Электронная библиотека » Александр Виленкин » » онлайн чтение - страница 4


  • Текст добавлен: 25 декабря 2018, 21:40


Автор книги: Александр Виленкин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Дымящееся ружье

Может показаться странным, но предсказание космического излучения полностью игнорировалось на протяжении двух десятилетий – до тех пор пока его случайно не открыли в 1965 году. Два радиоастронома Арно Пензиас и Роберт Вильсон, работая в Bell Telephone Laboratories в штате Нью-Джерси, регистрировали постоянный шум в своей высокочувствительной антенне. Шум характеризовался температурой около 3 градусов Кельвина и не зависел от времени суток и точки, куда была направлена антенна. В непреклонной решимости найти источник проблемы Пензиас и Вильсон тщательнейшим образом исключили все возможные помехи, которые им удалось придумать. Они даже выселили пару голубей, свивших гнездо в антенне, и удалили то, что Пензиас называл “белым диэлектрическим веществом”, которое они по себе оставили. Но ничто не помогало – источник шума по-прежнему оставался загадочным.

Между тем в полусотне километров от них, в Принстонском университете, группа физиков занималась сооружением собственного радиоприемного устройства. Руководил работой Роберт Дикке, выдающийся физик, одинаково хорошо владевший как теорией, так и экспериментом. Он понял, что от ранних горячих стадий в истории Вселенной должно остаться послесвечение, и спроектировал антенну для его поиска. Когда принстонская группа уже была готова начать свои измерения, ее сотрудникам стало известно о затруднениях Пензиаса и Вильсона. Сразу стало ясно, что надоедливый шум, который те так настойчиво пытались устранить, как раз и является теми самыми космическими микроволнами, которые принстонцы еще только надеялись зарегистрировать!

Чрезвычайно интересен вопрос, почему космическое излучение было открыто случайно. Почему никто не прислушался к Альферу и Херману? Даже если в их статье что-то было упущено, почему потребовалось более 15 лет, чтобы кто-то другой пришел к тому же заключению? Ведь, в конце концов, это же было прямым следствием гамовской теории горячего Большого взрыва.

Одной из причин, похоже, было то, что физики попросту не верили в реальность ранней Вселенной. “Как часто бывает в физике, – писал нобелевский лауреат Стивен Вайнберг, – ошибка не в том, что мы слишком серьезно относимся к своим теориям, а в том, что не воспринимаем их достаточно всерьез”.[26]26
  S. Weinberg, там же, с. 123. Глава 5. Инфляционная Вселенная


[Закрыть]
Не в пользу Георгия Гамова был, возможно, и его характер, слишком яркий для того, чтобы к его обладателю внимательно прислушивались в научном сообществе. Склонный к розыгрышам, сочинявший непечатные лимерики и часто сильно выпивавший в баре, он явно не был типичным физиком. Наконец, в середине 1950-х ни Гамов, ни Альфер с Херманом не занимались активно теорией Большого взрыва: Гамов все больше интересовался биологией и выступил с важнейшей догадкой о генетическом коде, в то время как Альфер с Херманом ушли из науки в индустриальные компании. Нельзя не задуматься о том, что отсутствие признания их работы, вероятно, сыграло роль в этом решении. К середине 1960-х, когда Пензиас и Вильсон возились со своей антенной, работа группы Гамова была почти забыта.

Пензиас и Вильсон измерили интенсивность излучения на одной частоте (на которую была настроена их антенна), но теория предсказывала, что оно охватывает целый диапазон частот, а его интенсивность должна следовать простой формуле, выведенной Максом Планком еще на исходе XIX века. Это предсказание было блистательно подтверждено в 1990 году спутниковым экспериментом COBE (Cosmic Microwave Background Explorer – Исследователь космического микроволнового фона), выявившим соответствие с формулой Планка с погрешностью менее одной десятитысячной.

Открытие космического микроволнового излучения было, без сомнения, эпохальным событием для космологии. Этот доступный непосредственному измерению реликт первичного огненного шара придал ученым уверенности в том, что все это им не приснилось, что Вселенная действительно имела горячее начало около 14 миллиардов лет назад. Пензиас и Вильсон получили в 1978 году Нобелевскую премию “за открытие космического микроволнового излучения”. За его теоретическое предсказание никакой премии присуждено не было.

Несовершенство творения

Если бы вначале Вселенная была совершенно однородной, она оставалась бы такой и в наши дни. Однородный разреженный газ, заполняющий Вселенную, становился бы все менее плотным, мир вечно оставался бы во тьме, а космическое излучение медленно сдвигалось бы в сторону все более низкочастотных радиоволн. Но одного взгляда на ночное небо достаточно, чтобы убедиться: наша Вселенная не столь безрадостна. Она залита сиянием звезд, которые разбросаны по космосу, образуя иерархию структур. Элементарные единицы этой структуры – галактики – содержат порядка 100 миллиардов звезд. Галактики группируются в скопления, которые в свою очередь образуют сверхскопления, простирающиеся на несколько сотен миллионов световых лет, – всего в 100 раз меньше размеров наблюдаемой части Вселенной.[27]27
  Световой год – это расстояние, проходимое светом за год. Оно составляет около 10 триллионов километров.


[Закрыть]

Космологи связывают происхождение всех этих величественных структур с крошечными неоднородностями, существовавшими в первичном огненном шаре. Они могли разрастись до размеров галактик вследствие так называемой гравитационной неустойчивости. Допустим, что в некоторой области пространства плотность чуть выше, чем в ее окружении. Тогда у нее будет более сильное тяготение, и она притянет больше вещества, чем соседние области. В результате контраст плотности будет увеличиваться, и первоначально почти однородное распределение вещества станет превращаться в сильно неоднородное. Космологи считают, что именно так образовались галактики, скопления и сверхскопления. Согласно этой теории, первые галактики сформировались примерно через миллиард лет ПБВ. Звездный свет залил Вселенную, и темная эпоха закончилась. Процесс формирования галактик завершился не так уж давно – когда возраст Вселенной был около 10 миллиардов лет (“всего” четыре миллиарда лет назад).

Можно подумать, что эта история обречена оставаться легендой, поскольку в те времена не было никого, кто мог бы ее подтвердить. Однако, как я уже подчеркивал, мы видим далекие объекты такими, какими они были много лет назад, когда был испущен регистрируемый нами сегодня свет. Так что, изучая более далекие галактики, мы уходим назад во времени. Время движения света от самых далеких галактик, доступных нашему наблюдению, составляет около 13 миллиардов лет, так что мы видим их в то время, когда Вселенной был всего один миллиард лет от роду. По сравнению с грандиозными спиралями, которые окружают нас сейчас, те галактики маленькие и беспорядочные, что служит признаком их молодости.

Еще более ранние эпохи в истории Вселенной можно наблюдать благодаря космическим микроволнам. Они распространяются без рассеяния почти 14 миллиардов лет с того времени, когда Вселенная стала прозрачной для излучения. Области, где эти волны испытали последнее рассеяние, удалены сейчас на расстояние 40 миллиардов световых лет.[28]28
  Мы говорим, что электромагнитная волна рассеивается, когда она поглощается и переизлучается заряженной частицей. Поэтому поверхность последнего рассеяния можно также описать как поверхность, с которой было испущено космическое излучение.


[Закрыть]
(А не 14 миллиардов, как можно было бы подумать, поскольку Вселенная продолжает расширяться.) Таким образом, микроволны приходят к нам с поверхности гигантской сферы радиусом 40 миллиардов световых лет; ее называют поверхностью последнего рассеяния. Излучение, испущенное из областей с чуть более высокой плотностью, должно было преодолеть более сильное тяготение и, приходя к нам, оно имеет чуть меньшую интенсивность. Как следствие более плотные области выглядят на микроволновом небе более тусклыми. Составляя карту интенсивности излучения в разных направлениях неба, мы можем получить изображение Вселенной в эпоху последнего рассеяния, когда ей было всего 300 000 лет.


Рис. 4.2. Микроволновое небо, каким его увидел спутник WMAP.


Впервые карту микроволнового неба построила команда эксперимента COBE в 1992 году. Более подробная карта, которую получил 10 лет спустя спутник WMAP,[29]29
  Зонд WMAP (Wilkinson Microwave Anisotropy Probe – зонд им. Уилкинсона для изучения анизотропии микроволнового фона) получил название в честь Дэвида Уилкинсона из Принстонского университета, который выдвинул идею эксперимента и был главным его вдохновителем. К сожалению, он умер незадолго до запуска спутника.


[Закрыть]
представлена на рисунке 4.2. Темные оттенки серого соответствуют более высокой интенсивности излучения, однако разница между светлыми и темными пятнами составляет всего несколько стотысячных. Это означает, что во время последнего рассеяния Вселенная была почти идеально однородной. Все восхитительные структуры, которые мы сегодня видим на небе, были закодированы в этой аморфной ряби почти однородного космического фона.

Современная история сотворения мира

На рисунке 4.3 представлена история сотворения мира, которую мы до сих пор обсуждали. Эта история подтверждается многочисленными наблюдательными данными, и нет особых оснований сомневаться в том, что в целом она верна. Ее детали продолжают уточняться, а некоторые важные вопросы еще остаются открытыми. Одна из важнейших неизвестных – природа темной материи, которая проявляет себя гравитационным притяжением галактик и скоплений. Имеются веские основания считать, что темная материя состоит не из нуклонов и электронов, а скорее, из каких-то еще не открытых частиц. От масс и взаимодействия этих частиц зависят детали процесса формирования галактик, но не общая картина, очерченная на рисунке 4.3.

Поистине удивительно, что мы можем наблюдать Вселенную такой, какой она была 14 миллиардов лет назад, и точно описывать события, происходившие спустя долю секунды после Большого взрыва. Это подводит нас невероятно близко к моменту творения. Но что в действительности случилось в тот момент, как всегда, остается загадкой. На самом деле при более близком знакомстве Большой взрыв выглядит даже более странным, чем казался до сих пор.


Рис. 4.3. Краткая история Вселенной.


Глава 5
Инфляционная Вселенная

Можно противостоять вторжению армии, но не идее, чье время пришло.

Виктор Гюго

Космические загадки

Представим, что однажды мы получаем из далекой галактики радиограмму, гласящую: “Элвис жив”. Мы направляем антенну на другую галактику и с удивлением получаем точно такое же сообщение! Изрядно озадаченные, мы переводим антенну с одной галактики на другую, но отовсюду получаем все то же послание. Один из выводов, к которому мы придем, состоит в том, что мир полон фанатов Элвиса; другой – что все они общаются между собой. Ведь как иначе им удалось бы объявиться с одинаковыми сообщениями?

Как ни глупо это может показаться, но такой пример весьма схож с той ситуацией, в которой мы оказались, наблюдая Вселенную. Интенсивность микроволнового излучения, приходящего к нам со всех сторон в небе, в высшей степени постоянна, а значит, распределение плотности и температура Вселенной в те времена, когда испускалось это излучение, были исключительно однородными. Из этого наблюдения вытекает наличие определенного взаимодействия между излучающими областями, которое приводит к выравниванию плотностей и температур. Парадокс, однако, в том, что для протекания подобных процессов с момента Большого взрыва прошло слишком мало времени.

Корень проблемы связан с неспособностью физических взаимодействий распространяться быстрее света. Со времени Большого взрыва электромагнитные волны удалились от мест, где они были испущены, на 40 миллиардов световых лет. Это расстояние называют радиусом горизонта. Оно ставит предел тому, как далеко мы можем видеть Вселенную, и задает максимальное расстояние, на котором могла быть установлена связь. Космическое излучение, которое мы наблюдаем, было испущено вскоре после Большого взрыва и приходит к нам с расстояний, примерно равных радиусу горизонта. Рассмотрим теперь излучение, приходящее с двух противоположных направлений на небе (рис. 5.1). Области, где было испущено это излучение, разделены сейчас удвоенным расстоянием до горизонта, а значит, они никак не могли взаимодействовать. Тем более – они не могли обмениваться теплом, чтобы уравновесить свою температуру.

В более ранние времена эти две области были ближе друг к другу, и может показаться, что это помогло бы им прийти в равновесие. Но в действительности раньше это было еще затруднительнее. Дело в том, что с удалением в прошлое радиус горизонта сокращается быстрее, чем расстояние между областями. В момент последнего рассеяния, когда испускалось излучение, наблюдаемая часть Вселенной была разбита на тысячи маленьких областей, которые не могли сообщаться друг с другом. Итак, мы приходим к выводу, что никакой физический процесс не мог сделать огненный шар однородным, если бы он не был таким с самого начала.

Эту загадочную особенность Большого взрыва часто называют проблемой горизонта. Единственное объяснение удивительной однородности плотности и температуры в ранней Вселенной состоит в том, что такой сделал новорожденную Вселенную Большой взрыв. Логически такое “объяснение” совершенно правомерно. Физические условия в сингулярности не определены, так что сразу после Большого взрыва можно постулировать любое физическое состояние. Однако очень трудно отделаться от чувства, что это совершенно ничего не объясняет.

Другая удивительная особенность Большого взрыва состоит в тонкой сбалансированности вспышки, заставившей разбегаться частицы, и силы притяжения, которая замедляет расширение. Если бы плотность материи во Вселенной была больше, ее гравитационного притяжения хватило бы, чтобы остановить расширение и в итоге заставить Вселенную вновь сколлапсировать. При немного меньшей плотности Вселенная расширяется бесконечно. Наблюдаемая плотность с точностью до нескольких процентов равна критической, отвечающей пограничной линии между этими двумя режимами. Это очень странно и требует объяснения.

Трудность связана с тем, что в ходе космической эволюции Вселенная удаляется от критической плотности. Если, например, мы начинаем со значения на один процент выше критического, то менее чем через минуту получим удвоенную критическую плотность, а уже через три с небольшим минуты вселенная вновь сожмется в точку. Аналогично, если начать с плотности, уступающей критической на один процент, то через год она станет в 300 000 раз ниже критической. Во вселенной с такой низкой плотностью никогда не образуются звезды и галактики; в ней не будет ничего, кроме крайне разреженного газа без каких-либо образований. Чтобы спустя 14 миллиардов лет – то есть при нынешнем возрасте Вселенной – ее плотность оставалась почти равной критической, начальное состояние должно быть выверено с хирургической точностью. Вычисления показывают, что она не должна отличаться больше чем на 1/100000000000000 долю процента.


Рис. 5.1. Космическое излучение, приходящее с двух противоположных направлений на небе, испущено в областях, которые ныне разделены двойным расстоянием до горизонта.


Все это тесно соотносится с вопросом о геометрии Вселенной. Благодаря Фридману мы знаем о связи между плотностью Вселенной и ее крупномасштабной геометрией. Вселенная замкнута, если плотность выше критической, открыта – при более низкой плотности и плоская, если плотность в точности равна критической. Таким образом, вместо того чтобы спрашивать, почему плотность Вселенной так близка к критической, можно с тем же успехом задаться вопросом, почему геометрия пространства так близка к плоской. Поэтому часто говорят не о загадке тонкой настройки, а о проблеме плоской геометрии Вселенной.

Проблемы горизонта и плоской геометрии были осознаны в 1960-х годах, но почти не обсуждались, поскольку не было ровным счетом никаких идей, как за них взяться. К ним нельзя подступиться, не сталкиваясь с куда большей скрывающейся за ними загадкой: что же в действительности случилось в момент Большого взрыва? Какова была природа силы, которая вызвала космическую вспышку и заставила частицы разлетаться друг от друга? Поскольку почти за полвека на этом направлении не было достигнуто никакого прогресса, физики стали привыкать к мысли, что это один из тех вопросов, которые не следует задавать, поскольку либо они лежат за пределами физики, либо физика к ним еще не готова. Так что когда Алан Гут в 1980 году совершил впечатляющий прорыв и предложил способ одним махом справиться с несколькими неподатливыми космологическими загадками, это оказалось полной неожиданностью.[30]30
  Все подробности пути Алана Гута к открытию инфляции описаны в его блестящей книге “Инфляционная Вселенная: в поисках новой теории происхождения космоса” (The Inflationary Universe: The Quest for a New Theory of Cosmic Origins, Addison-Wesley, Reading, 1997).


[Закрыть]

Гут выдвинул идею, согласно которой за раздувание Вселенной отвечает отталкивающая гравитация. Он предположил, что ранняя Вселенная содержала очень необычную материю, которая порождала мощные силы гравитационного отталкивания. Если вы когда-нибудь попробуете прочесть лекцию о подобных идеях, лучше вам припасти в кармане кусок антигравитационного вещества или по крайней мере подготовить очень хорошие аргументы в пользу его существования. К счастью для Гута, он не изобретал никаких волшебных материалов. Ведущие теории элементарных частиц уже наперебой предлагали их под названием ложного вакуума.

Ложный вакуум

“А ты можешь из ничего что-нибудь сделать, дяденька?” —

“Нет, дружок, из ничего не выйдет ничего”.

Шекспир, “Король Лир” (пер. Т. Л. Щепкиной-Куперник)

Вакуум – это пустое пространство. Его часто используют как синоним слова “ничто”. Вот почему идея энергии вакуума показалась такой странной, когда ее впервые выдвинул Эйнштейн. Однако под влиянием достижений теории элементарных частиц за последние три десятилетия отношение физиков к вакууму коренным образом поменялось. Исследования вакуума продолжаются, и чем больше мы узнаем о нем, тем он кажется сложнее и удивительнее.

Согласно современным теориям элементарных частиц вакуум – это физический объект; он может быть заряжен энергией и может находиться в разнообразных состояниях. В терминологии физиков эти состояния называют разными вакуумами. Типы элементарных частиц, их массы и взаимодействия определяются лежащим в основе вакуумом. Взаимосвязь между частицами и вакуумом подобна той, что существует между звуковыми волнами и материалом, по которому они распространяются. Вакуум, в котором мы живем, находится в наинизшем энергетическом состоянии, его называют “истинным вакуумом”.[31]31
  Вполне возможно, что наш вакуум не является самым низкоэнергетическим. Теория струн, которая сегодня считается основным кандидатом на роль фундаментальной физической теории, предполагает существование вакуумов с отрицательной энергией. Если они действительно существуют, то наш вакуум спонтанно распадется с катастрофическими последствиями для всех содержащихся в нем материальных объектов. Мы обсудим теорию струн в главе 15, а возможность распада вакуума – в главе 18. А пока будем предполагать, что обитаем в истинном вакууме.


[Закрыть]

Физики собрали массу знаний о частицах, которые населяют этот тип вакуума, и силах, действующих между ними. Сильное ядерное взаимодействие, например, связывает протоны и нейтроны в атомных ядрах, электромагнитные силы удерживают электроны на их орбитах вокруг ядер, а слабое взаимодействие отвечает за поведение неуловимых легких частиц, называемых нейтрино. В соответствии со своими именами эти три взаимодействия обладают очень разной силой, причем электромагнитное взаимодействие занимает промежуточное положение между сильным и слабым.

Свойства элементарных частиц в других вакуумах могут быть совершенно иными. Неизвестно, сколько существует разных вакуумов, но физика элементарных частиц позволяет предположить, что их, вероятно, должно быть еще по крайней мере два, причем обладающих большей симметрией и меньшим разнообразием частиц и взаимодействий. Первый из них – это так называемый электрослабый вакуум, в котором электромагнитное и слабое взаимодействия имеют одинаковую силу и проявляются как составляющие одной объединенной силы. Электроны в этом вакууме имеют нулевую массу и неотличимы от нейтрино. Они движутся со скоростью света и не могут удерживаться внутри атомов. Неудивительно, что мы живем не в этом типе вакуума.

Второй – это вакуум Великого объединения, в котором сливаются все три типа взаимодействий между частицами. В этом высокосимметричном состоянии нейтрино, электроны и кварки (из которых состоят протоны и нейтроны) становятся взаимозаменимыми. Если электрослабый вакуум почти наверняка существует, то вакуум Великого объединения – гораздо более умозрительная конструкция. Теории элементарных частиц, которые предсказывают его существование, привлекательны с теоретической точки зрения, но задействуют чрезвычайно высокие энергии, а их наблюдательные подтверждения немногочисленны и в основном носят косвенный характер.

Каждый кубический сантиметр электрослабого вакуума содержит колоссальную энергию и – согласно соотношению Эйнштейна между массой и энергией – громадную массу, около десяти миллионов триллионов тонн (это примерно масса Луны). Сталкиваясь с такими огромными числами, физики переходят на сокращенную запись чисел, выражая их степенями десятки. Триллион – это единица, за которой следует 12 нулей; его записывают как 1012. Десять миллионов триллионов – это единица с 19 нулями; то есть плотность массы электрослабого вакуума составляет 1019 тонн на кубический сантиметр. Для вакуума Великого объединения плотность массы оказывается еще больше, причем чудовищно больше – в 1048 раз. Излишне упоминать, что этот вакуум никогда не создавался в лаборатории: на это потребовалось бы много больше энергии, чем доступно при современных технологиях.

По сравнению с этими ошеломляющими величинами энергия обычного истинного вакуума ничтожна. Долгое время считалось, что она в точности равна нулю, однако недавние наблюдения указывают на то, что вакуум обладает небольшой положительной энергией, которая эквивалентна массе трех атомов водорода на кубический метр. Значение этого открытия прояснится в главах 9, 12 и 14.

Высокоэнергичные вакуумы называют “ложными”, поскольку, в отличие от истинного вакуума, они неустойчивы. Спустя короткое время, обычно малую долю секунды, ложный вакуум распадается, превращаясь в истинный, а его избыточная энергия высвобождается в виде огненного шара из элементарных частиц. В следующих главах мы гораздо подробнее рассмотрим процесс распада вакуума.

Если вакуум обладает энергией, то, согласно Эйнштейну, он должен иметь и натяжение.[32]32
  Этот вывод легко понять из простых энергетических соображений. Сила всегда действует на физический объект в направлении уменьшения его энергии. (Точнее, потенциальной энергии, которая представляет собой составляющую энергии, не связанную с движением.) Например, сила гравитации тянет объекты вниз, в направлении убывания их энергии. (Гравитационная энергия растет с высотой над землей.) Для ложного вакуума энергия пропорциональна объему, который он занимает, и может быть уменьшена только сокращением объема. Поэтому должна существовать сила, вызывающая сжатие вакуума. Эта сила и есть натяжение. Глава 6. Слишком хорошо, чтобы быть ошибкой


[Закрыть]
Но, как мы обсуждали в главе 2, натяжение создает отталкивающий гравитационный эффект. В случае вакуума отталкивание в три раза сильнее, чем гравитационное притяжение, вызванное его массой, так что в сумме получается очень сильное отталкивание. Эйнштейн использовал эту антигравитацию вакуума, чтобы уравновесить гравитационное притяжение обычной материи в своей стационарной модели мира. Он обнаружил, что баланс достигается, когда плотность массы материи в два раза превосходит вакуумную. Гут предложил другой план: вместо уравновешивания Вселенной он хотел ее раздуть. Поэтому он позволил отталкивающей гравитации ложного вакуума господствовать, не встречая сопротивления.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации