Электронная библиотека » Аманда Гефтер » » онлайн чтение - страница 4


  • Текст добавлен: 14 ноября 2016, 16:11


Автор книги: Аманда Гефтер


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 32 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

На основе этого опыта во всех книгах делается вывод о том, что свет ведет себя и как частица, и как волна – это так называемый корпускулярно-волновой дуализм; но при измерениях свет – всегда частица. Единичный фотон неизменно будет зарегистрирован в одной конкретной точке. Только когда вы попытаетесь построить распределение этих точек на поверхности, вы обнаружите, что свет – это волна.

Волна, которая описывает квантовую частицу, – это математическая волна, волновая функция. Если физические волны переносят энергию, то математические волновые функции переносят вероятность. Квадрат амплитуды волновой функции в любой точке пространства определяет вероятность нахождения в этой точке частицы. Если сделать достаточно много измерений положений точек света в пространстве, то получится карта распределения вероятности.

Насколько я могу судить, то, что распределение вероятности для одной частицы можно представить в виде волны, не так уж и странно. Странно то, что интерференционная картина возникает даже в том случае, когда фотоны летят поодиночке. Распределение вероятности, изображаемое чередованием светлых и темных полос, не закодировано в волновой функции единичного фотона – такое распределение получается в результате сложения двух волновых функций. Можно подумать, что один фотон проходит одновременно через обе щели и его волновая функция делится на две. Складываясь за экраном, они интерферируют друг с другом, и в результате получается новая волновая функция. В этом случае отдельные фотоны будут распределены в соответствии с новой волновой функцией, отчего и возникают чередующиеся светлые и темные полосы.

Если закрыть вторую щель и повторить эксперимент с однофотонными импульсами света, то интерференционная картина исчезает. Распределение интенсивности светового пятна на фотопластинке будет соответствовать волновой функции единичного фотона. Интерференционные полосы появляются только в случае, когда обе щели открыты.

Наконец, книги повествуют еще об одном варианте того же эксперимента, который физики проводят в попытке понять, каким образом фотон проходит через обе щели сразу. Они оставляют обе щели открытыми, но на этот раз снабжают их детекторами, которые срабатывают, определяя, через какую из щелей проходит фотон. Затем лазер снова включают в однофотонном режиме и направляют луч на экран с двумя щелями, которые до этого давали интерференционную картину. Но на этот раз на фотопластинке появляются два пятна, соответствующих волновой функции единичного фотона. Как если бы фотон знал, что это за ним следят.

«Ладно, – подумала я. – Это было то, о чем меня предупреждали: запах вскипающих мозгов. Он действительно знает, когда за ним следят?»

Нет, конечно: фотон не знает ничего. Но как вы объясните то, что происходит? Действительно ли фотон может находиться в двух местах одновременно, когда никто на него не смотрит, и в одном, если кто-то следит за ним? Что значит – наблюдать за фотоном? И почему наши наблюдения так влияют на исход эксперимента?

«Эксперимент с двойной щелью, в сухом остатке, – записала я в своем блокноте. – Почему распределения вероятностей одиночных фотонов дают интерференционную картину, как если бы фотон проходил оба пути одновременно? И почему интерференционная картина исчезает при попытке измерить, какой из двух путей выбирает фотон?»

Различные физики видели эту ситуацию по-разному. Фейнман, например, говорил, что когда мы не наблюдаем за частицами, они действительно проходят по двум траекториям одновременно. Бор, в свою очередь, утверждал, что если мы не производим наблюдение, у нас нет права говорить что-либо о частице. До тех пор, пока мы не проводим измерение, говорил Бор, у частицы нет определенного положения в пространстве. До тех пор, пока мы ее не измерили, она даже не частица. Она еще не стала чем-то вообще. Но если частицы не становятся чем-то до тех пор, пока их не измерят, что именно интерферирует, образуя интерференционный узор? Полосы нереализованных альтернатив? Нагромождение событий, которые могли бы случиться, да никогда в полной мере и не произошли?

Нет сомнений, что-то случается в тот момент, когда мы выполняем измерения: стоит выяснить, какой путь выбирает фотон, и интерференционная картина исчезает. Но квантовая теория сама по себе не описывает ничего подобного. Она не говорит ни слова об измерениях вообще. Согласно теории, все описывается с помощью волновых функций: фотон, щели, детекторы, фотографические пластинки и даже физик, проводящий эксперимент. Согласно теории, когда фотон проходит через детектор, его волновая функция накладывается на волновую функцию детектора. Система «фотон плюс детектор» описывается новой комбинированной волновой функцией, описывающей одновременно два состояния – «да, фотон прошел через эту щель» и «нет, фотон не проходил через эту щель». Согласно теории, когда физик проверяет показания детектора, его волновая функция накладывается на комбинированную волновую функцию фотона плюс детектор, образуя нагромождение вероятностей событий: «физик видит, что детектор А зарегистрировал фотон» и «физик видит, что детектор А не зарегистрировал фотон».

Вселенная, согласно квантовой теории, – это просто нагромождение суперпозиций. Иногда мы наблюдаем это в странном чередовании полос. Но мне никогда не приходилось оказываться и на Манхэттене и в Бруклине одновременно или повесить одно пальто сразу на несколько вешалок. Если мир действительно такой квантовый, где все эти одновременно живые и мертвые кошки?

Физики назвали это проблемой измерения: в волновой функции закодировано множество возможных состояний, но лишь одно из них дано нам в измерении. Что происходит в процессе измерения, из-за чего распределение вероятностей, описываемое волновой функцией, сводится к одному конкретному исходу? Как из множества разрешенных волновой функцией состояний выбирается одно? Действительно ли выбор происходит случайно и беспричинно? Действительно ли мир на своем самом фундаментальном уровне случаен? Эйнштейн не верил в случайность, но Вселенную, похоже, этот факт не волнует.

Бор утверждал, что квантовые явления, например частицы, обретают реальные свойства только после того, как происходит их измерение; нет смысла даже спрашивать, в каком состоянии они находились до этого. Нет никакого таинственного коллапса волновой функции, говорил он, потому что нечему коллапсировать. Бор не верил, что наблюдатели магическим образом оказывают влияние на результаты экспериментов или создают реальность в результате работы мысли – любой результат измерения объективен независимо от измерительного устройства, будь то детектор или фотопластинка или человеческий глаз.

Нельзя сказать, что он не понимал, насколько серьезной была эта проблема, требуя, как он писал, «радикального пересмотра наших взглядов на проблему физической реальности»[9]9
  Рус. пер. В. А. Фока; цит. по: Бор Н. Избранные труды. Т. 2. М., 1970. С. 182.


[Закрыть]
. Но в каком-то смысле тот факт, что свойства определялись относительно наблюдателя, не сильно отличался от постулатов теории относительности Эйнштейна, – это Бор с радостью отметил, когда Эйнштейн настаивал на том, что квантовая теория не могла быть полным описанием реальности. «Мне нравится думать, что Луна существует, даже если я не смотрю на нее», – говорил Эйнштейн. В ответ на это Бор писал, что «пересмотр наших взглядов на физическую реальность», которого требует квантовая теория, «может быть поставлен в параллель с тем фундаментальным изменением всех представлений об абсолютном характере физических явлений, который был вызван общей теорией относительности»[10]10
  Там же. С. 191.


[Закрыть]
. Другими словами, квантовая теория, конечно, изнасиловала реальность, но это вы первые начали.

На деле в квантовой теории было что-то гораздо более странное, чем в теории относительности. По крайней мере, в теории относительности существует некая фундаментальная реальность – единое четырехмерное пространство-время, которое просто по-разному выглядит в разных системах отсчета, связанных с наблюдателями, и теория Эйнштейна любезно предлагает инструменты, такие как преобразования Лоренца или диффеоморфные преобразования для перехода между различными системами. Но что является фундаментальной реальностью в квантовой теории? В этой теории как будто не существует реальности вовсе, пока кто-то не сделал измерения.

Конечно, если бы это было так, то не существовало бы наблюдателей, чтобы провести измерения. Наблюдатель сам должен обитать в реальном мире. В этом состояла основная проблема с интерпретацией Бора. Если измерения определяют реальность, то измерительный прибор должен находиться вне реальности, что даже в сумасшедшем квантово-механическом мире выглядит абсолютно невозможным. Кроме того, любой измерительный прибор, включая самого человека, в конечном счете состоит из субатомных частиц, и проведение какой-либо онтологической грани между ними просто вызывает приступ шизофрении.

Утверждение, что частица не имеет никаких «реальных» свойств до тех пор, пока кто-то не измерит их, выглядит особенно странно, когда понимаешь, что некоторые свойства не могут быть измерены одновременно. Это означает, что определенные свойства не могут существовать одновременно. Например, положение в пространстве и импульс частицы. Не существует никакого мыслимого способа измерить одновременно и положение частицы в пространстве, и ее импульс с идеальной точностью. Если вы хотите точно измерить положение частицы, то вам необходимо жестко зафиксированное измерительное устройство, которое не будет двигаться, когда частица столкнется с ним, в противном случае его движение исказит результат измерения. Но если вы хотите точно измерить импульс частицы, то для этого лучше выбирать измерительное устройство, способное легко двигаться при попадании в него частицы, так что его откат регистрирует импульс, переданный частицей.

Неважно, как вы проводите эти измерения: они в любом случае взаимно исключающие. Чем точнее вы знаете положение частицы в пространстве, тем менее точно вы знаете ее импульс. И это не просто практический вопрос. Это не просто потому, что вы не можете измерить то и другое сразу. Частица не может иметь их одновременно. Соотношение неопределенности между координатами и импульсом лежит в основе квантовой теории. Волновая функция частицы в координатном представлении и волновая функция той же частицы в импульсном представлении являются Фурье-образами друг друга – это два в равной степени пригодных, но взаимоисключающих представления одного и того же. Выбрав одно из них, надо забыть о другом. Распределение вероятностей, закодированное в волновой функции, отражает факт такого взаимного исключения. Если вы предположите, что частица обладает одновременно определенным импульсом и определенным положением в пространстве, то полученное распределение вероятностей приведет к расхождению с экспериментом. Другими словами, вы можете делать вид, что все это чисто техническая проблема, отражающая наши ограниченные возможности проводить измерения, а вовсе не фундаментальные свойства реальности, но тогда вы будете получать ошибки.

Таково положение вещей. Частица не может одновременно обладать точно определенными положением в пространстве и импульсом, но наблюдатель может измерить одно из них и волен выбрать то свойство частицы, которое необходимо измерить. Мораль: не существует реальности в обыденном смысле, скрывающейся за квантовой сценой, не существует никакого объективного эйнштейновского мира, который не зависит от наблюдателя. Есть просто вещи, которые мы измеряем. Это походит на парадокс, но, как говорил Фейнман: «парадокс» – это только конфликт между реальностью и ощущением того, что, как мы полагаем, «должно реальностью быть».

Мне было ясно, что в нашей охоте за окончательной реальностью нам с отцом надо быть готовыми к тому, что земля вдруг уйдет у нас из-под ног. Реальность, согласно квантовой теории, – это совсем не фунт изюму, это не привычный нам уютно освещаемый луною мир, который мы знали. Но было также ясно, что Бор и его последователи еще не сказали последнего слова в интерпретации теории – поскольку не существует четкого разграничения между наблюдателем и наблюдаемым миром. Если, предположительно, эта мнимая разделительная линия отмечает место рождения реальности, то было бы важно узнать, что происходит с реальностью, когда эта разделительная линия стирается.

Было также понятно, что нам необходимо внимательно рассмотреть значение и роль «наблюдателей» в целом. Как теория относительности, так и квантовая теория изменили роль, которую наблюдатели играют в физике – наблюдатели не в смысле люди или сознательные существа, но наблюдатели в смысле точки зрения. Теория относительности учит нас, что мы не можем говорить о пространстве и времени без указания системы отсчета. Независимо от наблюдателя эти понятия теряют всякий смысл, поскольку время одного наблюдателя может превратиться в пространство другого. Квантовая механика учит нас, что мы не можем говорить о свойствах материи, не определив сначала, что именно мы измеряем – положение в пространстве, например, или импульс. В сердце обеих теорий одно прозрение: важно направление взгляда. По некой, пока еще неизвестной причине, точка зрения определяет не только то, как мы видим мир, но и сам мир.

Во всяком случае, в этом они совпадают. А в чем же корень их несовместимости? Почему же те «сумасшедшие ребята»[11]11
  Намек на песню американской певицы Кеши Crazy kids.


[Закрыть]
так и не смогли заставить идею работать?


Лето в Нью-Йорке было в разгаре, когда мне наконец удалось увидеться с Фотини Маркопулу. Мы договорились о встрече в холле отеля Tribeca Grand. По моим представлениям, там у нас были неплохие шансы найти спокойное местечко, хорошо охлаждаемое кондиционером – к тому времени я уже научилась ценить эту роскошь. В моей бруклинской квартире ее не было, и я брала книгу и блокнот с собой в ванну, чтобы не перегреться.

Я приехала на встречу заранее и заняла столик в углу. Было слишком рано для аперитива или ужина, поэтому зал был почти пуст, только несколько человек сидели кто тут, кто там, болтали, читали журналы, потягивая ледяные напитки, прячась от солнца в затемненном зале, чтобы хоть немного отдохнуть от безжалостной жары.

Маркопулу вошла неторопливо, в длинной юбке и сандалиях. Сейчас она показалась мне красивее, чем тогда на конференции, греческие черты ее лица поражали, как и длинные, блестящие черные волосы. Сейчас, мне казалось, она выглядела даже моложе. Она была лет на десять меня старше, но в это было трудно поверить. Для физика на четвертом десятке она казалась практически ребенком – ее внешность никак не выдавала ее профессии. Когда я кому-то рассказываю, что занимаюсь физикой, это всегда вызывает некоторое недоумение, и я подумала, что Маркопулу должно быть хорошо известно, каково это. Я улыбнулась про себя, зная, что любой, кто взглянул бы на нас двоих, легко мог предположить, что мы разговариваем о парнях или о моде, но никак не о микроскопической структуре пространства-времени. Не то чтобы мне не нравилось говорить о парнях и о моде. Но сегодня мы говорили о петлевой квантовой гравитации.

Я встала, чтобы поприветствовать Маркопулу, пожала ей руку и сказала, как это здорово, что нам наконец удалось встретиться лично. Если ее и шокировал мой возраст, она не подала вида. Она расположилась на диване рядом со мной, и мы заказали себе прохладительных напитков. После нескольких дежурных фраз я обрушила на нее шквал вопросов. Я была уверена, что она с легкостью разгадает во мне неофита, но не придавала этому значения. Я была слишком взволнована самой возможностью получения знаний непосредственно из уст физика. Кто знал, представится ли мне когда-нибудь такой шанс снова?

Маркопулу объяснила мне основные трудности на пути объединения общей теории относительности с квантовой механикой. Именно Уилер первым серьезно отнесся к необходимости общей теории и сделал смелую попытку применить квантовую теории ко Вселенной в целом. Может показаться, что не было никакой нужды так изощряться, поскольку квантовая теория имеет дело с микроскопическими объектами, а не со вселенными. Но, как признавал даже сам Бор, нет четкой границы, отделяющей квантовый мир от классического, и нигде вы не встретите билборд с надписью «Добро пожаловать в неквантовый мир!» Да, квантовая механика требует разделения между квантовой системой и прибором, между наблюдаемым и наблюдателем, между тем, что внутри, и тем, что снаружи. Но теория никогда не говорит нам, как провести эту разделительную линию. Эта линия как движущаяся мишень: она может проходить где угодно и перемещаться в область все бо́льших размеров. Если у реальности где-то квантовая природа, то она везде квантовая. И не в некоторой области длин, а всегда, на любых масштабах.

Конечно, в обычной квантовой механике вы можете хотя бы делать вид, что у вас есть граница между наблюдателем и наблюдаемым, произвольно разделив Вселенную на две части и назвав одну часть измерительным прибором, а другую – квантовой системой. Но когда дело касается всей Вселенной в целом, вы даже не можете имитировать такую процедуру. Вселенная по определению включает в себя все пространство-время целиком, полный комплект всего, что существует. Для нее невозможно никакое «снаружи». А нет «снаружи» – нет и наблюдателей.

Квантовая космология родилась, когда Уилеру пришлось скоротать несколько часов между рейсами в аэропорту. Был 1965 год, и он ждал пересадки в Северной Каролине. Он попросил своего коллегу и друга физика Брайса Девитта, который по воле случая в то время жил неподалеку, составить ему компанию на несколько часов в аэропорту. Там они написали уравнение, которое Уилер назвал уравнением Эйнштейна – Шрёдингера, но оно более известно как уравнение Уилера – Девитта, и сам Девитт со временем стал называть его «это проклятое уравнение».

Это проклятое уравнение должно было решить проблему, которая обрекла на неудачу все предыдущие попытки квантования общей теории относительности. В квантовой механике время существует независимо от квантовой системы, вне ее, а часы находятся в том маловразумительном «неквантовом мире», будучи такой же частью «измерительного прибора», как и сам наблюдатель. Волновая функция описывает мгновенное состояние физической системы в каждый конкретный момент времени, эволюционируя в соответствии с уравнением Шрёдингера. Когда же дело касается пространства-времени, то говорить о его мгновенном состоянии становится невозможно, потому что пространство-время уже содержит все мыслимые мгновения. Пространство-время не может изменяться со временем, поскольку оно само и есть время. Кажется, что остается единственный способ выйти из положения: отделить от четырехмерного пространства-времени три пространственных измерения и одно временно́е, а затем описать пространственное распределение волновой функции, которая теперь может эволюционировать по отношению к измерению, называемому «время».

Однако в такой процедуре теряется нечто очень важное. А именно – главное свойство общей теории относительности, так называемый принцип общей ковариантности, который, в частности, гласит, что не существует предпочтительного способа разбивать пространство-время. Всякая система отсчета равноправна по отношению к любой другой системе отсчета, не существует способа выделить какую-то одну, в том или ином смысле лучшую, чем остальные. Разные наблюдатели могут разбивать пространство-время по-разному. Если мы решили квантовать только три пространственных измерения, нам придется отделить «пространство» от «времени». Но чье это будет пространство? И чье время? Любой выбор предполагал бы, что один из наблюдателей видит реальность в более правдивом свете, чем все остальные. А так быть не может: для Эйнштейна это было важнее всего, чтобы законы физики были одинаковы для всех.

Уилер и Девитт нашли выход. В их проклятом уравнении – аналоге уравнения Шрёдингера для пространства-времени – принцип общей ковариантности не нарушен, все наблюдатели в равных условиях, физические законы одинаковы для всех, и все бы в квантовой Вселенной было хорошо, да возникла одна загвоздка. Уравнение требовало, чтобы полная энергия Вселенной точно равнялась нулю.

Само по себе это не было таким уж странным: если Вселенная действительно возникла из ничего, то ее полная энергия должна равняться нулю. Но в квантовой механике это не так уж и бесспорно. Как положение в пространстве и импульс связаны принципом неопределенности – чем точнее вы знаете одно, тем менее точно знаете другое, – так же принципом неопределенности связаны время и энергия. Как только вы определили энергию квантовой Вселенной с бесконечной точностью, вам лучше распрощаться со временем.

Уилер и Девитт преуспели в спасении попыток квантования пространства-времени, но дорогой ценой: в конечном итоге в квантовой Вселенной время оказалось заморожено, мы застряли в одном вечном мгновении. Это была Вселенная в подвешенном состоянии – не существовало никаких гигантских часов, отсчитывавших одну абсолютную секунду за другой, давая нам возможность жить в мире, в котором время действительно что-то значит, в котором хоть что-то иногда меняется.

Если вы задумаетесь об этом, то для вас станет очевидно, что не существует никакого способа сохранить принцип общей ковариантности во Вселенной, которая изменяется во времени. Это две взаимоисключающие идеи, потому что если вся Вселенная развивается во времени, она должна развиваться относительно системы отсчета, которая находится за пределами Вселенной. Такая система отсчета становится выделенной, и мы тем самым нарушаем принцип. Так что выбирайте что-нибудь одно из двух.

Во время разговора с Маркопулу мне пришло в голову, что само понятие «Вселенная как целое» может быть так же бессмысленно. Вы не можете говорить о «Вселенной в целом», не подразумевая несуществующую систему отсчета за пределами Вселенной.

Проблема замороженной Вселенной Уилера и Девитта тесно связана с проблемой измерения в квантовой механике. Квантовая система находится в своем призрачном неопределенном состоянии до тех пор, пока наблюдатель или измерительный прибор не произведут измерения, подвергнув коллапсу волновую функцию всех возможностей и оставив одну действительность. Но если квантовой системой является сама Вселенная, то кто может проводить над ней измерение? Опять проблема сводится к тому, что никто не может выйти за рамки Вселенной, повернуться и посмотреть назад.

