередом, эта пара процентов настораживает. От них веет более ощутимой угрозой, нежели от «одного шанса из ста тысяч», которые обещают столкновению астероида Х с Землей в каком-нибудь 2666 году.

Меркурий вообще оказался горазд на «подвиги» – лишь бы пожертвовать чьим-то покоем. В одном сценарии он через 1,3 миллиарда лет отчаянно поспешал навстречу Солнцу и сгорал в нем, как щепка, брошенная в огонь. В другом, опрокидывая давнюю систему сдержек и противовесов, силился смешать все в доме планет, «перессорить» Землю и Марс, столкнуть их. В третьем – через 820 миллионов лет – Марс покидал Солнечную систему, выброшенный из нее, как из окна. Без него другие планеты земной группы теряли былую солидность. Так обрушился бы дом, сумей мы выдернуть из-под него фундамент. После этого не прошло бы и сорока миллионов лет, как Венера столкнулась бы с Меркурием. «Головоломная жизнь» последнего завершалась стычкой, дробившей обе планеты, как орехи. Еще выше у него вероятность ничего не менять в налаженном ходе планет, но в эту счастливую возможность остается только верить.

В обнародованных работах Ласкара и его коллег из Калифорнийского университета Грегори Лафлина и Константина Батыгина порой было достаточно небольшого изменения орбиты Меркурия, чтобы тот сблизился с Венерой. Ведь есть так называемые «зоны хаоса»: стоит планете туда попасть, как любые внешние воздействия будут усиливаться, пока не наступит резонанс. Тогда форма орбиты заметно меняется. Начинают действовать совсем иные силы притяжения, передаваясь ближайшим небесным телам. Что творится с небесной механикой! Словно в отлаженный автомат, все поршни, кривошипы и штоки которого совершали свои поступательные и вращательные движения, попадает контргайка, ломая врезавшиеся в нее детали. Слабым звеном оказываются Меркурий и Марс. Их легче всего вывести из равновесия.

Итак, лишь поведение планет-гигантов расписано на века… точнее, на миллионы веков вперед. Все другие ведут себя хаотически. Хаос в хороводе планет! Кажется, что может быть страшнее?

Ранее Ласкара не раз критиковали за его расчеты. Ведь даже с использованием лучших компьютеров мира трудно моделировать судьбу Солнечной системы на миллиарды лет вперед, а потому он несколько упростил уравнения движения планет, что совершенно никак не сказывается, пока их эксцентриситеты орбит малы, зато ощущается по мере того, как траектория все больше напоминает овал. Поэтому оппоненты не берутся судить, насколько точны расчеты Ласкара.

Кроме того, он «делал поправку» на погрешность в координатах планеты, то есть в результатах наших измерений. Для этого он вычислял траекторию не только «настоящего» Меркурия, но и четырех его «клонов», каждый из которых находился в 150 метрах от того положения планеты, которое мы считаем истинным. Затем он определял, что произойдет с планетой и ее «клонами», допустим, через миллион лет. Из полученных результатов выбирал тот, где эксцентриситет был особенно велик. Теперь он считал «Меркурием» данный объект. Снова создавал четыре «клона» и вычислял, что произойдет с новым семейством планет еще через миллион лет. Опять сортировал ответы. Выбирал наиболее тревожный результат…

В итоге Ласкар подсчитывал, каким будет максимально возможное отклонение траектории планеты от нынешней. Он устремлялся туда, где рождается хаос, игнорируя заурядный ход событий, их скучное повторение.

Справедливости ради, подобные научно-популярные пророчества должны смущать публику куда меньше, чем когда-то стенания Иеремии или Иезекииля. Расчеты показывают, что мрачные примеры редки. В 98 % случаев Земля, кто бы ее ни населял к тому времени, и через пять миллиардов лет избежит жестоких ударов. Да и потом, что значат эти миллиарды лет для миллиардов людей? Это какое-то «дважды два – стеариновая свечка». И пусть неудачник (sic: Меркурий) трепещет. Да еще астрономы жалуются, что никак не исчислить будущего. Судьбы планет оказываются неисповедимы, как и судьбы людей.

Забытые всеми Плутон и Харон

Он носит имя повелителя подземного царства и держит свой путь в темных глубинах космоса. Само Солнце там едва угадывается – маленький светлый кружок, перекатывающийся над горизонтом. Еще недавно он именовался девятой, самой дальней планетой Солнечной системы. Теперь он разжалован и считается карликовой планетой, наряду с сотнями своих собратьев. Несмотря на все старания астрономов, он по-прежнему остается «великим неизвестным». Ведь он находится слишком далеко от Земли и чересчур мал, чтобы за ним можно было наблюдать с помощью наземных телескопов. Пока сведения о Плутоне, которыми мы располагаем, скудны и ненадежны.

Плутон и его спутник Харон


Астрономы не могут даже поручиться, что знают точно размеры этой планеты и ее плотность. По их подсчетам, плотность Плутона и его спутника, Харона, примерно вдвое выше плотности воды. В таком случае эти небесные тела, вероятно, состоят изо льда и горных пород. Во всем остальном приходится полагаться на гипотезы. Каково внутреннее строение Плутона? Не скрывается ли под его ледяной поверхностью целый океан жидкой воды, как на спутнике Юпитера, Европе? Плутон ведь – очень необычная планета. Поистине, он всегда держался особняком от восьми других больших планет Солнечной системы, к числу которых еще недавно принадлежал.

Сразу после открытия Плутона астрономы стали задаваться вопросами. Откуда он взялся? Возник ли из того же протопланетного облака, что и другие планеты Солнечной системы? Или, может быть, случайно прибился к ней? Ведь если все остальные большие планеты обращаются вокруг Солнца примерно в одной и той же плоскости по круговой или слегка вытянутой орбите, то Плутон движется по эллиптичной орбите, наклоненной под углом почти 17° по отношению к плоскости движения других планет. Периодически он пересекает орбиту Нептуна и оказывается то дальше от Солнца, то ближе к нему, чем Нептун.

Своим открытием Плутон обязан окраске. Он гораздо светлее других транснептуновых объектов, которые начали обнаруживать лишь в 1990-е годы, через шесть десятилетий после того, как был замечен Плутон. Поначалу астрономы считали, что эта планета не уступает по размерам Марсу. Лишь к концу 1980-х годов, наблюдая за тем, как спутник Плутона, Харон, покрывает его поверхность, ученым удалось точнее оценить размеры Плутона. Его диаметр, по их подсчетам, составлял 2390 километров. Наблюдения, проведенные с помощью телескопа «Хаббл», заставили подкорректировать эту цифру, но не принесли желаемой точности: 2280–2330 километров.

В 1975 году удалось установить, почему Плутон окрашен в светлые тона. Американские астрономы Дейл Крукшенк, Дэвид Моррисон и Карл Пилчер обнаружили в его инфракрасном спектре следы метанового льда. По меньшей мере часть поверхности Плутона покрыта им. Позднейшие наблюдения, выполненные с помощью телескопа «Хаббл», выявили на этой планете значительные запасы замерзшего азота, а также водяной лед и замерзший моноксид углерода. Это позволило предположить, что на поверхности Плутона есть ледяные вулканы, которые выбрасывают наружу жидкий азот.

Фотографии, сделанные телескопом «Хаббл», пусть и были очень нечеткими, выявили еще одну особенность Плутона. Его поверхность вовсе не являлась однородно светлой, там имелись и темные пятна, особенно выделявшиеся на светлом фоне. Что это за пятна? Может быть, какие-то органические соединения? Район южного полюса, например, окрашен в очень яркие тона. Вероятно, он покрыт замерзшим азотом, смешанным с метановым льдом. Экваториальные области, наоборот, выглядят темными вкраплениями. Чем дальше на север, тем слабее становится темная окраска, сменяясь сероватыми цветами.

Опираясь на компьютерные модели, астрономы предполагает, что у Плутона имеется твердое каменное ядро, которое разогревается за счет естественной радиоактивности и окружено мантией. Содержание горных пород и, возможно, металлов оценивается в этих моделях в 65–70 %, а льда и жидких материалов, например воды, – в 30–35 %.

В июне 1988 года, наблюдая за тем, как Плутон покрывает звезду, астрономы пришли к выводу, что у него имеется атмосфера. При этом было сделано любопытное наблюдение. Звездный свет, похоже, не проникает к поверхности планеты. Возможно, этому мешает густой облачный покров. В 2005 году телескоп «Хаббл» помог определить температуру на поверхности Плутона: –230 °C. Это примерно на десять градусов ниже, чем явствовало из прежних расчетов. Очевидно, какие-то процессы, протекающие в атмосфере, способствуют резкому охлаждению Плутона.

Из чего вообще состоит его атмосфера? Из наблюдений за кометами известно, что близ Солнца лед с их поверхности начинает испаряться, минуя жидкую фазу. Вероятно, сублимация ледяного покрова происходит и на Плутоне. Поэтому его атмосфера должна содержать те же газы – азот, метан и оксид углерода, что в виде льда покрывают его поверхность.

К слову, температура воздушной оболочки Плутона примерно на 40 градусов выше, чем его поверхности. Подобный эффект обусловлен тем, что в его атмосфере содержится метан. Этот парниковый газ поглощает солнечный свет, что приводит к разогреву атмосферы.

В 2011 году британские астрономы, которые вели наблюдение за Плутоном с помощью телескопа имени Максвелла, сооруженного на Гавайских островах, установили, что толщина газовой оболочкой, окружающей Плутон, достигает 3000 километров. Это в 30 раз больше, чем предполагалось прежде. Таким образом, почти четверть промежутка, разделяющего две планеты, Плутон и Харон, занято этой воздушной оболочкой. Для сравнения: внешний слой атмосферы Земли – экзосфера – заканчивается примерно в 10 тысячах километров от планеты. Возможно, солнечный ветер отгоняет эту газообразную оболочку подобно тому, как распускает хвост кометы. А что если Плутон, да и Харон, являются… кометами, только очень большими?

Плутон и Харон образуют двойную планетную систему. Они довольно близки по размерам; их массы соотносятся как 1: 8. Для сравнения: Земля весит в 81 раз больше, чем Луна. Расстояние между ними составляет всего 17 радиусов Плутона, а потому общий центр масс этой системы располагается не в недрах Плутона, а в пространстве, разделяющем обе планеты, – и это имеет последствия. Если Луна обращается вокруг Земли, то Плутон и Харон совместно обращаются вокруг общего центра масс, лежащего между ними. Так вальсирующие, взявшись за руки, кружатся вокруг некой точки пространства, разделяющей их.

Как же образовалась эта необычная пара? Астрономы предполагают, что когда-то на окраине Солнечной системы произошла катастрофа. Здесь столкнулись две протопланеты примерно одинаковых размеров. Они двигались с относительно низкой скоростью, но все равно разрушились после этого удара. Из разлетевшихся обломков составились две новые планеты: большая часть глыб пошла на формирование Плутона, а остальное – на Харон. Поначалу Плутон вращался очень быстро, но Харон постепенно затормозил его вращение.

Впрочем, проверить эту гипотезу пока нельзя даже с помощью компьютерных моделей, потому что многого о Плутоне и Хароне мы пока еще не знаем. Немало любопытного об этих планетах может поведать межпланетный зонд НАСА «Новые горизонты». Он прибудет к Плутону в 2015 году. Эта экспедиция, как полагают астрономы, заново откроет для нас мир «космического подземелья», затерянного на окраине Солнечной системы.

«Рог изобилия» в поясе Койпера

По ту сторону орбиты Нептуна, на расстоянии 6–7 миллиардов километров от Солнца, кружат мириады малых планет. Это – пояс Койпера, названный в честь Джерарда Койпера, известного американского астронома нидерландского происхождения. В 1951 году он предположил его существование в одной из своих работ, посвященных происхождению планетной системы. Впрочем, ирландский астроном Кеннет Эджуорт еще ранее опубликовал сходные аргументы. Поэтому этот пояс иногда называют «поясом Эджуорта-Койпера».

Речь идет о скоплении небольших небесных тел, которые по своим размерам соответствуют малым планетам. Начинается он сразу же за орбитой Нептуна – в 30 астрономических единицах от Солнца, – а завершается, возможно, на расстоянии 100–150 астрономических единиц от Солнца. Предполагают, что этот пояс является также источником комет с коротким и средним периодами обращения.

Схема пояса Койпера


Первый объект пояса Койпера (помимо Плутона и Харона) – 1992 QB1 – был обнаружен в августе 1992 года. Его диаметр оценили в 200 километров. Он двигался почти по круговой орбите на расстоянии 50 астрономических единиц от Солнца. В марте и сентябре 1993 года на окраине Солнечной системы отыскали еще несколько астероидов. В последующие годы открытия были поставлены на поток.

Сейчас известно около тысячи транснептуновых объектов диаметром в среднем от 150 до 800 километров. Открытие пояса Койпера имело неожиданное последствие: в августе 2006 года на ассамблее Международного астрономического союза было решено исключить Плутон из числа планет и причислить его к транснептуновым объектам – к карликовым планетам. Что же представляют собой эти многочисленные объекты?

Их общая масса невелика: все вместе они оказались бы меньше нашей Луны. Их поверхность покрыта льдом: водяным, азотным, метановым, аммиачным, метаноловым (спиртовым), углекислым (сухим). Многие из них движутся по круговым орбитам, часто очень сильно наклоненным к плоскости орбиты «нормальных» планет. Классические объекты пояса Койпера обращаются на расстоянии 41–50 астрономических единиц от Солнца, с углом наклона орбиты до 30 градусов.

Широко распространено представление о том, что все эти ледяные глыбы возникли на гораздо более близком расстоянии к Солнцу и лишь потом были оттеснены Нептуном на дальнюю окраину Солнечной системы. Но так ли это? Споры в кругах астрономов продолжаются.

Например, компьютерная модель, которую разработали в 2010 году канадские астрономы Алекс Паркер и Джон Кавелаарс, не подтверждает эту гипотезу. Она не согласуется с тем фактом, что многие объекты пояса Койпера образуют двойные планетные системы. «Двойные планеты – это очень удобный инструмент для астрономов, – отмечает Паркер. – Их орбиты чрезвычайно чувствительны к внешним воздействиям, а потому мы можем с их помощью определять, в каких условиях они находились раньше». Созданная исследователями модель показывает, что двойные планетные системы вели бы себя крайне нестабильно, если бы подвергались воздействию такой гигантской планеты, как Нептун. Дело в том, что одна из двух планет неизменно оказывалась бы ближе к Нептуну и сильнее притягивалась бы им. Поэтому большая часть двойных систем распалась бы, и теперь их было бы значительно меньше, чем мы имеем. Очевидно, пояс Койпера возник там, где мы и наблюдаем его сегодня.

С его открытием появилась еще одна гипотеза. Когда-то Плутон был одним из астероидов – только более крупным. После столкновения с другим астероидом он был выброшен на свою нынешнюю, очень вытянутую орбиту. Трудно предположить, что он оказался на этой орбите случайно. Ведь при движении по ней период его обращения вокруг Солнца относится к периоду обращения Нептуна как 3: 2. При такой пропорции наблюдается «резонанс орбит»: планеты не могут сблизиться друг с другом. Расстояние между ними не бывает меньше 2,5 миллиардов километров, хотя орбиты обеих планет пересекаются. Расчеты показывают, что вероятность подобной орбиты лежит в пределах от 0,1 до 1,0 %. Возможно, на ранней стадии развития Солнечной системы существовало от сотни до тысячи объектов, напоминающих Плутон. Большинство из них «после встречи» с Нептуном улетело далеко на окраину Солнечной системы, Плутону же просто повезло с орбитой.

Сейчас астрономы полагают, что в поясе Койпера находится около 70 тысяч объектов размером более 100 километров. Впрочем, их невозможно заметить в наземный телескоп – только телескоп «Хаббл» может при случае их разглядеть.

Вообще же, дальняя окраина Солнечной системы населена гораздо плотнее, чем считалось прежде. По ту сторону орбиты Нептуна движется примерно квадрильон глыб диаметром от 10 до 100 метров. Все они обращаются вокруг Солнца. Таков результат исследования тайваньских астрономов. Если их гипотеза верна, то в поясе Койпера в 1000—100 000 раз больше объектов подобного рода, чем считалось прежде.

Исследователи научились обнаруживать эти миниатюрные астероиды, которые невозможно заметить в наземный телескоп, благодаря одному хитрому трюку. Дело в том, что всякий раз, когда мини-астероид оказывается между наблюдателем и яркой нейтронной звездой, в ее рентгеновское излучение на доли секунды вкрадывается помеха. По частоте помех ученые сделали вывод о количестве крохотных объектов, которые там могут находиться.

Идея использовать эти колебания звездного излучения для подсчета транснептуновых объектов родилась давно. Однако до сих пор аппаратура была недостаточно чувствительной, чтобы отмечать изменения света, длящиеся тысячную долю секунды. Тайваньские астрономы воспользовались результатами наблюдений космического телескопа «Росси», который фиксировал рентгеновское излучение с очень высокой точностью. В самом деле, астрономы выявили целый ряд коротких, но отчетливых возмущающих сигналов, вызываемых прохождением миниатюрных астероидов перед звездой Scorpio X-1 (это один из самых известных рентгеновских источников). Подсчитав, сколько всего подобных объектов может быть в Солнечной системе, ученые и пришли к этому поразительному результату: около квадрильона небольших небесных тел. С астрономической точки зрения, явное перенаселение, как прокомментировали эту новость коллеги. Подтвердится ли эта гипотеза?

Самый большой объект пояса Койпера – планета Эрида, открытая в 2003 году. Внешне она очень похожа на Плутон, да и своими размерами не уступает ему. В ноябре 2010 года, когда Эрида была обмерена наиболее дотошно, стало ясно, что ее диаметр лишь на 50–60 километров меньше диаметра Плутона. Поразительно велик наклон ее орбиты – 44 градуса. Возможно, поэтому ее не открыли раньше – никто не догадывался искать ее там, где она находилась.

Как показали наблюдения, поверхность Эриды в основном покрыта замерзшим азотом; кроме того, там содержится до 10 % метанового льда. Подобно Плутону, она, по-видимому, окружена разреженной атмосферой, содержащей азот, метан и моноксид углерода. По мере удаления от Солнца эта атмосфера конденсируется и в виде изморози выпадает на поверхность планеты.

Вплоть до 2020 года зонд «Новые горизонты» будет исследовать объекты пояса Койпера. Они вызывают большой интерес у астрономов, поскольку многое могут поведать о становлении нашей планетной системы. Это – своего рода «кладовая, где сохранились отходы от формирования планет». Здесь можно увидеть тот самый материал, из которого возникла Солнечная система.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | Следующая
  • 5 Оценок: 1

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации