Текст книги "Прикладная аквариумистика"

Автор книги: Андрей Мюллер
Жанр: Хобби и Ремесла, Дом и Семья
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 8 страниц)
Глава 4
Технические средства обеспечения жизни рыб в аквариумах
Динамичные и пассивные, хитрецы и шалуны – вне зависимости от своего природного предназначения наши молчаливые питомцы дарят нам много приятных мгновений. Рыбок самых разных окрасок – все откровения аквариумного мира мы холим и лелеем, часто подсознательно успокаивая нервы, глядя сквозь прозрачные стенки их акватории. Да, мы получаем психологическую разрядку, так необходимую нам в век интеграции и информационных технологий. Раз в два-три дня надо кормить рыб, каждый день желательно дозировать освещение, раз в полмесяца необходимы долив или смена воды… Все эти процессы требуют постоянного внимания человека. И если, имея дома всего один аквариум объемом 50—200 л, казалось бы, нет сложностей в его содержании, то уже при наличии 2–3 аквариумов требуется автоматизация процессов обеспечения. Сегодня в офисах престижно содержать аквариум, но никто за него не отвечает – он общий… а значит, ничей.
Но как сделать заботу об аквариуме оптимальной, как автоматизировать процессы жизнедеятельности аквариума дома и в офисе – об этом четвертая глава книги.
Электроника может многое. В этой главе представлены электронные семы, позволяющие практически создать автоматические устройства, обеспечивающий бесперебойный цикл работы аквариумов. Все электрические схемы разработаны автором (имеющим дома 4 аквариума) и неоднократно проверены на практике. По сути, эта глава написана для того, чтобы поделиться практическим опытом с теми, кто также неравнодушен к аквариумистике и электронике.
Повторить приведенные в книге схемы может, пожалуй, каждый желающий, настолько они просты. Для этого нужно иметь дома паяльник и посетить магазин радиотоваров для приобретения недорогих радиокомпонентов.
4.1. Прозрачна ли вода в аквариуме?
Аквариумисты привыкли контролировать замутненность воды в аквариуме визуальным способом («на глаз»). Начинающие аквариумисты не меняют воду в аквариуме до тех пор, пока она не станет выделять запах. Однако с помощью несложного электронного устройства, собранного за пару свободных вечеров на рабочем столе, можно придать процессу контроля воды в аквариуме высокую точность, исключающую пресловутый «человеческий фактор». Выиграют от такого подхода все – и люди, и их питомцы в аквариуме. Электронное устройство контроля прозрачности воды основано на принципе контроля пропускания светового потока через раствор (воду).
Прозрачность (или светопропускание) воды обусловливается ее мутностью, то есть содержанием различных окрашенных и минеральных веществ. В свою очередь мутность раствора зависит от тонкодисперсных примесей, обусловленных наличием нерастворимых (коллоидных) неорганических веществ.
Мутность раствора измеряют фотометрическим способом, фиксируя интенсивность пропускаемого света и сравнивая этот показатель с показателем мутности заведомо прозрачного (стандартного) раствора. Прототипами фотометра являются промышленные приборы для измерения мутности раствора – фотоколориметры, например, КФК-2 и КФК-3, предназначенные для измерения коэффициентов пропускания света и оптической плотности растворов на отдельных участках диапазона 315–980 нм.
Однако эти промышленные устройства либо сложны в исполнении и настройке (требуют специальных измерительных приборов), либо мало пригодны для измерения относительной прозрачности растворов в домашних условиях. Поэтому для относительных измерений было разработано устройство фотоэлектрического фотометра (фотоколориметра), принцип действия которого основан на преобразовании светового потока в электрическую величину – напряжение.
Коэффициент пропускания £ определяется по формуле:
£ = (U – Ut): (U0 – Ut) * 100 %,
где U – напряжение на выходе устройства при исследовании раствора, В;
U0 – напряжение на выходе прибора при исследовании раствора дистиллированной воды, В;
Ut – напряжение на выходе при затемнении фоточувствительного датчика, В.
Функциональная схема прибора
Функциональная схема устройства представлена на рисунке 4.1.

Рис. 4.1. Функциональная схема устройства:
1 – осветительный прибор, совмещенный с объективом (линзой);
2 – аквариум с водой;
3 – фотодатчик, реализованный на фотодиоде ФД-24К;
4 – электронный усилитель с измерительным прибором;
5 – стабилизированный источник питания (выходное напряжение 12 В)
Электрические характеристики фотодиода ФД-24К:
♦ область спектральной чувствительности – 0,47– ОД 2 мкм;
♦ длина волны максимальной спектральной чувствительности – 0,75-0,85 мкм;
♦ максимальное рабочее напряжение – 27 В;
♦ темновой ток – 2,5 мкА;
♦ сопротивление корпус-вывод фотодиода – не менее 100 МОм;
♦ предельная рабочая освещенность – 1100 лк.
Электрические характеристики фотодиода ФД-24К позволили включить его в схему с операционным усилителем (ОУ) общего назначения с высоким входным сопротивлением. На входе ОУ КР140УД1208 реализован дифференциальный каскад с согласованной парой полевых транзисторов. Усилитель на микросхеме КР140УД1208 выбран для устройства благодаря своим оптимальным электрическим характеристикам (сопротивление нагрузки на выходе ОУ Rn > 2 кОм и высокая чувствительность по входу).
Рассмотрим электрическую схему устройства фотоколориметра на рисунке 4.2.

Рис. 4.2. Электрическая схема устройства фотоколориметра
Операционный усилитель DA1 – усилитель постоянного тока, на вход которого подключен фотодиод VD1. Фотодиод работает в этой схеме в режиме автогенератора, преобразуя энергию светового потока в электрическую энергию (фото ЭДС). Фотодиод подключен на инвертирующий вход ОУ (вывод 2 DA1) как генератор тока. ОУ преобразовывает ток в напряжение на выходе (вывод 6 DA1). Выход ОУ нагружен на портативный цифровой вольтметр PV1 типа М-830-В, индицирующий значения напряжения, зависящие от прозрачности (замутнения) воды.
Резистор R6 шунтирует вольтметр PV1 для защиты ОУ в случае обрыва контактов с вольтметром (при отключении вольтметра).
Выходное напряжение на выводе 6 DA1 рассчитывают по формуле:
Uвых = Iфд· R1 · J.
На выходе ОУ максимальное напряжение 10 В окажется при максимальном фототоке фотодиода VD1, то есть при проецировании светового потока от светодиодной лампы (или лампы накаливания) через кювету с чистой дистиллированной водой.
На рисунке 4.3 представлено действующее устройство, где исследуется прозрачность раствора соли 3 %.

Рис. 4.3. Готовое устройства в действии
При этом эксперименте показания вольтметра составляют 8,91 В. Это почти прозрачная, но не самая прозрачная жидкость. Таким образом, максимальное значение прибора PV1, включенного в режим измерения напряжения (~ 10 В), соответствует чистой воде. А минимальное, соответственно раствору определенной мутности. Запись показаний вольтметра осуществляют опытным путем при различных значениях коэффициента пропускания, которые фиксируют при разной мутности воды в аквариуме, в одно и то же световое время дня.
Световой поток в данном случае поступает от светодиодной лампы, которая уже снабжена линзой. Лампа освещения и устройство фотоколориметра зафиксированы тисками и струбциной на одном уровне. Это важно для точности измерения.
По той же аналогии исследуют мутность воды в аквариуме.
Налаживание. Налаживание сводится к установке устройства «в нуль», то есть к максимальным показаниям вольтметра (PV1) при исследовании заведомо прозрачного раствора дистиллированной воды, помещенного в 3-литровую банку (или иную подходящую кювету объемом 0,5–3 л). Эта корректировка осуществляется подбором сопротивления резистора R1.
О деталях. Все постоянные резисторы типа МЛТ-0,25, MF-125. Оксидный конденсатор С2 сглаживает пульсации источника питания. Вместо вольтметра М830-В можно применить любой вольтметр (желательно цифровой) с пределом измерения постоянного напряжения 10–20 В.
Монтаж частей устройства. Светодиодную лампу EL1 закрепляют в корпусе портативного фонаря с отражателем, а сам фонарь жестко закрепляют в миниатюрных тисках (струбцинах) напротив фотодатчика. Фотодатчик закрепляют в тисках с другой стороны аквариума (кюветы с раствором) в любом подходящем компактном корпусе с линзой. Корпус фотодатчика устанавливают напротив источника света, выравнивая горизонтальную плоскость линейкой или строительным уровнем. Внешний вид закрепленных частей конструкции показан на рисунке 4.3.
Перспектива применения. Кроме рассмотренного варианта контроля мутности аквариумной воды предложенным способом можно эффективно измерять мутность и оптическую светопроницаемость любых других растворов.
Альтернативный вариант фотоколориметра. Кроме снятия показаний с помощью вольтметра PV1 можно использовать и другие средства параметрической сигнализации, например световую или звуковую индикацию, что расширит возможности устройства. Это несложно осуществить, собрав простую схему фотодатчика, представленную на рисунке 4.4.

Рис. 4.4. Электрическая схема фотодатчика на транзисторах
Фототранзистор VT1 в данной схеме является фотодатчиком, принимающим световой сигнал. К точке А подключают любое устройство звуковой сигнализации (или световой) с соблюдением полярности подключения, например, капсюль со встроенным генератором 34 типа KPI-4332. При чрезмерной мутности контролируемого раствора включится звуковой капсюль. Порог срабатывания устройства теперь устанавливают регулировкой входного делителя напряжения или первого усилительного каскада параметрического сигнализатора.
После такой доработки нет необходимости в проведении постоянных физико-химических опытов, а замутнение воды сверх установленного порога вызовет немедленную сигнализацию (например, звуковую), которую хозяева услышат даже из кухни. В этом направлении остается большой простор для творческой активности радиолюбителей.
Принцип работы устройства. Световой поток от светодиодной лампы HL1 проходит параллельно окну фототранзистора VT1. Регулировка чувствительности устройства осуществляется переменным резистором R2. В нижнем (по схеме) положении движка переменного резистора R2 чувствительность устройства минимальная.
При абсолютно чистой воде фототранзистор VT1 полностью открыт (сопротивление перехода эмиттер-коллектор минимально), соответственно, транзистор VT2 (включенные по схеме усилителя тока) заперт. Когда вода в аквариуме мутнеет, световой поток, приходящий к рабочей поверхности фототранзистора VT1 от светодиодной лампы HL1 сквозь загрязненную естественными отходами воду, пропорционально уменьшается. В зависимости от сопротивления в средней точке делителя напряжения, реализованного с помощью R1 и переменного резистора R2, фототранзистор VT1 находится в открытом, частично открытом или закрытом состоянии. Соответственно состоянию фототранзистора VT1, транзистор VT2 находится в запертом, частично запертом или открытом состоянии. Таким образом, при замутнении воды естественными отложениями световой поток к фототранзистору VT1 уменьшается, он плавно закрывается, через резистор R3 и диод VD1 ток поступает в базу транзистора VT2, он частично приоткрывается (поскольку вода, даже мутная, не может не пропускать свет), и между точкой А и общим проводом присутствует разница потенциалов (тем больше, чем мутнее вода в аквариуме).
К точке А в данной схеме может подключать устройство усиления сигнала на операционном усилителе или иное устройство индикации состояния. Таким устройством может быть даже параметрический сигнализатор или (если требуется большая точность измерения) устройство АЦП или миллиамперметр. Все эти устройства подключаются (с соблюдением полярности) параллельно постоянному резистору R4.
О деталях. Вместо фототранзистора ФТ-1 можно включить зарубежный фототранзистор ОСР-70 без какой-либо переделки схемы. Если такого аналога нет, можно изготовить фототранзистор самому, аккуратно отпилив шляпку обыкновенного полупроводникового транзистора типа МП39-МП42 (или аналогичных). Или, например, заменить VT1 фотодиодом ФД-7 (или аналогичным), включив его в соответствии с полярностью (катод к «+» Uп) вместо перехода эмиттер-коллектор транзистора VT1. При этом вместо ограничительного резистора R3 включают делитель напряжения R1R2.
4.2. Аквариумный таймер
Аквариумный таймер, работающий в режиме циклической генерации, важен аквариумисту как безотказный прибор управления освещением и аэрацией аквариума. Промышленность (в том числе зарубежная) бьет все рекорды по выпуску электронных и электромеханических таймеров, программируемых для выдержки времени в определенные дни и часы недели (и месяца). Конкуренция в области производства таймеров бытового предназначения выросла за пару лет в разы. Одна из схем подобного назначения, воплотившая наиболее простое схемное решение, представлена на рисунке 4.5.
Особенности устройства в полуавтоматическом режиме работы. При наступлении рассвета (включении освещения в комнате, где установлены фотодатчики) электронное устройство издает кратковременный звуковой сигнал и включает лампу аквариумного освещения вместе с компрессором-помпой. Лампа освещения ELI и компрессор остаются включенными в течение почти 4 часов (зависит от номиналов элементов R5C2). По окончании выдержки времени лампа освещения и компрессор отключаются. При новом рассвете (новом включении света в комнате после периода затемнения) цикл работы устройства повторяется – так происходит ежедневно.
В основе устройства таймер на популярной микросхеме КР1006ВИ1. Он собран по классической схеме в режиме автогенерации импульсов большой длительности. На выходе таймера включено электромагнитное реле К2, своими контактами К2.1 оно управляет подачей напряжения на компрессор аквариума и осветительную лампу HL1, Лампа может быть как люминесцентной (с соответствующей схемой управления), так и лампой накаливания с мощностью до 15 Вт. Более высокая мощность не желательна из-за возможности перегрева и оплавления верхней крышки аквариума, в которой установлена лампа освещения HL1. Насос-компрессор – любой промышленный для аквариумов.

Рис. 4.5. Электрическая схема аквариумного таймера с узлом кратковременной звуковой сигнализации
В схему введен узел управления самой микросхемой КР1006ВИ1 в зависимости от внешнего освещения. Это сделано для того, чтобы таймер (лампа освещения аквариума и компрессор) включались только в светлое время суток, а ночью были не активны. Данный фоточувствительный узел собран на однотипных транзисторах VT1, VT2, нагруженных на электромагнитное реле К1. Коммутирующие контакты реле К1.1 подают питание на (или отключают от питания) микросхему DA1. При слабой освещенности однотипных фоторезисторов СФЗ-1 (включенных параллельно и обозначенных единым символом на схеме PR1) транзисторы VT1, VT2 закрыты, соответственно реле К1 обесточено, контакты реле К 1.1 с номерами 3 и 5 (согласно схеме рис. 4.5) разомкнуты, и на автогенератор, собранный на микросхеме DA1 напряжение не поступает. Соответственно, контакты К2.1 разомкнуты, и лампа освещения аквариума EL, а также компрессор обесточены.
Переменный резистор R1 введен в схему для удобства регулировки порога включения транзисторного каскада VT1, VT2. Он (резистор R1) определяет чувствительность данного узла к световому потоку.
Если освещение фоторезисторов достаточно, например днем, сопротивление фоторезисторов PR1 мало, транзисторы VT1, VT2 открыты, реле К1 включено, на микросхему DA1 подано напряжение питания, индикаторный светодиод HL2 (аналогичный по электрическим характеристикам HL1) светится. На узел звуковой индикации подано питание. Микросхема DA1, включенная в режиме отсчета выдержки времени в соответствии с номиналами элементов времязадающей цепи R5C2, начинает отсчет времени. Реле К2 включено, лампа освещения аквариума и компрессор включены.
По окончании выдержки времени, заданной номиналами элементов R5C2 (примерно 240 мин), на выводе 3 микросхемы DA1 появляется высокий уровень напряжения, реле отпускает, и контакты К2.1 размыкаются, лампа освещения гаснет, компрессор выключается.
Теперь следующее включение произойдет после того, как контакты К1.1 разомкнуться (это произойдет при недостаточной освещенности, например, вечером и ночью), а затем снова замкнуться с наступлением нового дня или включением основного света в комнате, где установлены фотодатчики PR1.
Узел звукового сопровождения подключается непосредственно параллельно к контактам питания того устройства, включение которого он призван контролировать, в данном случае параллельно питанию микросхемы DA1.
В основе этого электронного узла популярная микросхема K561ЛA7. Благодаря применению одного из ее логических элементов, а также использования капсюля со встроенным генератором звуковой частоты (34) в схему нет необходимости вводить какие-либо генераторы импульсов или усилители к ним. Такой же узел не сложно собрать и на логических элементах других микросхем КМОП (например, K561ЛE5, K561TЛ1), однако наиболее простое схемное решение показано на рис. 1.
Схема кратковременной звуковой сигнализации основана на одном логическом элементе DD1.1 микросхемы K561ЛA7, включенном как инвертор. При подаче питания на входе элемента (выводы 1 и 2 DD1.1) присутствует низкий уровень напряжения до тех пор, пока не зарядится оксидный конденсатор С1 через ограничительный резистор R2. Пока этого не произошло, на выходе элемента (вывод 3 DD1.1) присутствует высокий уровень напряжения. Он поступает через ограничивающий ток резистор R6 в базу транзистора VT3, работающего в режиме усилителя тока.
Транзистор VT3 открыт, сопротивление его перехода на коллектор-эмиттер близко к нулю, и на пьезоэлектрический капсюль со встроенным генератором звуковой частоты НА1 подано напряжение питания.
Когда постоянное напряжение на пьезоэлектрическом капсюле со встроенным генератором НА1 окажется почти равным напряжению питания устройства, капсюль переходит в режим генерации колебаний звуковой частоты.
По мере заряда конденсатора С1 через резистор R2 и внутренний узел элемента DD1.1 происходит изменение состояние выхода микросхемы. Когда напряжение на обкладках конденсатора С1 достигнет уровня переключения микросхемы, она переключится, и высокий уровень напряжения на выходе DD1.1 сменится низким. Транзистор VT1 закроется. Постоянное напряжение на пьезоэлектрическом капсюле со встроенным генератором НА1 окажется почти равным нулю, и капсюль перейдет в режим ожидания.
При указанных на схеме значениях элементов R2 и С1 задержка выключения звука составит около 3 сек. Ее можно увеличить, соответственно увеличив емкость конденсатора С1. В качестве конденсатора С1 лучше использовать оксидный типа К50-29, К50-35 и аналогичный с небольшим током утечки. В обратную сторону длительность временного интервала можно легко сократить, уменьшив сопротивление резистора R2. Если вместо него установить переменный резистор с линейной характеристикой, то получится устройство с регулируемой задержкой.
Функцию данного электронного узла можно поменять на обратную – то есть сделать так, чтобы пьезоэлектрический капсюль НА1 молчал первые 3 сек после подачи на устройство питания, а затем все остальное время работал. Для этого оксидный конденсатор С1 и времязадающий резистор R1 следует поменять местами (с соблюдением полярности включения оксидного конденсатора – положительной обкладкой к «плюсу» питания). При этом средняя точка их подключения к выводам 1 и 2 элемента DD1.1 сохраняется. В таком варианте устройство без особых изменений можно применять для звукового сигнализатора открытой (сверх меры) дверцы холодильника. Кроме того, вариантов применения данного простого и надежного устройства бесконечно много, и они ограничены только фантазией читателя.
О налаживании и деталях. Устройство в налаживании не нуждается. Элементы устройства закрепляют на монтажной плате. Корпус – любой подходящий.
R1 – типа СПЗ-4 или аналогичный, с линейной характеристикой изменения сопротивления. Все постоянные резисторы R2—R6 типа МЛТ-0,25. Оксидные конденсаторы типа К50-29 или аналогичные. Светодиоды любые с током 5-8 мА, например, АЛ307БМ. Транзисторы VT1, VT2 типа КТ3107А – КТ3107Ж или аналогичные. Транзистор VT3 любой кремниевый, малой и средней мощности структуры п-р-п, например, КТ603, КТ608, КТ605, КТ801,КТ972, КТ940 с любым буквенным индексом.
Реле Kl, К2 на напряжение срабатывания 8—12 В и ток до 30 мА. Реле К2, кроме того, должно обладать особыми свойствами коммутационных контактов – быть рассчитано на напряжение коммутации не менее 250 В и ток не менее 1 А. Пьезоэлектрический капсюль может быть любым, рассчитанным на напряжение 4—20 В постоянного тока, например FMQ-2015D, FXP1212, KPI-4332-12.
Источник питания – стабилизированный, обеспечивающий выходное напряжение 5—15 В – в этом диапазоне микросхемы DD1 и DA1 функционируют стабильно.
Оксидный конденсатор СЗ сглаживает пульсации питающего напряжения.
Ток потребления в активном режиме звукового сигнала с применением указанных на схеме элементов составляет 60-62 мА. Громкость звука достаточна настолько, что сигнал хорошо слышен в помещении на расстоянии до 10 м.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.