Электронная библиотека » Александр Виленкин » » онлайн чтение - страница 3


  • Текст добавлен: 25 декабря 2018, 21:40


Автор книги: Александр Виленкин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 16 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Глава 4
Современная история сотворения мира

Элементы были приготовлены быстрее, чем готовится утка с жареной картошкой.

Георгий Гамов

Туннелирование сквозь железный занавес

Идея первичного огненного шара родилась в голове Георгия Гамова, очень колоритного физика российского происхождения, с которым мы еще не раз встретимся на этих страницах. Его коллега Леон Розенфельд (Leon Rosenfeld) писал, что это был “светловолосый славянский гигант, очень ярко говорящий по-немецки; в действительности он был ярок во всем, даже в своей физике”.[17]17
  Цит. по статье Р. Г. Стьюера (R.H. Stuewer) в сб. “Калейдоскоп науки” (The Kaleidoscope of Science, ed. By E. Ullmann-Margalit, Reidel, Dordrecht, 1986, p. 147).


[Закрыть]
Еще аспирантом Гамов прослушал фридмановский курс лекций по общей теории относительности в 1923–1924 годах в Петрограде, так что знал о расширяющейся вселенной, можно сказать, из первых рук. Он хотел вести исследования в области космологии под руководством Фридмана, однако неожиданная смерть последнего не позволила этим планам реализоваться. В итоге Гамову пришлось писать диссертацию по динамике маятника – теме, которую он называл “в высшей степени унылой”.[18]18
  Описание жизни Гамова в этой главе основано по большей части на его неоконченной автобиографии “Моя мировая линия” (My World Line, Viking Press, New York, 1970).


[Закрыть]

В 1928 году с подачи своего прежнего профессора Ореста Хвольсона Гамов получил стипендию и провел лето в Германии, в Гёттингенском университете. Это было время, когда полным ходом шла разработка квантовой механики, и Гёттинген являлся одним из центров этих исследований. Физики пытались ухватить суть новой теории и внести вклад в ее стремительное развитие. Дискуссии, начинавшиеся днем в семинарских аудиториях, продолжались вечерами на улицах и в кафе, и было трудно не заразиться этой волнующей атмосферой открытия. Гамов решил исследовать, что может сказать квантовая механика о строении атомных ядер, и очень быстро получил первые результаты. Он использовал так называемый туннельный эффект – проникновение квантовой частицы через барьер – для объяснения радиоактивного распада ядер. Его теория прекрасно согласовывалась с экспериментальными данными.

Когда в конце лета пришло время возвращаться в Петроград (уже ставший Ленинградом), Гамов решил сделать остановку в Дании и посетить легендарного Нильса Бора, одного из основоположников квантовой теории. Рассказ о работе по радиоактивности (которая еще не была опубликована) произвел на Бора такое впечатление, что он предложил Гамову место научного сотрудника в своем институте в Копенгагене. Конечно, приглашение было с восторгом принято, и Гамов продолжил работу в области ядерной физики, став вскоре признанным авторитетом.

В 1930 году Гамова пригласили сделать большой доклад на конгрессе по атомному ядру в Риме. Он уже готовился пересечь Европу на своем маленьком мотоцикле, когда выяснил в советском посольстве, что его паспорт не подлежит продлению и ему придется вернуться в Советский Союз, прежде чем ехать куда-либо еще. Прибыв в Ленинград, Гамов сразу понял, что дела плохи. Сталинский режим закручивал в стране гайки. Наука и искусство должны были соответствовать официальной марксистской идеологии, и всякий, кого обвиняли в “буржуазных” идеалистических взглядах, подвергался жестоким преследованиям. Квантовая механика и теория относительности Эйнштейна были объявлены ненаучными и противоречащими марксизму-ленинизму. Когда Гамов упомянул о квантовой физике на публичной лекции, сотрудник органов прервал его выступление и распустил аудиторию. Гамова предупредили, чтобы он не повторял таких ошибок. Еще до этого инцидента ему было велено забыть о зарубежных поездках и не утруждать себя обращениями за паспортом. Железный занавес плотно закрылся. Гамов понял со всей ясностью: он должен любой ценой вырваться из Советского Союза.

Вместе со свой женой Любой, которая вышла за него вскоре после возвращения в Ленинград, он готовился к побегу. План состоял в том, чтобы пересечь Черное море и добраться в Турцию из Крыма. Идея эта кажется ребяческой, но они намеревались проделать это на байдарке. У Гамовых был недельный запас провизии и простой навигационный план: грести прямо на юг. Однако Черное море не зря называют черным. Ранним утром, затемно, когда двое искателей приключений отправились в путь, оно было идеально спокойным, но к вечеру ветер усилился, и поднялась волна. Ночью им с колоссальным трудом удавалось удерживать лодку на плаву. Признав свое поражение, они теперь стремились просто добраться до берега, и когда на следующий день им это удалось, чувствовали себя счастливчиками.

Когда летом 1933 года Гамову сообщили, что ему доверено представлять Советский Союз на престижном Сольвеевском конгрессе по ядерной физике в Брюсселе, это стало для ученого полной неожиданностью. Он был вне себя от восторга, но не понимал, как это получилось. Все объяснилось после прибытия на конгресс. Когда Гамов не появился в Риме, Нильс Бор забеспокоился и стал разыскивать своего старого друга. Он попросил французского физика Поля Ланжевена, члена Французской коммунистической партии, использовать свои связи, чтобы организовать приезд Гамова на Сольвеевский конгресс. Однако Гамов был потрясен, когда узнал, что Бор лично поручился Ланжевену за Гамова, пообещав, что тот вернется в Советский Союз! В тот вечер за ужином Гамов оказался за столом рядом с Марией Кюри, знаменитой первооткрывательницей радия и плутония, и рассказал ей о невыносимой ситуации, в которую попал. Мадам Кюри близко знала Ланжевена (ходили слухи, что даже очень близко); она сказала, что поговорит с ним. После бессонной ночи и дня тревожного ожидания Гамов узнал от нее, что вопрос улажен и он может не возвращаться. На следующий год он получил пост профессора в университете Джорджа Вашингтона в Соединенных Штатах.

Первичный огненный шар

Гамов понимал, что ранняя Вселенная была не только сверхплотной, но также и очень горячей. Причина в том, что газы разогреваются, когда их сжимают, и охлаждаются при расширении. (Велосипедисты говорят, что им это хорошо известно: когда шины накачивают воздухом, они становятся теплыми.)

Чтобы понять, почему расширение вызывает остывание, рассмотрим газ, заключенный в большой ящик. Молекулы газа можно представить в виде маленьких шариков, которые отскакивают от стенок ящика. Вообразите теперь, что эти стенки раздвигаются. Как повлияет их удаление на молекулы? Если вы на тренировке бросите теннисный мяч в стену, он отлетит к вам с той же скоростью. Но представьте на мгновение, что стена от вас удаляется. Скорость мяча относительно стены будет тогда меньше, и он отскочит назад медленней, чем вы его бросили. Аналогично и молекулы в расширяющемся ящике будут замедляться при каждом отскоке от стены. Температура пропорциональна средней энергии молекул, и следовательно, в ходе этого процесса она будет убывать. Конечно, в расширяющейся Вселенной нет движущихся стен, но частицы отскакивают друг от друга, и это точно так же влияет на температуру. Увеличиваясь, Вселенная становится все холоднее и холоднее. А значит, чем дальше мы отступаем в прошлое, тем горячее она должна быть, если же продолжить экстраполяцию до самой сингулярности, Вселенная становится бесконечно горячей.

При температурах свыше нескольких сотен градусов Кельвина связи, удерживающие атомы в молекулах, уже не способны противостоять теплу, и молекулы распадаются. Дальнейшее повышение температуры ведет к постепенному разрушению атомов. Сначала, около 3000 градусов Кельвина, электроны отрываются от атомных ядер[19]19
  В шкале Кельвина, часто применяемой физиками, температуры измеряются в единицах стоградусной шкалы начиная от абсолютного нуля (–273 градуса Цельсия). Для очень высоких температур, о которых здесь идет речь, разница между шкалами Цельсия и Кельвина несущественна.


[Закрыть]
,[20]20
  Атомы состоят из маленьких положительно заряженных ядер и отрицательно заряженных электронов, “обращающихся” вокруг них. (Я помещаю слово “обращающихся” в кавычки, поскольку в атомах существенна квантовая неопределенность, так что вместо картины электронов, упорядоченно движущихся вдоль своих орбит, подобно планетам вокруг Солнца, более точным было бы рисовать их “размазанными” вокруг этих орбит.) Ядра состоят из двух типов субатомных частиц: протонов, несущих положительный электрический заряд, и нейтронов, которые электрически нейтральны. Химические свойства атома определяются исключительно числом электронов (которое равно числу протонов, так что атомы электрически нейтральны).


[Закрыть]
затем, примерно при миллиарде градусов, ядра распадаются на протоны и нейтроны (собирательно называемые нуклонами), и наконец, с приближением к триллиону градусов нуклоны разбиваются на свои элементарные составляющие, называемые кварками.

Помимо частиц материи, из которых состоят атомы, первичный огненный шар содержал также огромное количество квантов излучения – фотонов. Фотоны – это пакеты электрической и магнитной энергии; из них состоит обычный видимый свет. Движущиеся заряженные частицы испускают и поглощают фотоны, поэтому довольно быстро устанавливается равновесие, при котором фотоны поглощаются в том же темпе, что и излучаются. Чем выше температура, тем больше плотность энергии фотонов в равновесии. Таким образом, рецепт горячего космического супа выглядит очень просто: раздробите все на самые мелкие части, перемешайте и не скупясь приправьте фотонами. Однако есть в нем и кое-что еще.

Чем дальше мы продвигаемся назад во времени, тем энергичнее становятся частицы, тем теснее им и тем чаще они сталкиваются друг с другом. Чтобы понять состав огненного шара, надо знать, что случается при таких высокоэнергичных соударениях. Сталкивать элементарные частицы – любимое занятие ученых, специализирующихся на физике высоких энергий. Для этого строятся колоссальные агрегаты, называемые ускорителями, где частицы разгоняют до чудовищных энергий, позволяют им врезаться друг в друга и смотрят, что получится. Это гораздо увлекательнее, чем наблюдать за столкновением бильярдных шаров, поскольку частицы при столкновении часто меняют свой тип, как если бы красный и синий шары при столкновении превращались в желтый и зеленый. Количество частиц также подвержено изменениям: две исходные частицы могут породить фейерверк из десятков новых, разлетающихся из точки столкновения. Подобные события повсеместно происходили в первые мгновения после Большого взрыва.

В таких столкновениях нельзя точно предсказать, что должно случиться. Существует множество возможных исходов, и физики, используя квантовую теорию, вычисляют их вероятности. Но это все, что можно сделать: в квантовом мире нет места определенности. Диапазон возможного ограничивается лишь несколькими законами сохранения, которые строго соблюдаются. Например, законы сохранения энергии и электрического заряда требуют, чтобы полная энергия и суммарный заряд до и после столкновения были одинаковыми. Таким образом, любой процесс, не запрещенный законами сохранения, разрешен и будет происходить с ненулевой вероятностью. В ранней Вселенной частицы безостановочно сталкиваются друг с другом, и огненный шар наполняется всеми типами частиц, какие только могут быть созданы в этих столкновениях.

Для каждого типа частиц есть античастицы с такой же массой и противоположным электрическим зарядом. Частицы и античастицы часто рождаются парами. Например, два фотона с энергиями больше той, что соответствует массе электрона (по формуле E = mc2), могут столкнуться и превратиться в электрон и его античастицу, называемую позитроном. Обратный процесс называется аннигиляцией пары: электрон и позитрон сталкиваются и превращаются в два фотона.

При температурах свыше 10 миллиардов градусов энергии частиц становятся достаточными для порождения электрон-позитронных пар. Как результат, огненный шар наполняется газом из электронов и позитронов, плотность которого примерно равна плотности фотонного газа. При еще более высоких температурах появляются все более тяжелые частицы. Физики занесли в свои реестры целый зоопарк различных частиц с массами, распределенными в весьма широком диапазоне. На верхнем конце этого диапазона располагаются W– и Z-частицы, которые в 300 000 раз массивнее электрона, и топ-кварк, масса которого еще вдвое больше. Это самые тяжелые частицы, полученные к сегодняшнему дню на ускорителях. Они существуют в огненном шаре при температурах выше 3000 триллионов градусов. По мере приближения к этим температурам наши знания о частицах становятся все более приблизительными, а представления об устройстве первичного огненного шара – все менее и менее надежными.

Уравнения Фридмана можно использовать для определения температуры и плотности огненного шара в любой момент времени. Например, спустя одну секунду после Большого взрыва температура составляет 10 миллиардов градусов, а плотность – около 1 тонны на кубический сантиметр. Чтобы не повторять каждый раз слова “после Большого взрыва”, я буду использовать сокращение ПБВ. Самая насыщенная событиями часть истории огненного шара, для которой характерна быстрая смена поколений экзотических частиц, приходится как раз на первую секунду его существования. W-, Z– и более тяжелые частицы широко распространены только в первую 0,00000000001 секунды ПБВ. Мюоны – частицы, похожие на электроны, но в 200 раз более тяжелые, – аннигилируют со своими античастицами около 0,0001 секунды. Примерно в то же время триплеты кварков соединяются вместе, образуя нуклоны. Последними аннигилируют электрон-позитронные пары. Они исчезают около 1 секунды ПБВ. Чтобы в наше время осталось некоторое количество электронов и нуклонов, в тот период должен иметь место небольшой избыток кварков по сравнению с антикварками и электронов по сравнению с позитронами.[21]21
  Происхождение этого дисбаланса между веществом и антивеществом – один из активно исследуемых вопросов в современной космологии. Его обсуждение см. в книге A.H. Guth, The Inflationary Universe (Addison-Wesley, Reading, 1997).


[Закрыть]
По истечении первой секунды в составе космического супа остаются нуклоны, электроны и фотоны.[22]22
  Присутствуют также очень легкие слабо взаимодействующие частицы – нейтрино. Я их здесь не рассматриваю, поскольку они не важны для нашей истории.


[Закрыть]

Алхимия Гамова

Частицы вроде кварков W и Z не были известны во времена Гамова, он не слыхал даже об электрон-позитронных парах. Больше всего его интересовала история космоса после 1 секунды ПБВ. Еще в начале своей карьеры Гамов увлекся проблемой происхождения атомов. В природе обнаруживаются 92 различных типа атомов, или химических элементов. Некоторые из них, такие как водород или гелий, распространены очень широко, тогда как другие, например золото или уран, встречаются крайне редко. Гамов хотел понять причину этого: чем определяется распространенность элементов?

Алхимики пытались получить золото из более распространенных элементов, но, как мы теперь знаем, есть весьма серьезные причины, не позволившие им достичь успеха. Чтобы превратить один элемент в другой, надо научиться изменять состав атомных ядер. Однако энергии частиц, необходимые для ядерных трансформаций, в миллионы раз больше тех, что связаны с химическими реакциями, и выходят далеко за пределы того, что было доступно алхимикам. Такие энергии достигаются в водородной бомбе, но ни в каких естественных процессах на Земле они не встречаются. Поэтому наблюдаемая нами сегодня распространенность элементов в точности такова, как и 4,6 миллиарда лет назад, в эпоху формирования Солнечной системы.[23]23
  Важное исключение составляют радиоактивные элементы, подобные урану, которые самопроизвольно распадаются на более легкие. Атом урана превращается в свинец в среднем за 4,5 миллиарда лет, из-за чего количество урана постепенно уменьшается. В действительности наши лучшие оценки возраста Земли получены путем измерения относительных количеств урана и свинца.


[Закрыть]

Вопрос о происхождении элементов естественным образом наводит на мысль о недрах звезд. Эти гигантские раскаленные газовые шары скрепляются силами гравитации. Наше Солнце состоит в основном из водорода – простейшего элемента, ядра которого представляют собой одиночные протоны. Температура в центральных областях Солнца превышает 10 миллионов градусов, – этого достаточно для протекания ядерных реакций. Цепочка реакций преобразует водород в гелий с выделением энергии, которая питает наше светило. Теория ядерных реакций, происходящих в недрах Солнца, была разработана в конце 1930-х годов Хансом Бете, физиком немецкого происхождения, который позднее получил за эту работу Нобелевскую премию. Однако для объяснения распространенности элементов его теория мало что давала. Производство гелия в звездах обеспечивает лишь малую долю его огромного количества, наблюдаемого во Вселенной. Другой загадкой было присутствие дейтерия (тяжелого водорода), у которого очень хрупкие ядра. Они быстро разрушаются в горячих звездных недрах, и было трудно понять, откуда они вообще могли взяться.

Гамов придерживался мнения, что звезды попросту недостаточно горячи, чтобы стать той кухней, в которой готовились элементы, – он считал, что придумал идею получше: подходящей печью он считал саму Вселенную вскоре после Большого взрыва. Для изучения ядерных процессов в горячей ранней Вселенной Гамов обратился за помощью к двум молодым физикам – Ральфу Альферу и Роберту Херману. Они рассмотрели горячую смесь нуклонов, электронов и излучения, однородно заполняющую Вселенную. Когда температура падает до 1 миллиарда градусов, протоны и нейтроны могут соединяться, образуя ядра дейтерия (рис. 4.1). Последующие присоединения протонов и нейтронов быстро превращают дейтерий в гелий (ядра которого содержат по два протона и нейтрона). Однако на этом образование ядер фактически останавливается. Дело в том, что из-за некоторых особенностей ядерных сил стабильных ядер, состоящих из пяти нуклонов, не существует, а одновременное присоединение более чем одного нуклона крайне маловероятно. Это так называемый пятинуклонный провал. Расчеты показывают, что около 23 % нуклонов входят в состав ядер гелия, а почти все остальные остаются в форме водорода. Образуется также небольшое количество дейтерия и лития.[24]24
  Более подробное обсуждение горячего огненного шара и образования элементов можно найти в классическом бестселлере Стивена Вайнберга “Первые три минуты” (РХД, 2000) (Steven Weinberg, The First Three Minutes, Bantam, New York, 1977).


[Закрыть]


Рис. 4.1. Простейшие атомные ядра. Протоны и нейтроны обозначаются соответственно p и n.


Современный анализ, опирающийся на самые последние данные о ядерных реакциях и суперкомпьютерные модели, дает точные значения распространенности элементов после того, как они покинули космическое горнило. То, насколько хорошо результаты этих вычислений согласуются с астрономическими наблюдениями, весьма впечатляет. Астрономы могут определять химический состав далеких объектов, изучая спектр испущенного ими света. Теория горячего Большого взрыва твердо предсказывает, что ни одна галактика во Вселенной не должна содержать меньше двадцати трех процентов гелия: поскольку он производится в звездах, его первоначальная распространенность может только возрастать. И действительно, ни одной такой галактики до сих пор не обнаружено. Предсказанная распространенность дейтерия – чуть меньше одной десятитысячной, лития – менее одной миллиардной. Весьма примечательно, что столь сильно различающиеся значения подтверждаются наблюдениями. Можно было бы сказать, что 23 % гелия – это просто счастливая догадка, но вероятность случайного совпадения целого набора чисел крайне низка.

Но как обстоят дела с тяжелыми элементами? Несмотря на все усилия, Гамов и его команда не смогли найти мост через пятинуклонный провал. Тем временем по другую сторону Атлантики главный защитник модели стационарного состояния Фред Хойл разрабатывал альтернативную теорию происхождения элементов. Он знал, что звезды, которые подобно нашему Солнцу пережигают водород в гелий, недостаточно горячи для этой задачи. Но что происходит, когда звезда исчерпывает свой водород? Тогда она больше не может противостоять собственной гравитации, ядро звезды начинает сжиматься, а его плотность и температура возрастают. После того как в центре температура достигает 100 миллионов градусов, открывается новый канал ядерных реакций: три ядра гелия сливаются и образуют ядро углерода. Когда весь гелий в центральной области израсходован, звезда сжимается дальше, пока температура не поднимется настолько, чтобы запустить реакции ядерного горения углерода. По мере развития этого процесса образуется слоистая структура, в которой более тяжелые элементы находятся ближе к центру (поскольку для их приготовления требуются более высокие температуры). В звездах, подобных Солнцу, этот процесс не заходит слишком далеко, но в более массивных светилах он проделывает весь путь вплоть до образования железа. За этой точкой топлива для ядерного горения не остается. Не поддерживаемая больше ядерными реакциями внутренняя часть ядра звезды коллапсирует, достигая невероятной плотности и температуры около 10 миллиардов градусов. Это приводит к гигантскому взрыву, называемому вспышкой сверхновой, при котором все внешние слои, содержащие наработанные элементы, выбрасываются в межзвездное пространство. Элементы тяжелее железа образуются во время коллапса и взрыва ядра. Обогащенный межзвездный газ служит сырьем для новых звезд и планетных систем. Получавшаяся по расчетам Хойла и его сотрудников распространенность тяжелых элементов хорошо согласовывалась с наблюдениями.

Хойл и Гамов разрабатывали свои идеи в 1940-х и 1950-х годах, и тогда их теории рассматривались как две конкурирующие модели происхождения элементов. Однако в итоге оказалось, что оба они были правы: легкие элементы образовались преимущественно в ранней Вселенной, а тяжелые – в звездах. Почти все известное вещество Вселенной находится в форме водорода и гелия, а на долю тяжелых элементов приходится менее 2 %. Но они тем не менее исключительно важны для нашего существования: Земля, воздух и наши тела состоят в основном из тяжелых элементов. Как писал кембриджский астрофизик Мартин Рис, “Мы – звездная пыль, пепел давно умерших звезд”.[25]25
  M.J. Rees, Before the Beginning (“До начала”), Addison-Wesley, Reading, 1997, p. 17).


[Закрыть]

Космические микроволны

Процесс образования гелия начинается примерно через 3 минуты ПБВ и завершается менее чем за минуту. Вселенная продолжает расширяться в чудовищном темпе, а плотность и температура очень быстро падают. Но после насыщенных событиями первых минут темп космической драмы замедляется. С частицами вещества мало что происходит, наиболее значительные изменения касаются наполняющего огненный шар излучения.

На микроскопическом, квантовом уровне излучение состоит из фотонов, однако макроскопически его можно изображать состоящим из электромагнитных волн – колеблющихся распределений электрической и магнитной энергии. Волны разной частоты вызывают разные физические эффекты, и мы знаем их под разными названиями. Видимому свету соответствует лишь узкая полоска во всем электромагнитном спектре. Волны с более высокой частотой называют рентгеновским излучением, а еще более высокочастотные – гамма-лучами. Двигаясь по частотам вниз, мы встретим микроволны, а за ними радиоволны. Все они распространяются со скоростью света.

По мере убывания температуры огненного шара интенсивность излучения снижается, а его частота постепенно сдвигается от гамма-лучей через рентгеновский диапазон к видимому свету. Важное событие происходит примерно через 300 000 лет ПБВ, когда температура становится достаточно низкой, чтобы электроны и ядра могли объединяться в атомы. До этого электромагнитные волны часто рассеивались на заряженных электронах и ядрах. Однако с нейтральными атомами излучение взаимодействует очень слабо, так что после образования атомов волны начинают свободно распространяться по Вселенной, практически ни на чем не рассеиваясь. Другими словами, Вселенная вдруг становится прозрачной для света.

Что случится после этого с космическим излучением? Ничего особенного, кроме того, что частота электромагнитных волн и соответствующая ей температура продолжат убывать по мере расширения Вселенной. В момент образования нейтральных атомов температура излучения составляла 4000 градусов, немного ниже, чем на поверхности Солнца. Если бы мы оказались там и смогли выдержать столь нездоровые условия, то увидели бы Вселенную залитой ярко-оранжевым светом. К моменту 600 000 лет ПБВ мы заметили бы, что цвет сменился на красный. Около одного миллиона лет излучение смещается за пределы видимого диапазона, в инфракрасную часть спектра. Так что для нас Вселенная погрузилась бы в полную темноту. Частота волн продолжает медленно уменьшаться, и к настоящему времени, которое соответствует космическому возрасту около 14 миллиардов лет, она опускается до микроволнового диапазона.

Эту историю космического огненного шара изучали молодые сотрудники Гамова Альфер и Херман. Они проследили ее вплоть до настоящего времени и пришли к удивительному выводу: мы должны быть окружены морем микроволн с температурой около 5 градусов Кельвина.

Работа Альфера и Хермана была опубликована в 1948 году. Вы, верно, подумаете, что она побудила большое число наблюдателей заняться поиском космических микроволн. В самом деле, первичное излучение – это прямая улика, буквально дымящееся ружье Большого взрыва, и его открытие должно было иметь колоссальное значение. Вы можете подумать, что, когда это излучение было зарегистрировано, за его предсказание была присуждена Нобелевская премия. Увы, на самом деле события разворачивались иначе.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации