Автор книги: Анатолий Левшанков
Жанр: Медицина, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 4 страниц) [доступный отрывок для чтения: 1 страниц]
Анатолий Левшанков
Мониторинг и управление нервно-мышечной проводимостью при хирургических операциях
УСЛОВНЫЕ СОКРАЩЕНИЯ
АМГ – акцелеромиограмма
АХЭ – ацетилхолинэстераза
БПИ – быстрая последовательная индукция
ВВЛ – вспомогательная вентиляция легких
ВДП – верхние дыхательные пути
ВП – веро-пипекуроний
ДБС (DBS) – двойная разрядная стимуляция (double-burst stimulation)
ДМТ – должная масса тела
ИВЛ – искусственная вентиляция легких
МАК – минимальная альвеолярная концентрация
МНМБ – монитор нервно-мышечного блока
МР – мышечный релаксант (миорелаксант)
НМБ – нервно-мышечный блок
НМП – нервно-мышечная проводимость
ОАР – отделение анестезиологии и реанимации
ССС – сердечно-сосудистая система
ТС – техническое средство
ФАР – Федерация анестезиологов-реаниматологов России
DBS – см. ДБС
FiO2 – концентрация кислорода во вдыхаемом воздухе
PTC – (post tetanic count) посттетанический счет
SEVe – содержание севофлурана в выдыхаемом воздухе
ST – стимуляция с частотой 1 Гц
TET – тетаническая стимуляция 5 с с частотой 50 Гц
TOF – (train-of-four) четырехразрядная стимуляция
АКТУАЛЬНОСТЬ ПРОБЛЕМЫ
Более 70 лет мышечные релаксанты (МР) используют в клинической практике для осуществления миоплегии при хирургических вмешательствах в условиях анестезии с искусственной вентиляцией легких (ИВЛ). Управляемая миоплегия позволила поднять на новый, более совершенный уровень анестезиологическое обеспечение хирургических вмешательств:
1) стала очевидной возможность и целесообразность ведения анестезии на поверхностном уровне;
2) появились условия для применения ИВЛ и управления газообменом во время операции;
3) заложены основы прогрессивной концепции многокомпонентности анестезии.
В последние годы доказано, что более активное использование мониторинга нервно-мышечной проводимости (НМП) и антагонистов миорелаксантов привело к сокращению частоты послеоперационной остаточной кураризации [8].
Поэтому мониторинг во время анестезии, в том числе и НМП, предусмотрен Международными стандартами безопасной анестезиологической практики [4]. Они предназначены для специалистов в области анестезиологии всего мира, их профессиональных обществ, руководителей клиник и отделений, а также правительств в целях улучшения и поддержания качества и безопасности анестезиологической помощи. В нашей стране соответствующие технические средства (ТС) для мониторинга предусмотрены нормативно-правовыми документами [5 – 7].
При миорелаксации очень важно выбрать наиболее оптимальный мышечный релаксант (МР) в зависимости от клинической ситуации, обеспечить объективный контроль (мониторинг) блока НМП в процессе анестезии, соблюсти четкий алгоритм действий при восстановлении НМП и выведении пациента из анестезии.
К сожалению, в нашей стране проблеме мониторинга и управляемости блоком НМП уделяется недостаточно внимания. Это обусловлено в основном отсутствием в России стандарта мониторинга НМП, недостаточной технической оснащенностью отделений анестезиологии и реанимации (ОАР) и отсутствием необходимого спектра МР, препаратов для проведения декураризации, четкого представления о мониторинге НМП, частоте остаточного блока НМП.
За последние годы было проведено несколько совещаний экспертов – ведущих специалистов-анестезиологов России по вопросу оптимизации периоперационной миоплегии. В частности, на Экспертном совете анестезиологи и хирурги (май 2012 г.) обсуждали значение более совершенного управления нервно-мышечным блоком для оптимизации хирургических вмешательств. В результате дискуссии эксперты пришли к ряду важных положений, отражающих современные аспекты миорелаксации при хирургических вмешательствах (см. приложение).
В течение 2004 – 2008 гг. кафедрой анестезиологии и реаниматологии ВМедА и ЗАО «Диамант» был разработан отечественный монитор нервно-мышечного блока («МНМБ-Диамант»). В 2009 г. успешно проведены клинические испытания, затем налажен серийный выпуск «МНМБ-Диамант» (рег. уд. № ФСР 2010/08199 от 20.07.2010, сертификат соответствия № РОСС RU.ME77.B06921 #0449183, изготовитель серийного выпуска – ЗАО «Диамант», СПб).
Однако опубликованных работ об опыте его использования пока мало. Это обусловило появление настоящего монографического учебно-методического пособия. Автор пособия имеет 20-летний опыт работы с зарубежными мониторами НМП и 8-летний – с отечественными. Надеемся, что использование настоящего пособия и изложенных в нем рекомендаций позволит практикующим анестезиологам-реаниматологам и медицинским сестрам-анестезистам добиться объективного мониторинга и максимальной управляемости НМП, тем самым улучшить оказание больным и пострадавшим анестезиологической и реаниматологической помощи.
Глава 1
НЕОБХОДИМОСТЬ МОНИТОРИНГА И УПРАВЛЕНИЯ НЕРВНО-МЫШЕЧНОЙ ПРОВОДИМОСТЬЮ
Мышечные релаксанты начали исследовать более 260 лет тому назад.
Образцы кураре и технологию его изготовления, «заимствованную» у индейцев, привез во Французскую академию наук в 1745 г. французский ученый и путешественник Шарль Мари де ла Кондамин (Шарль Лакондамин; французское имя – Charles-Marie de la Condamine), который возглавлял научную экспедицию в Перу [3].
Более 70 лет тому назад (23 января 1942 г. в Монреале (Канада) Г. Гриффит и Э. Джонсон (Harold R. Griffith и Enid Johnson MacLeod) впервые использовали миорелаксант интокострин (очищенный тубокурарин) при аппендэктомии под циклопропановым наркозом (рис. 1) [20, 27]. Наступила новая эра в анестезиологии.
Сенсационная статья H. K. Beecher и D. P. Todd в 1954 г. об увеличении в 6 раз летальности больных после применения производных кураре вызвала длительную дискуссию и побудила к более глубоким исследованиям побочных эффектов МР [9]. Основной причиной летальности оказалась дыхательная недостаточность, связанная с остаточным блоком НМП (63 %), при отсутствии мониторинга НМП и недостаточной респираторной поддержке в ближайшем послеоперационном периоде. Поэтому остро встал вопрос о необходимости объективного контроля и управления НМП во время анестезии.
Необходимость мониторинга и управляемости НМП в процессе операции в настоящее время обусловлена, кроме летальности, многими другими факторами:
1 . Вариабельность реакции пациента на МР – большие пределы колебаний времени наступления миоплегии: панкуроний – 0,1 мг/кг (n = 19) – 48 – 172 мин; векуроний – 0,08 мг/кг (n = 20) – 22 – 55 мин [35].
Рис. 1. Harold R. Griffith и Enid Johnson MacLeod (а) и их статья (б)
2 . Побочные эффекты и взаимодействие МР с другими препаратами. Бензилизохинолины высвобождают гистамин, деполяризующие МР могут вызвать злокачественную гипертермию и пр. Более 250 препаратов влияют на НМП. Противосудорожные препараты вызывают резистентность к релаксантам [28, 43]. Метод анестезии влияет на действие миорелаксанта: ингаляционная анестезия потенцирует [41].
Наши наблюдения свидетельствуют о значительном удлинении действия пипекурония после однократного введения на фоне анестезии севофлураном при нейрохирургических операциях (рис. 2, 3). На рис. 2 (пациент Б., м., 37 лет, 100 кг, 178 см) видно, что на фоне ингаляционной анестезии севофлуран + фентанил действие однократного введения пипекурония в дозе 0,07 мг/кг должной массы тела (ДМТ) при нейрохирургической операции продолжалось 5 ч 49 мин, НМП восстановилась спустя 2 ч 19 мин после операции. Поэтому в конце операции даже опытному анестезиологу без мониторинга НМП невозможно определить степень восстановления НМП или дозу прозерина для декураризации.
На рис. 3 видно, что в конце операции в условиях ингаляционной анестезии севофлураном наличие мониторинга НМП («МНМБДиамант») позволило через 5 ч 41 мин после однократного введения 4 мг пипекурония (0,06 мг/кг ДМТ) определить дозу прозерина (1 мг) для декураризации, после появления сознания через 2 мин после операции на фоне полного восстановления НМП произвести экстубацию и на спонтанном адекватном дыхании воздухом перевести пациента в палату интенсивной терапии.
3 . Оптимизация выбора МР и миоплегии при интубации трахеи с учетом клинической ситуации. К настоящему времени в практике анестезиолога-реаниматолога используют различные миорелаксанты в зависимости, прежде всего, от продолжительности и характера операции, а также от состояния пациента.
Более 30 лет назад John Savarese предложил классификацию миорелаксантов на основе механизма и продолжительности действия, которая с точки зрения практики остается наиболее популярной (табл. 1).
По происхождению и химической структуре недеполяризующие миорелаксанты, используемые в России, можно разделить на две группы:
– аминостероидные (пипекуроний, векуроний, рокуроний);
– бензилизохинолиновые (атракурий и цисатракурий).
Рис. 2. Акцелеромиограмма (АМГ) во время операции в условиях ингаляционной анестезии севофлураном. На этой и последующих АМГ:
1, 2 – кривые температуры двух точек тела: на кисти и в подмышечной впадине; с – событие: во время анестезии при нажатии кнопки «СОБ» в строке «с» АМГ отмечается на графике и в таблице момент и точное время соответствующего события (интубация, начало и конец операции, экстубация); п – препарат: при нажатии кнопки «ПРП» в строке «п» отмечается на графике и в таблице момент и точное время введения препарата (миорелаксанта).
(АМГ позволяет точно определить начало и окончание события и действия препарата, время наступления и окончания миоплегии)
Рис. 3. АМГ во время операции в условиях ингаляционной анестезии севофлураном и однократного введения пипекурония
Большинство препаратов бензилизохинолинового ряда имеют ряд положительных качеств, в частности отсутствие ваголитического эффекта, возможность метаболизма и элиминации без участия печени и почек. Поэтому они показаны пациентам с нарушенной функцией печени и почек.
С другой стороны, они с большей вероятностью, чем аминостероиды, вызывают выброс гистамина.
Наиболее целесообразными (с позиций функциональности) являются МР, способные обеспечить быструю, глубокую миоплегию при относительно непродолжительном НМБ (табл. 2). Такое сочетание представляется оптимальным у суксаметония (сукцинилхолина). Однако он неудобен для поддержания блока при длительных вмешательствах (его приходится вводить очень часто). Кроме того, как МР деполяризующего механизма действия он вызывает нежелательные эффекты: миофасцикуляции, постанестетические миалгии, повышение внутриглазного давления, гиперкалиемию (нарушения ритма сердца, опасность использования на фоне существующих гиперкалиемических состояний), триггерное влияние в развитии злокачественной гипертермии.
Таблица 1
Классификация миорелаксантов по механизму и продолжительности действия
Таблица 2
Требования, предъявляемые к идеальному миорелаксанту
Напротив, недеполяризующие МР длительного действия (чаще всего используемый в нашей стране пипекуроний) требуют слишком много времени для достижения приемлемых для интубации условий. Поэтому при так называемых трудных дыхательных путях, невозможности интубации и ИВЛ возникает опасность развития гипоксемии и гипоксии. Кроме того, длительное восстановление НМП и самостоятельного дыхания становится рискованным в равной мере, как и попытки медикаментозной реверсии НМП. При этих условиях целесообразно использовать недеполяризующий МР рокурония бромид, который по времени наступлении максимального блока НМП является альтернативой деполяризующего МР (суксаметония хлорид) и приближается к идеальному миорелаксанту (табл. 3).
Недеполяризующие МР средней продолжительности действия (цисатракурий, векуроний и рокуроний) позволяют достичь хороших и отличных условий для интубации за 2,5 – 3 мин, обеспечивая НМБ от 35 – 40 до 50 мин. Особенно в отечественной практике они представляются наиболее безопасными и наиболее универсальными для достижения и поддержания НМБ при любых клинических задачах.
Многочисленными исследованиями последнего десятилетия убедительно показано, что рокуроний – самый быстродействующий из недеполяризующих МР. Суксаметоний (1 – 2 мг/кг) обеспечивает хорошие и отличные условия для интубации через 45 – 60 с после введения в 80 – 90 % случаев, рокуроний (0,6 – 0,9 мг/кг) обеспечивает через 45 – 60 с приемлемые условия в значительной части случаев, а дополнительные 30 с еще больше повышают долю хороших и отличных оценок.
Таблица 3
Сравнительная характеристика ED95 миорелаксантов, рекомендуемых доз для интубации трахеи и времени наступления максимальной блокады НМП
Быстрая последовательная индукция анестезии (БПИ) — это методика для облегчения быстрой интубации трахеи у пациентов с высоким риском аспирации [24]: неотложные хирургические вмешательства; отсутствие воздержания от употребления пищи и жидкости в течение рекомендуемого периода времени перед операцией; наличие избыточной массы тела; гастроэзофагеальная рефлюксная болезнь; беременность.
Частота аспирации составляет от 0,7 до 4,7 случая на 10 000 пациентов [38, 39]. У пациентов, находящихся в критическом состоянии, частота аспирации возрастает до 34 % (3400 случаев на 10 000 пациентов) [33].
Избыточная масса тела приводит к трудностям при интубации и связана с повышенным риском аспирации [29].
Неудачная интубация с невозможностью осуществления вентиляции (Cannot Intubate Cannot Ventilate, CICV) – критическая ситуация после введения МР (0,01 – 0,35 % от попыток интубации), при которой может развиться гипоксия с повреждением мозга и наступлением смерти. В таких случаях требуется проведение адекватной ручной вентиляции, а при неадекватности респираторной поддержки – быстрое устранение миорелаксации с помощью сугаммадекса для восстановления самостоятельного дыхания [10, 17, 19, 21].
Миорелаксантом выбора для интубации трахеи при БПИ до сих пор остается сукцинилхолин (суксаметоний, дитилин, листенон). При наличии рокурония бромида и сугаммадекса в большинстве ситуаций можно отказаться от использования сукцинилхолина при проведении быстрой интубации трахеи.
Таким образом, современный подход к обеспечению проходимости ВДП в процессе анестезии включает в себя:
1) прогнозирование перед операцией вероятной трудной интубации трахеи;
2) реализацию практических рекомендаций, разработанных и принятых в 2008 г. ФАР с участием экспертов Европейского общества обеспечения проходимости дыхательных путей (European Airway Management Society);
3) обеспечение полного контроля в данной клинической ситуации путем использования рокурония бромида и сугаммадекса, а также мониторинга НМП;
4) улучшение хирургических условий с помощью периоперационной миоплегии. Миоплегию во время операции, как правило, поддерживают:
– болюсной дозировкой МР средней продолжительности действия (не более 25 % от интубационной, при длительной блокаде – не более 10 %) (табл. 4);
– инфузией индивидуально подобранной дозой миорелаксанта (предпочтительно средней продолжительности действия). Темп введения подбирают с учетом фактической массы тела, вида анестезии, а также возраста, пола и исходной патологии пациента. Это позволяет уменьшить или исключить риск остаточной миоплегии.
Миоплегией целесообразно обеспечить неподвижность пациента при проведении многих операций: микрохирургических, нейрохирургических, офтальмологических, сосудистых, на брюшной полости (открытые и лапароскопические) и в полости грудной клетки. При этом на разных этапах операции требуется разная глубина нервно-мышечного блока (НМБ). Осуществить это невозможно без объективного мониторинга НМП.
Поддержание НМБ во время анестезии имеет следующие преимущества:
– предупреждение возникновения кашля, движений и/или попыток пациента подняться во время анестезии [44];
– облегчение введения инструментов в полости тела, создание более широкого операционного поля для оптимальной визуализации, лучшей мобилизации, облегченного доступа [37, 44];
– возможность создания пневмоперитонеума без повышения давления инсуфляции CO2 [16];
– обеспечение точности манипуляций при нейрохирургических операциях и операциях на лор-органах [32];
– возможность снижения венозного давления [30].
Таблица 4
Дозы миорелаксантов и их действие во время анестезии
Таким образом, адекватный уровень НМБ способствует созданию оптимальных хирургических условий во время операции [37, 44].
Малая информативность клинических признаков и стандартное восстановление НМП не предотвращают остаточный блок, что может привести к тяжелым последствиям. Безопасность пациента гарантирована только при TOF > 0,9.
Остаточный блок наблюдается до сих пор и достаточно часто: 22 % больных имели TOF < 0,6, а 42 % – <0,7; 83 % получали неостигмин – 2,5 мг, у 20 % из них TOF оставался < 0,6, у 12 % – <0,4 [42]. В работе 2009 г. частота остаточного блока отмечена от 15 до 88 % [18].
В исследованиях 2006 г. [15] изучалось прогностическое значение клинических исследований при НМБ, в которых коэффициент TOF (четырехразрядной стимуляции) был < 0,9. В исследовании 640 хирургических больных обнаружили, что частота остаточного НМБ составляла 38 % у амбулаторных больных и 47 % у стационарных больных. По данным G. S. Murphy (2008) [36], при анализе 7459 больных, перенесших анестезию, респираторные осложнения были у 18 % (ортопедия) и у 24,6 % (общая хирургия), в их структуре 52,4 % составляла тяжелая гипоксемия, 35,7 % – обструкция верхних дыхательных путей.
Из 526 хирургических больных [21] у 45 % во время перевода в послеоперационную палату обнаружен TOF < 0,9. На 5-секундное поднятие головы имели чувствительность 11 %, а на тест с зажатием шпателя – 13 %, то есть только в небольшом проценте пациентов (11 и 13 %) эти клинические признаки свидетельствуют о достаточном восстановлении НМП. Таким образом, чувствительность клинических критериев очень низкая, чтобы рекомендовать их для оценки степени восстановления НМП после использования МР (рис. 4).
Безопасность пациента гарантирована только при TOF ≥ 0,9!
TOF ≥ 0,9 – современный стандарт приемлемого восстановления НМП и безопасной экстубации пациента при использовании МР.
Рис. 4. Положительное прогностическое значение основных клинических признаков степени восстановления НМП
При TOF < 0,9 возможны [34]:
– нарушение вентиляционного ответа на гипоксию;
– нарушение глотательных рефлексов;
– нарушение вентиляции;
– обструкция дыхательных путей;
– как результат, увеличение заболеваемости и смертности.
Установлены клинические и акцелерометрические параллели [31]:
– TOF < 0,4 – пациент не может поднять голову или руку: дыхательный объем может быть нормальным, но жизненная емкость легких и ускоренный выдох снижены;
– TOF < 0,6 – пациент может удерживать голову 3 с, широко открывать глаза, высовывать язык, но жизненная емкость легких и ускоренный выдох снижены;
– TOF = 0,7 – 0,75 – пациент может кашлять и удерживать голову 5 с, но сила рукопожатия 60 % от контрольной, невозможно удерживать зубы сжатыми и трудно говорить;
– TOF > 0,8 – жизненная емкость легких и ускоренный выдох нормальны, но могут сохраняться диплопия и визуальные расстройства и слабость лицевых мышц.
Следует отметить, что еще в 2003 г. L. I. Eriksson писал [25]: «Пора переходить от дискуссий к действию и внедрять объективный нейромышечный мониторинг во все операционные… Объективный нейромышечный мониторинг является частью медицинской практики, основанной на доказательствах, и должен использоваться везде, где применяются нейромышечные блокаторы. Имеются мощные основания полагать, что его использование может значительно улучшить исходы лечения больных».
Глава 2
РЕАЛЬНОСТЬ ИСПОЛЬЗОВАНИЯ МОНИТОРИНГА И УПРАВЛЕНИЯ НЕРВНО-МЫШЕЧНОЙ ПРОВОДИМОСТЬЮ
К настоящему времени известно более 50 МР. Основные МР и год начала использования:
1949 г. – сукцинилхолин;
1953 г. — суксаметония бромид (листенон, миорелаксин, дитилин);
1968 г. – панкурониум бромид (павулон);
1980 г. — пипекурония бромид (ардуан, 2003 – веро-пипекуроний);
1982 г. – атракурия безилат (тракриум);
1983 г. – векурония бромид (норкурон);
1992 г. — мивакурия хлорид (мивакрон);
1994 г. — рокурония бромид (эсмерон);
1995 г. — цисатракурия безилат (нимбекс);
1999 г. – репакурониум (раплон).
Релаксанты, названия которых выделены жирным шрифтом, должны использоваться анестезиологом в зависимости от продолжительности и характера хирургического вмешательства и анестезии, состояния пациента, наличия или отсутствия монитора НМП и других условий.
«Удельный вес» МР в лекарственном бюджете ОАР составляет, по разным данным [13, 24], от 24 до 30 % [23, 30].
Рис. 5. Миорелаксанты, используемые в Европе для интубации трахеи (данные опроса 3728 анестезиологов из разных стран Европы в 2008 г. по применению миорелаксантов на практике)
В Европе чаще всего используют сукцинилхолин, рокурония бромид и атракуриум (рис. 5), а мониторинг НМП входит во многих странах в стандарт минимального мониторинга. В нашей стране чаще всего приобретают наиболее дешевые и трудно прогнозируемые МР (пипекурониум), ориентируясь лишь на их стоимость, не обеспечивая при этом мониторинг НМП. К сожалению, в России мониторинг НМП проводится крайне редко до сих пор. В основном это обусловлено отсутствием мониторов: отечественных не было, а зарубежные дороги. В наших многолетних наблюдениях подтверждено, что без мониторинга НМП даже опытные анестезиологи часто не могут оценить степень миоплегии и восстановления НМП: при нейрохирургических операциях с использованием веро-пипекурония интубацию проводили у 45 % больных при отсутствии тотальной миорелаксации (TOF = 53 %), а экстубацию – при TOF = 56 %, чего не наблюдали при применении мониторинга НМП.
В случае мониторинга качество миоплегии возросло с 6,5 до 8,7 балла из 10 возможных, время от окончания операции до экстубации сокращалось с 9 до 4 мин, а до безопасного восстановления НМП – от 18 до 3 мин, что позволило устранить дискомфорт у пациента во время экстубации.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?