Текст книги "Научные открытия для тех, кто любит краткость"
Автор книги: Алла Казанцева
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 27 (всего у книги 29 страниц) [доступный отрывок для чтения: 10 страниц]
4 декабря
Закон всегда прав!
4 декабря 1930 года Вольфганг Паули отправил письмо, в котором впервые изложил гипотезу о существовании нейтрино.
К 1930 году были известны всего две элементарные частицы: протон и электрон. В то время физики зашли в тупик: закон сохранения энергии, который еще никогда не подводил, похоже, нарушался при радиоактивном бета-распаде ядер – часть энергии куда-то пропадала. Даже Нильс Бор «не устоял» и предположил возможность нарушения закона сохранения энергии в микромире. Но Паули нашел другое объяснение этой пропаже. Он предположил, что пропавшую энергию уносит неизвестная частица – нейтральная и очень легкая, поэтому она не регистрируется обычными способами. Свою идею он изложил в письме участникам Международной конференции по вопросам радиоактивности. «Дорогие радиоактивные дамы и господа, – писал Паули, – …я предпринял отчаянную попытку спасти закон сохранения энергии…» (далее излагалась гипотеза о новой частице). К счастью, это письмо сохранила «радиоактивная дама» Лиза Мейтнер, благодаря которой мы знаем точную дату рождения в мире физики этой самой таинственной и неуловимой частицы. В своем письме Паули назвал призрачную частицу нейтроном. Два года спустя Энрико Ферми предложил для легкой частицы Паули имя нейтрино.
Паули был уверен, что нейтрино никогда не удастся поймать. Он даже заключил об этом пари. 25 лет спустя пари он проиграл. Сегодня физики ловят нейтрино от ядерных реакторов и ускорителей, взрывов сверхновых звезд, из центра Солнца и т. д. Ежесекундно через ваше тело проходит миллион миллиардов нейтрино.
5 декабря
Соотношение неопределенностей
5 декабря 1901 года родился Вернер Гейзенберг, немецкий физик, лауреат Нобелевской премии 1932 года «за создание квантовой механики» (ум. 1976).
Вернер Гейзенберг был одним из учеников Нильса Бора. В их жарких спорах постепенно рождалось понимание совершенно иного мира – мира микрочастиц. Общие законы природы, проявляясь в микромире, приводят к непривычным для нашего ума следствиям. Так, нам представляется естественным знать одновременно положение и скорость объекта (эта информация позволяет предсказывать его траекторию). Совсем иное дело в микромире: определяя положение микрочастицы, мы «грубо вмешиваемся в ее жизнь», результатом чего становится неопределенность ее дальнейшего движения, т. е. скорости и траектории. В 1927 году Гейзенберг записал знаменитое соотношение неопределенностей для координаты (Dх) и соответствующей проекции импульса (Dр) частицы. Чем точнее мы измеряем одну из этих величин, тем неопределеннее становится вторая. Их произведение не может быть меньше постоянной Планка h = 6,6 × 10-34 кг·м2/c – фундаментальной константы, присутствующей во всех квантовых законах. Итак, Dх × Dр» h. Постоянная Планка так мала, что это соотношение нисколько не ограничивает точность наших измерений для привычных объектов (даже маленьких пылинок). Но для элементарных частиц, например, электрона в атоме, одновременное знание координаты и скорости становится невозможным.
Гейзенберг ехал на машине и превысил скорость.
Его останавливает дорожная полиция:
– Вы знаете, с какой скоростью едете?
– Нет, зато я точно знаю, где нахожусь.
6 декабря
Что такое диамагнетизм
6 декабря 1845 года Фарадей представил свою статью «О магнитном состоянии всякого вещества», где изложил открытие диамагнетизма.
Ходячее выражение: притягивает, как магнит. На протяжении столетий люди связывали магнетизм с притяжением. Но еще в 1778 году голландский ученый А. Бургманс обнаружил, что магнит может и отталкивать! Он положил в бумажный кораблик кусочек висмута, поставил кораблик на воду и поднес сильный магнит. Кораблик уплывал от магнита (кстати, этот опыт не так-то просто повторить – уж очень слабо действует магнит на висмут). Сообщение Бургманса ученые не приняли всерьез. А в 1845 году 54-летний и уже знаменитый Майкл Фарадей взялся исследовать магнитные свойства веществ. Он подвешивал на длинной нити образцы между полюсами сильного магнита. Оказалось, что все вещества так или иначе реагируют на магнитное поле. Но одни вещества притягивались к ближайшему полюсу магнита, а другие отталкивались от обоих полюсов. Если брать образцы в форме стерженьков, то первые устанавливались вдоль силовых линий магнитного поля, а вторые – поперек. Так возникли названия: парамагнетик (греч. «пара» – вдоль) и диамагнетик («диа» – поперек). Фарадей перепробовал уйму веществ и убедился, что большинство из них – диамагнетики. В их числе оказались: слоновая кость, баранина вяленая, говядина вяленая, говядина свежая, кровь свежая, хлеб, шелковичный червь… Так Фарадей заново открыл диамагнетизм. Надо добавить, что диамагнетики хоть и реагируют на магнитное поле, но чрезвычайно слабо. Именно поэтому они так долго и «скрывались» от ученых.
7 декабря
Жалобный лист летчиков
С 1996 года 7 декабря – Международный день гражданской авиации.
После каждого полета пилоты компании Qantas заполняют «лист жалоб», в котором описывают неполадки, возникшие во время полета. Инженеры устраняют неполадки и внизу листа пишут, какие меры были приняты. Вот несколько реальных записей (П – пилот, И – инженер).
П: Что-то в кабине разболтано.
И: Что-то в кабине подтянуто.
П: Не работает радиолокационная система.
И: Радиолокационная система никогда не работает в положении «OFF».
П: Пробный полет нормальный, за исключением слишком жесткой автоматической посадки.
И: В данной модели не предусмотрена система автоматической посадки.
П: Hа приборной доске три таракана!
И: Один убит, один ранен, одному удалось уйти.
П: Стук в кокпите, как будто человечек молоточком.
И: Молоточек у человечка отняли.
П: Основное внутреннее левое колесо почти требует замены.
И: Основное внутреннее левое колесо почти заменено.
П: Самолет странно ведет себя.
И: Самолет предупрежден, что нужно быть послушным, лететь нормально и не шалить.
Стоит отметить, что у этих шутников не случилось ни одной авиакатастрофы.
– Вышка управления вызывает борт 762. Не можем связаться с вами. Если слышите, качните крылом.
– Борт 762 вызывает вышку управления. Я приземлился два часа назад. Если слышите меня, качните вышкой.
8 декабря
Хвостатые звезды
8 декабря 1831 года в городе Николаеве, на Черноморском побережье, родился выдающийся русский астроном Федор Александрович Бредихин (ум. 1904).
Все его родственники были моряками. Возможно, Федора заманила на иной путь большая комета 1843 года, которую ему довелось наблюдать в детстве. А в середине 1858-го, когда он готовился к работе над диссертацией на физико-математическом факультете Московского университета, на небе появилась необычайно яркая и эффектная комета Донати. Эти впечатления определили главное направление его научной деятельности. Магистерская диссертация Бредихина называлась «О хвостах комет». Его первая научная работа посвящена детальному исследованию кометы Донати. К тому времени о природе этих небесных тел знали еще очень мало. На протяжении веков кометы считали предвестниками различных несчастий: войн, эпидемий, голода, землетрясений и прочих трагедий. В дошедших до нас письменных памятниках содержится большое число фантастических историй, связанных с кометами. В то же время древние записи о кометах и рисунки содержат достоверные сведения, имеющие научное значение. Уже в древности были открыты два важных факта: во-первых, направленность кометных хвостов в сторону, противоположную Солнцу, и, во-вторых, изогнутость некоторых из них. Бредихин детально разработал теорию кометных хвостов и одним из первых начал изучение спектров голов комет.
17 лет он был директором обсерватории Московского университета, создав «московскую астрофизическую школу», а затем руководил Пулковской обсерваторией. Изучать кометы он продолжал до конца своих дней.
9 декабря
Сверхтекучий гелий
В начале декабря 1937 года Петр Леонидович Капица открыл сверхтекучесть жидкого гелия.
Жидкий гелий, полученный в 1908 году, был самым холодным веществом в мире. При температуре 4 градуса Кельвина (минус 269 °C) он уже кипел. Откачивая пар над его поверхностью, можно понизить температуру еще на три градуса. В 1932 году нидерландский физик Кеезом обнаружил, что при охлаждении жидкого гелия ниже двух градусов Кельвина его кипение внезапно прекращается, а поверхность становится абсолютно гладкой. Теплопроводность гелия при этом резко увеличивается.
Удивительные свойства гелия заинтересовали Петра Капицу (см. 9 июля). Он предположил, что увеличение теплопроводности связано с очень активным перемешиванием жидкости. Это возможно, если вязкость гелия становится очень малой. Чтобы проверить свою гипотезу, Капица поставил элегантный эксперимент. Он тщательно отшлифовал две стеклянные пластинки и пропустил гелий через щель толщиной менее одной тысячной миллиметра. Результат поразил: гелий буквально провалился сквозь щель! Для сравнения: литр воды просачивался бы через такую щель в течение двух тысяч лет. Совершенствуя эксперимент, Капица пришел к выводу, что вязкость у гелия вообще отсутствует. Он назвал такое состояние сверхтекучестью. Среди всех жидкостей этим свойством обладает только гелий. Капица говорил: «Мне в жизни в первый раз удалось найти такое фундаментальное свойство вещества».
Ландау, автор теории сверхтекучести, шутил: «Теорфизика состоит из двух частей: одна – собственно теоретическая физика и другая – теория сверхтекучести гелия».
10 декабря
Присуждение Нобелевских премий
10 декабря 1901 года были вручены первые Нобелевские премии. Ежегодно в этот день – день кончины Нобеля (см. 3 сентября) – в Концерт-холле Стокгольма проходит церемония вручения премий.
В истории науки нет награды, сравнимой с Нобелевской премией по престижности и международному авторитету. Механизм отбора кандидатов тщательно отлажен. В сентябре Шведская академия рассылает примерно две тысячи писем крупным ученым, писателям и лауреатам Нобелевских премий прошлых лет с просьбой о выдвижении кандидатов. К 1 февраля прием заявок заканчивается, и тогда приступают к работе Нобелевские комитеты, которые должны свести список кандидатов (их обычно набирается 200–300) до пяти имен в каждой области. На научную экспертизу в Стокгольме не жалеют средств – ежегодно их расходуется больше, чем на выплату самих премий. В конце мая комитет докладывает о результатах отбора. В сентябре академики собираются на обсуждение. Результат голосования объявляется на пресс-конференции в первой декаде октября. Все происходящее в Нобелевских комитетах является строго конфиденциальным, будущие лауреаты до последнего момента не знают о своей «избранности». Бывали случаи, когда «новоиспеченным» лауреатам сообщали об этом по телефону из Стокгольма, а те бросали трубку, подозревая розыгрыш.
Непонятно, почему Нобель не учредил премии по математике. Есть версия, что он не любил математиков, поскольку один отбил у него в молодости невесту, а другой пытался ухаживать за его женой. А может, Нобель просто не верил, что математики могут принести пользу человечеству.
11 декабря
Макс Борн и Нобелевская премия
11 декабря 1882 года родился немецкий физик-теоретик Макс Борн, один из пионеров квантовой механики (ум. 1970).
История не всегда бывает справедлива. В данном случае это проявилось в решении Нобелевского комитета о присуждении премии 1932 года «за создание квантовой механики» только Гейзенбергу. Между тем историческая статья, содержавшая в завершенном виде изложение аппарата квантовой механики, появилась в 1925 году в Берлинском «Физическом журнале», подписанная тремя именами: М. Борн, В. Гейзенберг, П. Иордан. После присуждения премии Вернер Гейзенберг писал своему учителю: «Дорогой Борн! <…> Тот факт, что я один получил Нобелевскую премию за работу, сделанную в Геттингене нами тремя, угнетает меня, и я, право, не знаю, что сказать Вам… Я верю при этом, что все достойные физики хорошо знают, сколь многое сделали Вы и Иордан для возведения здания квантовой механики. И тут ничто не может измениться из-за ложного решения, принятого посторонними. Но я сам не могу сделать ничего иного, кроме как еще раз поблагодарить Вас за дни прекрасного сотрудничества и признаться, что мне немножко стыдно. С сердечным приветом – Ваш В. Гейзенберг».
Прошли годы, и уже не все помнили о роли Борна в построении квантовой механики. Но 22 года спустя, в 1954 году, награда все же нашла своего героя: Макс Борн удостоился Нобелевской премии «за исследования по квантовой механике, особенно за статистическую интерпретацию волновой функции».
Сам термин «квантовая механика» для новой теории был введен Максом Борном.
12 декабря
Почему небо голубое
Каждый ребенок задает этот вопрос. А ответ на него нашел в 1871 году знаменитый английский математик и физик Рэлей. Когда солнечные лучи проходят сквозь атмосферу, они рассеиваются на неоднородностях, возникающих в ее верхних слоях. Не будь этого рассеяния, мы видели бы Солнце на фоне черного неба, каким видят его космонавты с МКС. Рэлей показал, что синий свет рассеивается молекулами воздуха примерно в 6 раз сильнее, чем красный, поэтому небо и выглядит голубым. Чем ниже солнце над горизонтом, тем больший слой воздуха и пыли проходят его лучи и тем меньше в них голубого цвета по сравнению с красным – так возникают багряные закаты.
Большую часть физических исследований Рэлей выполнил в своей усадьбе в маленькой лаборатории с единственным ассистентом. Он посвятил науке всю свою жизнь, не получая платы за этот труд. Напротив, в 1906 году он пожертвовал часть своих средств на строительство левого крыла знаменитой Кавендишской лаборатории, руководителем которой он стал 12 декабря 1879 года, после смерти Максвелла. В 1894 году Рэлей вместе с Рамзаем открыл новый химический элемент – аргон – и определил его место в периодической таблице. Это открытие в 1904 году было отмечено Нобелевской премией.
Он работал до самых преклонных лет и писал так хорошо и ясно, что его труды читают и цитируют до сих пор.
Рэлей был остроумным рассказчиком. Вот один из его коротких рассказов. «Горничная леди N опоздала на звонок и оправдывалась тем, что обо всем забыла, заинтересованная обсуждавшимся внизу вопросом: происходим ли мы все от… Дарвина».
13 декабря
Ремонт на орбите
13 декабря 1993 года успешно завершилась первая космическая экспедиция по обслуживанию и ремонту орбитального телескопа «Хаббл».
При планировании орбитальной обсерватории «Хаббл» (см. 24 апреля) изначально предполагалось спускать телескоп на Землю раз в пять лет для его проверки и обновления, но потом от этой идеи отказались из-за опасности загрязнений и деформаций зеркала при перегрузках. Было решено обслуживать телескоп на орбите раз в три года. Первая экспедиция по ремонту космической обсерватории, состоявшаяся в 1993 году, продолжалась в течение десяти дней. Эта экспедиция была одной из сложнейших за всю историю космонавтики, потребовалось пять длительных выходов в открытый космос. Астронавты установили систему оптической коррекции зеркала, благодаря которой телескоп наконец-то стал работать «во всю силу». 31 января 1994 года НАСА продемонстрировало первые снимки значительно лучшего качества. Наконец-то астрономы получили в свое распоряжение полноценный инструмент, и поистине космические затраты на его строительство стали оправдываться!
За годы работы космической обсерватории уже состоялось несколько экспедиций по ее обслуживанию и усовершенствованию. В итоге существенно расширились возможности телескопа. «Хаббл» помог заглянуть в космос вплоть до эпохи образования первых звезд, которая началась менее чем через миллиард лет после Большого Взрыва (см. 20 февраля), и уточнить возраст Вселенной – как сегодня полагают ученые, он составляет 13,8 миллиардов лет. 24 апреля 2020 года «Хаббл» отметил свое 30-летие на орбите. Его работа продолжается.
14 декабря
Стоит ли заниматься физикой?
14 декабря 1900 года – день рождения квантовой физики. В этот день Макс Планк (см. 23 апреля) на заседании Берлинского физического общества впервые сформулировал гипотезу о квантах энергии. За это открытие в 1918 году ему была присуждена Нобелевская премия по физике.
Молодой Планк пришел к 70-летнему профессору Филиппу фон Жолли и сказал ему, что решил заниматься теоретической физикой. Тот стал его отговаривать: «Зачем вы хотите испортить себе жизнь, ведь теоретическая физика уже в основном закончена… Стоит ли браться за такое бесперспективное дело?!» Так думали о будущем физики к концу XIX века многие ученые. Макс Планк не послушался своего наставника и стал одним из основателей новой, квантовой, физики. Планк также был одним из первых, кто принял и всецело поддержал теорию относительности Эйнштейна – еще одну революционную теорию ХХ века. Кстати, именно Планк и предложил сам термин «теория относительности».
Сегодня, как никогда ранее, физики видят, как много нерешенных задач и интригующих загадок им еще предстоит решить. Все человечество уповает на физику: эта наука должна помочь нам и справиться с экологическими проблемами, и обеспечить энергией растущее население планеты. Если вы собираетесь заняться физикой, вам можно только позавидовать – сколь много важного и интересного предстоит открыть!
«Новая научная истина обычно получает признание не оттого, что противники этой истины проникаются убеждением в ее правильности, а оттого, что они постепенно вымирают, а новое поколение не сомневается в том, что она верна» (М. Планк).
15 декабря
Туманность Андромеды
В декабре 1612 года астроном Симон Мариус, современник Галилея, впервые направил телескоп на маленькое туманное пятнышко в созвездии Андромеды.
Туманность Андромеды – это единственная галактика, которую в северном полушарии видно невооруженным глазом. Впервые об этой туманности упомянул в Х веке персидский астроном Аль-Суфи. Симон Мариус, направив на туманность телескоп, увидел, что «она похожа на зажженную свечу, если на нее смотреть сквозь роговую прозрачную пластинку». Вплоть до начала XX века астрономы считали, что это одна из туманностей нашей Галактики. Теперь-то мы знаем, что это своего рода близнец нашей Галактики, хотя и превышающий ее по размерам почти втрое. Туманность Андромеды удалена от нас на 2,5 миллиона световых лет. Эта огромная спираль повернута к нам чуть-чуть боком, так что нам удобно изучать детали ее строения. Мы знаем о ней даже больше, чем о своем собственном звездном доме. В самом центре ядра, как и в ядре нашей Галактики, прячется сверхмассивная черная дыра. В мощные телескопы можно различить в галактике Андромеды отдельные звезды, в том числе переменные – именно с их помощью и удалось измерить расстояние до этого звездного дома (см. 3 августа). А в 1885 году в Туманности Андромеды вспыхнула сверхновая звезда, затмившая своим блеском миллиарды других звезд. Пристально изучая нашу соседку, мы надеемся больше узнать о своем звездном доме.
Чтобы заметить невооруженным глазом туманность Андромеды, приходится смотреть на нее боковым зрением; если же вы будете глядеть прямо, туманное пятнышко пропадет.
16 декабря
Млечный Путь – наш звездный дом
Широкую белесую полосу, пересекающую звездное небо, древние греки назвали «галаксиас», что значит молочный. Отсюда произошло слово «галактика». Млечный Путь, или Галактика с большой буквы – это звездная система, в которой мы живем. Сто с небольшим лет назад астрономы воспринимали Млечный Путь как всю Вселенную и ничего не знали о других галактиках. А сейчас, наоборот, мы очень подробно изучили соседей, но сравнительно мало знаем о своем звездном доме. Почему так? А попробуйте составить карту города, безвыходно сидя в его переулочке! Мы думаем, что Галактика похожа на Туманность Андромеды. Это тоже крупная спиральная галактика, в профиль похожая на «летающую тарелку», погруженную в звездное гало сферической формы. Она содержит 200 миллиардов звезд, тысячи гигантских облаков газа и пыли, а также звездных скоплений. Есть в ней и загадочная темная материя, которой гораздо больше, чем всего видимого вещества. Галактика вращается, но не равномерно: с приближением к центру скорость вращения растет. Солнце удалено примерно на 25 000 световых лет от центра и делает оборот вокруг него за 220 миллионов лет. Увидеть ядро Галактики в оптические телескопы нельзя из-за большого количества межзвездной пыли. «Нащупать» его удалось с помощью радио– и инфракрасных лучей. Пока детально изучены лишь окрестности Солнца в радиусе около 5000 световых лет (а размер Галактики около ста тысяч световых лет). И все же, согласитесь, мы не так уж мало смогли разглядеть из своего «переулочка».
В крупные телескопы можно разглядеть сотни миллиардов галактик.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?