– Это скользкий вопрос, – сказала Маркопулу. – Кто наблюдает за Вселенной?

Космос – это полумертвый, полуживой кот. Почти действительный, но никогда не реальный.

Маркопулу пояснила, что она намеревалась решить проблему квантовой космологии, не угодив в ловушку проклятого уравнения и взяв на вооружение призыв Смолина: «первый принцип космологии должно быть такой: „нет ничего за пределами Вселенной“». Без часов, без наблюдателей. Без божественной выделенной системы наблюдения. «Как странно, – подумала я, – Вселенная – это единственный объект, у которого есть что-то внутри, но нет ничего снаружи». Это напомнило мне строки из стихотворения Борхеса:

 
И мир – лишь орел без решки,
Монета с одной стороною[12]12
  Рус. пер. Б. Дубина. Стихотворение «Кембридж» из цикла «Хвала тьме» (1967).


[Закрыть]
.
 

Вселенная – это и есть «монета с одной стороною».

Невозможный объект, как лестница Эшера или треугольник Пенроуза. Квантовая космология – это наука невозможных объектов.

Маркопулу верила, что у этой проблемы есть решение, и это означало радикально новый взгляд на вещи.

– Любая удовлетворительная квантово-теоретическая космология должна опираться на наблюдения, которые могут быть сделаны наблюдателями, находящимися внутри Вселенной, – сказала она. – Без уравнения Уилера – Девитта, без волновой функции Вселенной.

Под наблюдателями при этом понимаются, как она пояснила, не люди или какие-то иные разумные существа, а просто различные системы отсчета, то есть возможные точки зрения. И квантовая космология, которая оперирует только внутренними наблюдателями, понимаемыми как системы отсчета, требует от нас изменения одной вещи, которая кажется принципиально неизменной, – логики.

Вы, конечно, думаете, что логика – это логика, логика и еще раз логика, вечная и нерушимая. Но если это было бы так, то обычной логике не требовалось бы имя собственное. А оно имеется – булева логика. Это логика, состоящая из бесчисленных утверждение типа «если P, то Q», она известна также как бинарная логика, логика истинного или ложного, в которой надо выбирать между да и нет, 0 или 1, черным или белым.

Но квантовой космологии нужны оттенки серого. Эту потребность Маркопулу объяснила очень просто: скорость света конечна. Всякий раз, когда мы что-то наблюдаем, свет должен приходить к нам от объекта, и это требует времени. Свет распространяется со скоростью 186 000 миль в секунду, или 300 000 км/с. Ему нужно восемь минут, чтобы от Солнца достичь Земли – глядя на солнце на земле, мы как бы заглядываем на восемь минут в прошлое. Глядя на звезды, мы оглядываемся назад на тысячи лет, а наводя на них телескоп, мы попадаем в прошлое на миллиарды лет. Но и это еще не все: существуют звезды, свету которых не хватило всего времени существования Вселенной с самого момента Большого взрыва, чтобы до нас добраться. Если подождать достаточно долго, часть его до нас дойдет. Но при конечной скорости света всегда будут области Вселенной, которые мы не можем видеть.

Маркопулу пояснила, что часть Вселенной, которую я вижу, называется моим световым конусом – это растущий со временем шар. Если рисовать его в пространственно-временных координатах на желтых листах бумаги из отцовского блокнота, то мы бы увидели последовательность окружностей, увеличивающихся в диаметре по мере того, как они двигаются вверх вдоль оси времени, образуя конус. Если событие находится в моем световом конусе, то я могу его увидеть, если нет – то не могу. Я знаю, что мой световой конус должен быть довольно большим, ведь прошло уже почти четырнадцать миллиардов лет с момента рождения Вселенной. Но все же испытываю некоторую клаустрофобию.

– Давайте посмотрим, что мы можем сказать о каком-нибудь событии, например взрыве сверхновой, – продолжала Маркопулу. – Этому событию можно присвоить одно из двух возможных значений – «да» или «нет». Оно либо происходит, либо не происходит. Такой способ рассуждений о наблюдаемых событиях подсказывается булевой логикой. Но давайте спросим, произошел ли взрыв сверхновой звезды для данного наблюдателя? Существуют следующие возможности. Если сверхновая находится в его прошлом, мы можем сказать «да». Другая возможность заключается в том, что сверхновая не в его прошлом, но если подождать достаточно долго, то ее удастся увидеть. Ответ тогда – «да, но позднее». Еще одна возможность заключается в том, что сверхновая взорвалась так далеко от наблюдателя, что он никогда ее не увидит, и тогда это «нет». Тот факт, что вспышка сверхновой была, не имеет значения, потому что вопрос формулировался для данного наблюдателя. Так что в отличие от прежнего способа рассуждений, когда были только два возможных значения – «да» и «нет», сейчас мы получили целый спектр возможностей.

Этот новый вид небулевой логики называли интуиционистской логикой, как пояснила Маркопулу, и, услышав это название, я поперхнулась, сдерживая смех: трудно придумать что-нибудь, больше противоречащее интуиции. Эта логика существовала как своего рода логическая игра среди математиков, и Маркопулу была среди первых, кто применил ее в космологии.

Я начинала понимать, почему сделанное ею произвело такое большое впечатление на жюри конкурса молодых ученых во время конференции, посвященной юбилею Уилера. Она поместила крошечные световые конусы в вершины дискретной решетки квантового пространства, позволив структуре световых конусов определять эволюцию всей этой конструкции, применила правила интуиционистской логики в математической форме, известной как алгебра Гейтинга, сформулировала правила перехода от одного наблюдателя к другому, и – вуаля! – получилась квантовая космология, в которой ни наблюдатели, ни часы, находящиеся за пределами пространства-времени, не требуются. Строго говоря, это не было квантовой космологией. Это не квантовое описание Вселенной; это квантовое описание вселенной каждого индивидуального наблюдателя.

Несколько часов, казалось, пролетели незаметно. Мне было неловко, что я отняла у нее так много времени, но это был мой первый разговор с физиком с глазу на глаз, и не исключено, что последний, поэтому мне было важно выяснить все, что только можно. И я была рада, что она не попыталась воспользоваться своим квантовым туннелем, чтобы ускользнуть от меня и моих непрекращающихся вопросов. Я закончила разговор, спросив ее, что она думает о юбилейном симпозиуме Уилера.

– Я никогда не была на таких конференциях, – сказала она. – Люди просто вставали и говорили то, что они действительно думали. Так вообще-то не бывает. Это все благодаря Джонни Уилеру. Он не только поднял большие, важные проблемы, он еще очень доброжелательно принимал людей. Мы не часто так подбадриваем людей, говорящих что-то рискованное. Обычно мы стремимся находить в их рассуждениях ошибки. Научное сообщество – это кучка мальчишек, которым хотелось бы выглядеть умными.

Мы рассмеялись, вышли на залитую солнцем улицу и распрощались. Я направилась в Сохо, чтобы успеть на поезд в Бруклин. Я не могла дождаться момента, когда залезу в ванну и начну писать.


Пока я шла к метро, мой мозг гудел. Мне еще до этой встречи пришло понимание, что и теория относительности, и квантовая механика пытались сказать одно и то же: причина наших трудностей в попытке описать мир с позиций невозможного Бога-наблюдателя, взгляда из ниоткуда. Мы должны определить систему отсчета, наблюдателя. Но теперь наконец я поняла реальное противоречие между двумя теориями. Весь бардак можно суммировать в одном вопросе: а где наблюдатель?

В общей теории относительности наблюдатели должны быть внутри системы, так как «система» – это все пространство-время, и теория должна учитывать каждый бзик, который возникает как следствие их различия в системах отсчета. Это закрытое автономное целое. Квантовая механика, со своей стороны, имеет дело с открытыми системами, и наблюдатель должен быть вне их, чтобы делать измерения, превращая возможность в реальность. Если вы хотите объединить их в единую теорию, вы должны сперва выяснить, где находится наблюдатель: внутри или снаружи. Квантовая гравитация собирается поднять вопрос об этой опасной уловке-22[13]13
  Намек на книгу Джозефа Хеллера «Уловка-22» (1961).


[Закрыть]
: поместив наблюдателя вне Вселенной, вы нарушаете принцип общей ковариантности; если держать наблюдателя внутри, то коллапс волновой функции Вселенной будет невозможен.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации