Электронная библиотека » Анатолий Дружинин » » онлайн чтение - страница 2


  • Текст добавлен: 16 октября 2020, 06:43


Автор книги: Анатолий Дружинин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
§2. Проблемы поршневых уплотнений

Для того, чтобы понять значение и оценить эффективность того или иного технического изделия, следует проанализировать его работоспособность при граничных условиях: нулевых и максимальных величинах влияющих параметров.

Исходя из этого, для понимания значения поршневого уплотнения двигателя внутреннего сгорания, можно представить два конструктивных варианта: поршень без уплотнения с цилиндром и поршень с идеальным уплотнением, не допускающий вообще каких-либо утечек рабочих газов из цилиндра в картер двигателя.

Очевидно, не требует доказательств тот факт, что в первом случае двигатель даже не запустится, не говоря уже о его нормальной работе. И никакие конструкторско-технологические меры этому не смогут помочь. Если даже следовать примеру изготовления плунжерной пары и при изготовлении двигателя попытаться притереть поршень по цилиндру, то, вероятно возможно запустить двигатель, но, как только начнет прогреваться кинематическая пара «поршень – цилиндр», эффективность двигателя будет резко падать до спонтанной его остановки.

При нагреве цилиндра его внутренний диаметр увеличивается в большей степени, чем диаметр поршня. Гарантированный зазор между поршнем и цилиндром, значение которого в практических расчетах при проектировании цилиндра и поршня принимают от 0,04% до 0,06% от величины диаметра цилиндра, еще больше увеличивается. Конечно, это при условии нормального, т.е. эффективного уплотнения между поршнем и цилиндром. Через этот зазор рабочие газы напрямую прорываются в картер двигателя, происходит резкое падение рабочего давления в камере сгорания до значений ниже критических, при которых обычно происходят процессы воспламенения, распространения фронта пламени по всему объему камеры сгорания и сжигания топливовоздушной смеси. Эффективность этих процессов снижается и при определенных параметрах рабочие процессы в камере сгорания прекращаются, двигатель плохо запускается или совсем отказывается работать.

В контексте всего выраженного можно констатировать непреложное правило: эффективная работа двигателя и стабильность рабочих процессов, происходящих в цилиндре, начиная от впуска свежего заряда воздуха и заканчивая выпуском отработанных газов, возможны при условии постоянства всех факторов, участвующих в подготовке топливовоздушной смеси, ее сгорании и превращения в полезную работу.

Понятно, что одним из основных факторов, влияющих на процессы, происходящие в камере сгорания, является расчетное давление в цилиндре над поршнем, которое кардинальным образом оказывает влияние на работу двигателя, его технико-экономические и экологические характеристики.

Становится очевидным, что давление в цилиндре, в свою очередь, зависит от качества уплотнения между поршнем и цилиндром, другими словами – от эффективности поршневого уплотнения, т.е. от величины потерь трех физико-химических сред, сначала сжимаемого воздуха, затем топливовоздушной смеси и, в итоге, рабочих газов.

К этому обязательно следует добавить, «заложенное» в современных конструкциях поршневых уплотнений, увеличение потерь сжимаемого воздуха, топливовоздушной смеси и рабочих газов за счет термодинамических изменений размеров цилиндра, поршня и компрессионных колец, а также за счет износа деталей цилиндропоршневой группы в процессе эксплуатации двигателя.

Здесь уместно обратить внимание специалистов на пренебрежительное отношение к, так называемым, тепловым зазорам, которые корректнее обозначать, как гарантированные термодинамические зазоры, то есть зазоры, без которых не представляется возможным собрать ЦПГ, величина которых претерпевает изменения в процессе работы и эксплуатации двигателя. Термодинамические зазоры должны гарантировать надежный запуск двигателя и нормальное начало его работы в существующих климатических условиях. Как было отмечено выше, достаточно вольное назначение не только термодинамических, но и иных зазоров – больное место в автостроении.

Из приведенных данных можно сделать определенный вывод, заключающийся в том, что общепринятая принципиальная схема поршневого уплотнения двигателей внутреннего сгорания и поршневых компрессоров требует серьезной доработки. Причем, уплотнение выглядит простой, теоретически изученной и практически освоенной частью двигателя, поэтому разработчики при совершенствовании двигателя, чаще всего, принимают уплотнение, как данность, к тому же определенную ГОСТами.

Кроме того, раздельное расположение уплотнительных колец, каждого в своей поршневой канавке, можно отнести к разряду принципиальных ошибок в существующих поршневых уплотнениях ДВС и поршневых компрессоров. С обоснованием применения не отдельных «поршневых колец», как это используется в мировой практике двигателестроения, а поршневых уплотнений, как комплекса поршневых колец различной конструкции, расположенных в одном расточенном углублении поршня можно познакомиться в работе [13], подробности будут также представлены ниже.

Используя неэффективные поршневые уплотнения в современных двигателях внутреннего сгорания, разработчики вынуждены принимать меры, которые в той или иной, степени компенсируют недостатки существующих конструкций. Причем, принимаемые «меры» существенно влияют как на форму, так и на содержание двигателя. В качестве самого простого решения снижения газодинамических потерь по вине неудовлетворительного уплотнения конструкторы используют увеличение частоты вращения коленчатого вала двигателя

Обычно газодинамические потери связывают с уменьшением ресурса двигателя, что вполне справедливо, но не только. Увеличение частоты вращения коленчатого вала сокращает время всех подготовительных процессов, связанных с подачей топлива в камеру сгорания, делает более «жесткими» условия работы всех агрегатов и приборов, связанных с этими процессами. Сокращается время всех тактов рабочего цикла двигателя и время всех трех фаз сгорания топливовоздушной смеси, и, следовательно, снижается эффективность (полнота) сгорания топливовоздушной смеси. Это, несомненно, сказывается на увеличении расхода топлива и на ухудшении экологических показателей двигателя.

Можно сколь-угодно много повышать частоту вращения коленчатого вала двигателя, стремясь получить максимальное рабочее давление в цилиндре, но при этом необходимо помнить о том, что это, чаще всего, возможно при кратковременном использовании такого двигателя. Эту меру могут себе «позволить» конструкторы спортивной или военной техники, или иных специальных изделий.

В качестве второго «компенсатора» газодинамических потерь, на многих моделях двигателей, для обеспечения расчетного давления в цилиндре, все больше находят применение достаточно сложные системы и агрегаты различных «наддувов». Причем, эта мера серьезно усложняет конструкцию двигателя, его эксплуатацию и повышает цену. Рассматривая эффективность уплотнения между поршнем и цилиндром, имеет смысл более внимательно отнестись к проблеме наддува, все больше завоевывавшей автомобильный рынок. Соображения по поводу целесообразности использования турбонаддува в ДВС будут рассмотрены более подробно.

Итак, становится очевидным, что несовершенство архаичного по сути уплотнения между поршнем и цилиндром приводит многотрудную работу больших коллективов разработчиков и изготовителей двигателей к скромным результатам, которые должны и могут быть значительно лучше и убедительнее.

Приведенные аргументы должны обратить внимание разработчиков на совершенствование существующих конструкций, памятуя о том, что от качества поршневого уплотнения во многом зависит не только форма, но и содержание современного двигателя. О том, что в поршневых машинах используется заведомо некачественное уплотнение между поршнем и цилиндром, можно судить исходя из анализа формы износа рабочей поверхности компрессионных колец и поверхностей верхнего и нижнего торцов, на которые следует обратить особое внимание. Они отличаются по форме и размерам у различных моделей двигателей, причем эти отличия, в основном зависят от соотношения высоты компрессионных колец, радиальной толщины и величины гарантированного зазора между верхней полкой поршневой канавки и верхним торцом поршневого кольца.

Уплотнительные кольца, в силу своей конструктивной специфики, применяются только разрезные, имеют так называемый замок, т.е. зазор в разрезе кольца. Учитывая, что над поршнем и в зазоре между поршнем и цилиндром создается огромное давление рабочих газов от 8 МПа бензиновых двигателей до 20 МПа дизелей, величина зазора замка кольца имеет существенное значение. Многолетние исследования и поиски оптимальной конструкции поршневого уплотнения показали, что размещение компрессионных колец по разным поршневым канавкам приводит к тому, что «60…70% всех утечек происходит через замки поршневых колец» [14].

Некую неопределенность с назначением величины зазора в замках уплотнительных поршневых колец можно наблюдать на отечественной технике различных производителей. Так, например, зазор в замке компрессионного кольца двигателей ВАЗ при диаметре цилиндра 76 мм – от 0,25 до 0,45 мм; двигателей ЗМЗ при диаметре цилиндра 92 мм – от 0,3 до 0,7 мм; двигателей КАМАЗ при диаметре цилиндра 120 мм – от 0,4 до 0,6 мм, и т. д.

По этим данным трудно понять логику разработчиков, если сравнить максимально допустимый зазор 0,45 мм в замке компрессионного кольца двигателя ВАЗ с минимальным, но тоже допустимым зазором 0,4 мм в замке компрессионного кольца двигателя КАМАЗ. Причем в процессе эксплуатации износ компрессионных колец увеличивает величину зазора в замке до таких значений, когда продолжать эксплуатировать двигатель становится экономически нецелесообразно и экологически не позволительно, ему требуется капитальный ремонт.

Кроме того, широкие пределы размера зазора в замке компрессионных колец вызывают газодинамический дисбаланс двигателя, его повышенную вибрацию. Особенно это характерно для двурядных двигателей. Например, в одном ряду двигателя КАМАЗ может находиться цилиндр с поршнем, в котором установлено компрессионное кольцо с допустимым зазором в замке 0,4 мм, в другом ряду – с допустимым зазором в замке 0,6 мм. В результате различных газодинамических потерь в этих цилиндрах производится различная работа, которая сопровождается различными динамическими нагрузками, приводящими к дисбалансу в кинематической системе двигателя и дополнительным вибрациям со всеми вытекающими отсюда отрицательными последствиями. Разработчикам следует не только уменьшить отклонения на выполнение размера зазора, но и минимизировать его с учетом термодинамических изменений формы и размеров поршня и цилиндра.

Не прибегая к каким-либо дополнительным исследованиям, можно предложить исполнительные размеры зазоров замка для двигателей ВАЗ – 0,25+0,05 мм, для двигателей ЗМЗ – 0,3+0,05 мм; для двигателей КАМАЗ – 0,4+0,05 мм. Технологи должны постараться выполнить эти условия. Насколько позволяет проведенный анализ, пока этого в отечественных двигателях не делается.

Последние теоретические и экспериментальные исследования показали, что величину зазора в замке поршневого кольца можно не только минимизировать, но даже и обнулить. Более подробно об этом будет изложено в другом разделе.

§3. Влияние газодинамики на работу поршневых колец

Парадокс, но факт, что многие десятилетия, широко используемые в мировой практике поршневые уплотнения, пожалуй, самая архаичная и безнадежно устаревшая конструкция в современном двигателе. Классическая, жесткая схема уплотнения между поршнем и цилиндром с гарантированными термодинамическими зазорами и постоянно растущими в процессе эксплуатации зазорами в замках поршневых колец допускает, по общепринятому выражению специалистов «утечку» рабочих газов. Может быть, учитывая огромное рабочее давление в цилиндре, динамику процесса и существенные потери свежего заряда воздуха на такте сжатие и, не меньшие потери газо-воздушной смеси на такте рабочий ход, корректнее эти потери классифицировать, не как «утечки», а как прорывы рабочей среды, находящейся в цилиндре над поршнем в направление картера двигателя. Может быть, это позволит разработчикам обратить особое внимание при проектировании элементов цилиндропоршневой группы, обеспечивающих расчетное и стабильное рабочее давление и более полное его срабатывание.

При проектировании нового уплотнения между поршнем и цилиндром необходимо вспомнить о том, что существующие схемы поршневого уплотнения допускают очень большие потери: «В момент вспышки при положении поршня в ВМТ давление в канавке 1-го кольца близко к давлению Рz в цилиндре, а в канавке 2-го кольца составляет лишь 50% этой величины» [3]. Это свидетельство значительного прорыва рабочих газов, как в первую, так и во вторую поршневые канавки, и так далее. К сожалению это простая констатация факта без каких-либо последствий.

Рабочий такт «сжатие» характеризуется тем, что при повышенных газодинамических потерях снижается эффективность достижения критического давления сжатия, ухудшается приемистость двигателя из-за ухудшения процесса воспламенения и сгорания топливовоздушной смеси. На такте «рабочий ход» потери рабочих газов приводят к более резкому падению рабочего давления над поршнем и уменьшению полезной работы цикла и, соответственно, всей работы двигателя. В этой связи уместно привести следующие данные. «На преодоление трения поршневых колец приходится приблизительно до 40…50%, а иногда до 60% всех механических потерь в двигателе. Причем в карбюраторном двигателе с тремя поршневыми кольцами на первое кольцо приходится 60%, на второе 30% и на третье 10% затрат энергии на трение колец» [5].

Эти данные подтверждают прямую зависимость механических потерь от газодинамических процессов, проистекающих в верхней части поршня и в поршневых канавках.

Анализируя кинематику компрессионных колец и приведенные данные, можно свидетельствовать о ненормальности в работе поршневых колец. Не может быть таких запредельных механических потерь на трение кинематических пар, работающих в окружении моторного масла. С этим давно уже требовалось разобраться. Надо было не просто констатировать в учебниках такие данные, а дать анализ причин, способствующих появлению таких запредельных потерь и предложить меры по их устранению. Что и будет представлено в этом труде.

Специалистам должно быть известно, какие неприятности сопровождают газодинамические потери в двигателе. «Если утечка газа через ЦПГ превышает определенный предел, то в работе двигателя проявляются следующие неисправности:

– потеря мощности и повышение расхода топлива;

– дымный выхлоп с синим оттенком при полностью прогретом двигателе;

– ухудшение запуска двигателя;

– ускорение старения масла и увеличение его расхода;

– коксование и пригорание колец в канавках;

– повышенный износ колец и гильз цилиндров;

– перегрев поршня и колец;

– усиление нагаро – и лакоотложения, коррозия деталей, контактирующих с газами внутри картера двигателя;

– течь масла по разъемам, соединениям и прокладкам картера.

Работа двигателя в таком состоянии приводит к поломкам колец, задирам поршней и гильз цилиндров» (конец цитаты) [14].

Своими публикациями в научно-технических журналах, а также многочисленными изобретениями, обращалось внимание разработчиков на газодинамические процессы, которые при определенных условиях, лишают компрессионные кольца их упругих качеств. Кольца теряют свою работоспособность, плохо уплотняют, ухудшая теплопроводность, за счет «скобления» стенки цилиндра существенно повышают механические потери, снижая КПД двигателя и его ресурс. В четырехтактных двигателях положение как-то спасает большое количество и часто заменяемого высококачественного, дорогостоящего моторного масла, находящегося в зоне высоких температур. Двухтактный двигатель, ввиду своих конструктивных особенностей, вынужден реагировать на подобные вызовы «не правильного» поршневого уплотнения увеличением содержания масла в используемом топливе, со всеми вытекающими отсюда «недостатками», на которые ему указывают, включая экологические.

Существует мнение, что при правильном проектировании и изготовлении между поршневым кольцом и зеркалом цилиндра возникает устойчивый гидродинамический смазочный слой, разделяющий поверхности трения. К сожалению, это представляется теоретическим постулатом, на практике таких «правильно спроектированных» поршневых уплотнений пока не существует.

В этом, в известной степени, виновата газодинамика, разночтение которой сказывается на методике проектирования уплотнения между поршнем и цилиндром. Влияние газодинамики на работу компрессионных колец автор представил на всеобщее обозрение еще в 2004г. К сожалению, какой-либо реакции на материалы, опубликованные в уважаемых журналах [15], [16], не появилось.

Можно согласиться с оппонентами в том, что на верхнее компрессионное поршневое кольцо оказывает решающее воздействие почти полное рабочее давление, но на этом согласие и заканчивается. Для автора, профессионального технолога по двигателям, необычным явлением стал процесс износа рабочей поверхности компрессионного кольца и стенки гильзы цилиндра, на которой постоянно присутствует смазочное моторное масло. Теоретически и практически невозможно металлическим инструментом соскоблить в ноль масляную пленку с поверхности металлического предмета. Без выпаривания масляной пленки деталь не может подвергаться шабрению, притиранию, шлифованию и прочим механическим процессам обработки.

Поэтому стало непонятно, почему столь активно изнашиваются стенка цилиндра и рабочая поверхность компрессионного кольца. Следовательно, должно быть что-то такое, очевидно, не вполне нормальное, даже экстремальное, чтобы появился достаточно эффективный процесс износа кинематической пары «цилиндр – компрессионное кольцо». Необходимо было установить, как действует рабочее давление, с какими силами, от величины которых естественным образом зависит работоспособность компрессионного кольца, которой она может просто лишиться. На эти необходимые вопросы отвечает газодинамическая схема работы компрессионного поршневого кольца, представленная на рис. 1, впервые опубликованная автором в 2004 году [1].


Рис. 1. Газодинамическая схема работы компрессионного кольца двигателя КАМАЗ: 1 – цилиндр; 2 – поршень; 3 – компрессионное кольцо


Прорываясь через зазор между поршнем 2 и цилиндром 1 в верхнюю поршневую канавку, рабочее давление прижимает поршневое кольцо 3 к нижней полке поршневой канавки газодинамической силой F0, а к стенке цилиндра радиальной силой Fрад и силой собственной упругости. Как мы убедимся ниже, сила собственной упругости поршневого кольца ничтожно мала, по сравнению с газодинамической силой Fрад. По законам физики давление газов в замкнутом объеме (в данном случае это пространство, ограниченное поверхностями стенки цилиндра и поршневой канавкой) действует на окружающие поверхности силами, пропорциональными величинам площадей этих поверхностей.

Величина осевой газодинамической силы зависит от величины давления в поршневой канавке и величины площади верхнего торца компрессионного кольца S1, которая определяется по формуле:

S1 = π (r12– r22). Величина радиальной силы зависит от того же давления в поршневой канавке и площади внутренней вертикальной поверхности кольца S2, которая, в свою очередь определяется по формуле: S2 = 2 πr2h. Известно, что в верхней поршневой канавке находится почти полное рабочее давление.

Сделаем расчет максимальных газодинамических сил, например, для двигателя КАМАЗ в камере сгорания которого создается рабочее давление порядка 200 кг/см2 (20 МПа), диаметр цилиндра 120 мм, т.е. r1 = 60 мм = 6 см, высота кольца h = 3 мм = 0,3см, радиальная толщина t = 5 мм = 0,5 см, поэтому внутренний радиус кольца r2 = 55 мм = 5,5 см.

Следовательно, S1 = 3,14 (36 – 30,25) = 18,055 см2;

S2 = 6,28 х 5,5 х 0,3 = 10,362 см2.

Умножив давление рабочих газов на величины площадей, получим:

Fо = 200 кг/см2 х 18,055 см2 = 3611 кгс (36,10 кН);

Fрад = 200 кг/см2 х 10,362 см2 = 2072 кгс (20,72 кН),

Эти силы буквально блокируют собственную упругость компрессионного кольца, делают его неподвижным, похожим на режущий инструмент – круглый шабер, жестко «закрепленный в поршне этими огромными силами, интенсивно «прирабатывающий» гильзу цилиндра по себе, то есть по своей, к сожалению, не совсем круглой форме. Результатом является характерная выработка гильзы цилиндра в зоне ВМТ в той или иной мере на всех без исключения отечественных и зарубежных двигателях.

В данном случае особый интерес может представить сравнение газодинамических сил с механическими силами собственной упругости компрессионных поршневых колец с достаточно сложным их расчетом. Например, расчетная сила собственной упругости компрессионного кольца двигателя КАМАЗ 740.13 – 1004030 должна быть в пределах 26,46…40,18 Н, то есть газодинамическая радиальная сила более чем в 500 раз превышает силу собственной упругости кольца! Этот огромный контраст делает очевидным превалирующую роль «газодинамики» над «механикой» в расчетах компрессионных поршневых колец. Причем, это происходит в самые ответственные моменты, когда идет процесс сжигания топливовоздушной смеси и давление в камере сгорания достигает максимального значения. По этой проблеме кроме отечественных исследований имеются хорошие исследования немецкой фирмы Goetze, правда, без учета влияния газодинамики на работу компрессионных колец.

На «обработку» гильзы в зоне ВМТ на тактах «сжатие» и «рабочий ход» тратится существенная часть полезной работы. По этой причине проблема ремонта гильзы цилиндра, которая на три четверти ее длины снизу практически не изнашивается, заключается в растачивании гильзы на всю ее длину на размер диаметра изношенной части (что не всегда возможно) или в восстановлении ее верхней части.

Тем не менее, можно достаточно просто исключить вредное влияние рабочего давления на работу компрессионных колец, если устранить зазор между полками поршневой канавки и торцами компрессионного кольца, а также зазор в замке кольца. Как показали последующие исследования, это практически не представляет каких-либо трудностей. Но в рамках жесткой, неуправляемой схемы уплотнения сделать это не представляется возможным, нужна принципиально новая схема уплотнения, которая автоматически учитывала бы все изменения в процессе работы двигателя, то есть была бы саморегулируемой.

В приведенном примере с двигателем КАМАЗ следует обратить особое внимание на разницу газодинамических сил ∆F = 1539кгс (15,40 кН)! На других типах и моделях ДВС полученная закономерность в той или иной степени повторяется. Осевая газодинамическая сила твердо прижимает поршневое кольцо к нижней полке поршневой канавки силой более трех тонн, а радиальная сила пытается выполнять свою функцию – прижимать рабочую поверхность кольца к стенке цилиндра. Понятно, что преодолеть осевую силу, превосходящую почти более чем на 1,5 т, радиальная сила не в состоянии.

Наверное, разработчики должны обратить внимание на эту информацию. Ссылка на то, что в наших учебниках газодинамика по существу не освещается, свидетельствует о том, что пришло время заполнить этот существенный пробел в теории проектирования цилиндропоршневой группы и двигателя в целом.

Прижимая поршневое кольцо к нижней полке поршневой канавки в начале такта «сжатие» и в течение всего такта «рабочий ход», осевая сила блокирует радиальную силу, лишая поршневое кольцо очень важного качества, без которого оно нормально работать просто не может – его упругости. Поршневое кольцо становится конструктивной частью поршня, и только огромные силы, действующие на поршень (для КАМАЗа эта сила равна 22,6 кН), заставляют кольцо смещаться в поршневой канавке в пределах термодинамических зазоров. Причем эти «смещения» отражаются на износе всех контактных пар: стенки цилиндра, рабочей поверхности и торцов кольца, полок поршневой канавки, шатуна, вкладышей и коленчатого вала.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации