Автор книги: Андрей Погребецкий
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]
Геологическая история
Согласно одной из гипотез, в далёком прошлом в результате столкновения с крупным небесным телом произошла остановка вращения ядра, а также потеря основного объёма атмосферы. Потеря легких атомов и молекул из атмосферы – следствие слабого притяжения Марса. Считается, что потеря магнитного поля произошла около 4 млрд. лет назад. Вследствие слабости магнитного поля солнечный ветер практически беспрепятственно проникает в атмосферу Марса, и многие из фотохимических реакций под действием солнечной радиации, которые на Земле происходят в ионосфере и выше, на Марсе могут наблюдаться практически у самой его поверхности.
Фактические данные
Научные гипотезы о существовании в прошлом жизни на Марсе присутствуют давно. По результатам наблюдений с Земли и данным космического аппарата «Марс-экспресс» в атмосфере Марса обнаружен метан. Позднее, в 2014 году, марсоход НАСА Curiosity зафиксировал всплеск содержания метана в атмосфере Марса и обнаружил органические молекулы в образцах, извлечённых в ходе бурения скалы Камберленд.
Распределение метана в атмосфере Марса в летний период в северном полушарии
В условиях Марса этот газ довольно быстро разлагается, поэтому должен существовать постоянный источник его пополнения. Таким источником может быть либо геологическая активность (но действующие вулканы на Марсе не обнаружены), либо жизнедеятельность бактерий. Интересно, что в некоторых метеоритах марсианского происхождения обнаружены образования, по форме напоминающие клетки, хотя они и уступают мельчайшим земным организмам по размерам. Одним из таких метеоритов является ALH 84001, найденный в Антарктиде в 1984 году.
ALH84001 под микроскопом
Важные открытия сделаны марсоходом «Curiosity». В декабре 2012 года были получены данные о наличии на Марсе органических веществ, а также перхлоратов. Те же исследования показали наличие водяного пара в нагретых образцах грунта. Интересным фактом является то, что «Curiosity» на Марсе приземлился на дно высохшего озера.
Анализ наблюдений говорит, что планета ранее имела значительно более благоприятные для жизни условия, нежели теперь. В ходе программы «Викинг», осуществлённой в середине 1970-х годов, была проведена серия экспериментов для обнаружения микроорганизмов в марсианской почве. Она дала положительные результаты: например, временное увеличение выделения CO2 при помещении частиц почвы в воду и питательную среду. Однако затем данное свидетельство жизни на Марсе было оспорено учёными команды «Викингов». Это привело к их продолжительным спорам с учёным из NASA Гильбертом Левиным, который утверждал, что «Викинг» обнаружил жизнь. После переоценки данных «Викинга» в свете современных научных знаний об экстремофилах было установлено, что проведённые эксперименты были недостаточно совершенны для обнаружения этих форм жизни. Более того, эти тесты могли убить организмы, даже если последние содержались в пробах. Тесты, проведённые в рамках программы «Феникс», показали, что почва имеет очень щелочной pH и содержит магний, натрий, калий и хлориды. Питательных веществ в почве достаточно для поддержания жизни, однако жизненные формы должны иметь защиту от интенсивного ультрафиолетового света.
На сегодняшний день условием для развития и поддержания жизни на планете считается наличие жидкой воды на её поверхности, а также нахождение орбиты планеты в так называемой зоне обитаемости, которая в Солнечной системе начинается за орбитой Венеры и заканчивается большой полуосью орбиты Марса. Вблизи перигелия Марс находится внутри этой зоны, однако тонкая атмосфера с низким давлением препятствует появлению жидкой воды на длительный период. Недавние свидетельства говорят о том, что любая вода на поверхности Марса является слишком солёной и кислотной для поддержания постоянной земноподобной жизни.
Отсутствие магнитосферы и крайне разрежённая атмосфера Марса также являются проблемой для поддержания жизни. На поверхности планеты идёт очень слабое перемещение тепловых потоков, она плохо изолирована от бомбардировки частицами солнечного ветра; помимо этого, при нагревании вода мгновенно испаряется, минуя жидкое состояние из-за низкого давления. Кроме того, Марс также находится на пороге т. н. «геологической смерти». Окончание вулканической активности, по всей видимости, остановило круговорот минералов и химических элементов между поверхностью и внутренней частью планеты.
Терраформированный Марс в представлении художника
Близость Марса и относительное его сходство с Землёй породило ряд фантастических проектов терраформирования и колонизации Марса землянами в будущем.
Марсоход «Curiosity» обнаружил сразу два источника органических молекул на поверхности Марса. Помимо кратковременного увеличения доли метана в атмосфере, аппарат зафиксировал наличие углеродных соединений в порошкообразном образце, оставшемся от бурения марсианской скалы. Первое открытие позволил сделать инструмент SAM на борту марсохода. За 20 месяцев он 12 раз измерил состав марсианской атмосферы. В двух случаях – в конце 2013 года и начале 2014 – «Curiosity» удалось обнаружить десятикратное увеличение средней доли метана. Этот всплеск, по мнению членов научной команды марсохода, свидетельствует об обнаружении локального источника метана. Имеет ли он биологическое или же иное происхождение, специалисты утверждать затрудняются вследствие нехватки данных для полноценного анализа.
Закат на Марсе 19 мая 2005 года. Снимок марсохода «Спирит», который находился в кратере Гусев
В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба – свойства тонкой, разреженной, содержащей взвешенную пыль атмосферы Марса. На Марсе рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб, но проявляется в виде голубого свечения при восходе и закате Солнца, когда свет проходит через атмосферу большее расстояние. Предположительно, жёлто-оранжевая окраска неба также вызывается присутствием 1% магнетита в частицах пыли, постоянно взвешенной в марсианской атмосфере и поднимаемой сезонными пылевыми бурями. Сумерки начинаются задолго до восхода Солнца и длятся долго после его захода. Иногда цвет марсианского неба приобретает фиолетовый оттенок в результате рассеяния света на микрочастицах водяного льда в облаках (последнее – довольно редкое явление).»6
Гидросфера Марса
Полярная шапка Марса
Так, на первых подробных изображениях поверхности Марса, полученные аппаратом Маринер-9, можно видеть сети долин (такие как долины Нергала) – элементы рельефа, свидетельствующие о присутствии в прошлом жидкой воды, в частности, подтопления грунтовыми водами склонов оврагов, поскольку они выглядят идентично эрозионным структурам на Земле, например, на Гавайских островах и в каньонах Эскаланте плато Колорадо.
Помимо разветвлённой сети долин, начиная с этих ранних снимков Маринера-9 различают элементы рельефа, связанные с интенсивным разливом и называемые каналами оттока. Они выглядят как уменьшенная копия крупнейших земных дилювиальных форм. На сегодняшний день считается общепризнанной гипотеза, что происхождение этих каналов также связано именно с жидкой водой, хотя теоретически возможны и другие варианты. Каналы оттока в основном моложе сетей долин, хотя встречаются и достаточно древние образования. По всей видимости, они сформировались в период, когда условия на поверхности Марса были примерно такими же, как сейчас.
Равновеликая азимутальная проекция Ламберта рельефа поверхности Марса от северного полюса до экватора, отснятого высотомером MOLA. Граница Северной низменности сильно напоминает берег океана, возможно, покрывавшего эту площадь в древности.
Аппаратом Mars Global Surveyor были получены и обычные снимки, и их анализ в 2000 году подтвердил существование каналов, сформированных потоками жидкой воды, а также песка и грязевых отложений, оставленных этими потоками. Эти элементы рельефа были настолько свежими, что можно говорить о том, что они формируются и в настоящий период. Позже наличие на тёплых склонах так называемых сезонных поверхностных линий – темных полос, появляющихся на поверхности планеты в теплое время года и похожих на отложения солей, – было засвидетельствовано снимками камеры HiRISE на орбитальном аппарате «Mars Reconnaissance Orbiter». А с помощью спектрометра CRISM на его борту в 2015 году наконец было подтверждено, что они образуются на месте периодических потоков солёной воды в жидком состоянии. Активные исследования сезонных поверхностных линий продолжаются, в том числе и с помощью других инструментов, например, THEMIS на орбитальном аппарате «Марс Одиссей».
Примерно в этот же период (в начале XXI в.) с помощью гамма-спектрометра на орбитальном аппарате «Марс Одиссей» было обнаружено большое количество водорода в приповерхностном слое Марса – особенно в приполярных областях – что, скорее всего, свидетельствует о нахождении там колоссального количества (35 ± 15% слоя по весу) воды в твёрдом состоянии. Присутствие льда было подтверждено данными марсохода «Феникс», работавшего возле северного полюса планеты: белое вещество, обнаруженное на дне вырытой им небольшой траншеи, испарилось за несколько дней, что характерно именно для льда. Аналогичный процесс был зарегистрирован аппаратом «Mars Reconnaissance Orbiter» и для вещества на дне свежих кратеров, в том числе и на низких широтах. На снимках аппаратов «Mars Global Surveyor», «Марс Одиссей», «Mars Reconnaissance Orbiter» и «Марс Экспресс» можно видеть ещё одно свидетельство повсеместного присутствия льда в приповерхностном слое Марса – формы рельефа, напоминающие земные ледники. А радиолокатор SHARAD на аппарате «Mars Reconnaissance Orbiter» подтвердил, что под тонким слоем пыли и грязи в этих образованиях (в том числе в средних широтах) действительно находится лёд.
Узкие овраги на склоне кратера Ньютон, возможно, созданные потоками жидкой воды. Снимок аппарата Mars Global Surveyor, 2000 г.
Динамика сезонных поверхностных линий на склоне кратера Ньютон, составленная по данным аппарата «Mars Reconnaissance Orbiter» в 2011 г.
Испарение льда на дне канавки, сделанной аппаратом «Феникс» в 2008 г.
Запасы воды на Марсе в настоящее время
Лёд
Содержание льда в приповерхностном слое, измеренное аппаратом Марс Одиссей на низких широтах (слева) и в приполярных областях (справа).
В настоящее время открытые и достоверно установленные объёмы воды на Марсе сосредоточены преимущественно в так называемой криосфере – приповерхностном слое вечной мерзлоты мощностью в десятки и сотни метров. Бо́льшая часть этого льда находится под поверхностью планеты, поскольку при нынешних климатических условиях не может существовать стабильно и оказавшись на поверхности, быстро испаряется; только в приполярных областях температура достаточно низкая для стабильного существования льда в течение всего года – это полярные шапки. Общий объём льда на поверхности и в приповерхностном слое оценивается в 5 млн км³ (а в более глубоких слоях, вероятно, могут быть сосредоточены гораздо бо́льшие запасы подмерзлотных солёных вод. Их объём оценивается в 54—77 млн км3.) В расплавленном состоянии он покрыл бы поверхность Марса слоем воды толщиной 35 м.
На полюсах концентрация водного льда в криосфере ожидаемо высока – до 100%. Объём льда в полярных шапках планеты составляет 2—2,8 млн км3 На широтах выше 60° она практически везде не менее 20%; ближе к экватору – в среднем несколько ниже, но всё же повсюду отлична от нуля, больше всего – до 10% – в районе вулканов в Элизиуме, в Сабейской земле и к северу от земли Сирен.
Вода на Марсе в прошлом
Водяной лёд не может стабильно существовать на Марсе при сегодняшних климатических условиях, однако подтверждено, что он присутствует в приповерхностном слое практически повсеместно, в том числе в приэкваториальных областях. Наиболее вероятно, что он оказался там в более ранний период эволюции планеты, когда угол наклона оси вращения Марса достигал больших значений порядка 45°. Численное моделирование показало, что при этом в полярных областях, которые становятся самыми тёплыми участками, H2O и CO2 сублимируются в атмосферу, затем вода конденсируется в лёд и снег в низких широтах, где теперь холодно, и таким образом полярные шапки смещаются к экватору. Подтверждением этому являются обнаруживаемые во многих (в том числе приэкваториальных) областях Марса формы рельефа, напоминающие земные ледники: очевидно, что они сформировались именно в такой период. Наоборот, когда наклон оси вращения уменьшается, в полярных областях снова становится холоднее, а в экваториальных – теплее; вода, замёрзшая там в приповерхностных слоях, сублимируется и снова конденсируется в ледяные полярные шапки. Последовательное чередование этих периодов можно отследить по формирующимся таким образом слоистым отложениям в полярных шапках, однако для этого необходимо сделать допущение о том, сколько времени требуется на образование каждого слоя. На предмет того, насколько частыми были такие смены, продолжается дискуссия: моделирование климата (ключевое влияние на который оказывает хаотический процесс изменения наклона угла оси вращения), особенно в геологических временных масштабах, на сегодняшний день невозможно с требуемой точностью.
Вода (по крайней мере чистая) в жидком состоянии сейчас также не может существовать на Марсе стабильно, однако судя по многочисленным свидетельствам, ранее ситуация была иной. Очевидно, что для этого температура и парциальное давление водяного пара в атмосфере должны были быть выше тройной точки на фазовой диаграмме, тогда как сейчас они далеки от соответствующих значений. Если повысится только температура, а давление останется низким, лёд сублимируется напрямую в водяной пар, минуя жидкую фазу. Между тем, даже повысить температуру на 50° очень затруднительно и возможно лишь посредством парникового эффекта. Однако лавинный парниковый эффект за счёт паров воды в атмосфере, в отличие от Земли, на Марсе невозможен из-за низких температур, при которых водяной пар не сможет стабильно оставаться в атмосфере и неизбежно сконденсируется на поверхности планеты обратно в лёд. Но другой парниковый газ – CO2 – вполне может существовать в условиях Марса, и благодаря ему температура может повыситься до значений, при которых стабилен водяной пар, а когда его становится в атмосфере больше, его парциальное давление может стать достаточным уже для существования жидкой воды. Для этого необходимо парциальное давление углекислого газа порядка 1 атм. Правда, если даже такой механизм имел место, неизвестно, куда делся теперь весь этот объём CO2, – он мог остаться в отложениях карбоната кальция либо улетучиться с остальной атмосферой.
Ряд авторов не разделяет эту гипотезу, полагая, что углекислый газ не может обеспечить достаточной интенсивности парникового эффекта. Предлагались механизмы, задействующие другие парниковые газы, например, водород, предположительно вулканического происхождения. На сегодняшний день на этот счёт нет общепринятой теории, во многом из-за трудностей моделирования парникового эффекта даже на Земле, в котором и по настоящий момент остаётся много неопределённости.
Эволюция гидросферы Марса
Так мог бы выглядеть древний Марс, если бы на нём имелся океан.
Большой интерес в геологическом прошлом планеты Марс вызывают два промежутка времени – Гесперийская эра и Амазонийская эра.
Гесперийская эра
В Гесперийскую эру (3,5—2,5 млрд лет назад) Марс достиг вершины своей эволюции и имел постоянную гидросферу. Северную равнину планеты в ту эру занимал солёный океан объёмом до 15—17 млн км³ и глубиной 0,7—1 км (для сравнения, Северный Ледовитый океан Земли имеет объём 18,07 млн км³). В отдельные промежутки времени этот океан распадался на два. Один океан, округлый, заполнял бассейн ударного происхождения в районе Утопии, другой, неправильной формы, – район Северного полюса Марса. В умеренных и низких широтах было много озёр и рек, на Южном плато – ледники. Марс обладал очень плотной атмосферой, аналогичной той, которая в то время была у Земли, при температуре у поверхности доходившей до 50° C и давлении свыше 1 атмосферы. Теоретически в Гесперийскую эру на Марсе могла существовать и биосфера.
Амазонийская эра
В Амазонийскую эру (около 2,5—1 млрд лет назад) климат на Марсе стал катастрофически быстро меняться. Происходили мощнейшие, но постепенно затухающие глобальные тектонические и вулканические процессы, в ходе которых возникли крупнейшие в Солнечной системе марсианские вулканы (Олимп), несколько раз сильно изменялись характеристики самой гидросферы и атмосферы, появлялся и исчезал Северный океан. Катастрофические наводнения, связанные с таянием криосферы привели к образованию грандиозных каньонов: в долину Ареса с южных нагорий Марса стекал поток полноводнее Амазонки; расход воды в долине Касей превышал 1 млрд м³/с. Миллиард лет назад активные процессы в литосфере, гидросфере и атмосфере Марса прекратились, и он принял современный облик. Виной глобальных катастрофических изменений марсианского климата считаются большой эксцентриситет орбиты и неустойчивость оси вращения, вызывающие огромные, до 45%, колебания потока солнечной энергии, падающей на поверхность планеты; слабый приток тепла из недр Марса, обусловленный небольшой массой планеты, и высокой разрежённостью атмосферы, обусловленной высокой степенью её диссипации.»7
Из всего того, что описано выше можно сделать следующий вывод на планете Марс были океаны, позже произошла катастрофа и была сорвана атмосфера, смещен центр тяжести (ядро), либо были образованы масконы (гравитационные концентрации масс, подобные лунным). В защиту этой версии говорит наличие полости имеющей высокое давление атмосферы, напомню, что в жидком виде вода отсутствует по причине низкого атмосферного давления, в то время как в твердом виде в довольно большом количестве. Видимо во время катастрофы часть воды выплеснулось в космос, другая вместе с поверхностным слоем грунта осела обратно. Катастрофа активизировала тектоническую активность, отсюда видимо столько углекислого газа, и уменьшившегося при горении кислорода. Не стоит забывать о грунтовых водах, гейзерах и прочих полостях (из которых поднимаются газы). Периодически на поверхность просачивается соленая вода. Следовательно, при наличии полостей и области высокого давления (скорее всего вызванной «областной» гравитацией), возможна вода в жидком виде, что самое интересное при более низких температурах. Всё новые и новые стороны привычных фактов, схожие принципы существование жидкой воды на планетах, но всё же у каждой они уникальны, и это не может не увлекать наш разум, нашу душу, всё наше естество. Тогда мы должны продолжить этот замечательный поиск. В добрый путь.
Планетоиды. Церера
Церера
Снимок Цереры в натуральном цвете, сделанный АМСDawn 4 мая 2015 года
Цере́ра (1 Ceres по каталогу ЦМП) – ближайшая к Солнцу и наименьшая среди известных карликовых планет Солнечной системы. Расположена в поясе астероидов. Церера была открыта вечером 1 января 1801 года итальянским астрономом Джузеппе Пиацци в Палермской астрономической обсерватории. Некоторое время Церера рассматривалась как полноценная планета Солнечной системы; в 1802 году она была классифицирована как астероид, но продолжала считаться планетой ещё несколько десятилетий, а по результатам уточнения понятия «планета» Международным астрономическим союзом 24 августа 2006 года на XXVI Генеральной Ассамблее МАС была отнесена к карликовым планетам. Она была названа в честь древнеримской богини плодородия Цереры.
При диаметре около 950 км Церера является крупнейшим и наиболее массивным телом в поясе астероидов, по размерам превосходит многие крупные спутники планет-гигантов и содержит почти треть (32%) общей массы пояса. Она имеет сферическую форму, в отличие от большинства малых тел, форма которых из-за слабой гравитации неправильна. Судя по плотности Цереры, на 20—30% она состоит из водяного льда. Вероятно, её недра дифференцированы на каменное ядро и ледяную мантию. Лёд обнаружен и на поверхности Церер; кроме того, в состав поверхности, вероятно, входят различные гидратированные вещества, а также карбонаты (доломит, сидерит) и богатые железом глинистые минералы (кронстедтит). В 2014 году телескоп «Гершель» обнаружил вокруг карликовой планеты водяной пар.
С Земли видимый блеск Цереры колеблется от 6,7 до 9,3 звёздной величины. Этого мало для того, чтобы можно было различить её невооруженным глазом. 27 сентября 2007 года НАСА запустило зонд Dawn для изучения Весты (2011—2012) и Цереры (2015). 6 марта 2015 года аппарат вышел на орбиту Цереры.
Орбита
Расположение орбиты Цереры
Орбита Цереры лежит между орбитами Марса и Юпитера в поясе астероидов и весьма «планетообразна»: слабоэллиптична (эксцентриситет0,08) и имеет умеренный (10,6°) по сравнению с Плутоном (17°) и Меркурием (7°) наклон к плоскости эклиптики. Большая полуось орбиты составляет 2,76 а. е., расстояния в перигелии и афелии – 2,54, 2,98 а. е. соответственно. Период обращения вокруг Солнца – 4,6 года. Среднее расстояние до Солнца 2,77 а. е. (413,9 млн км). Среднее расстояние между Церерой и Землёй ~ 263,8 млн км. Церерианские сутки длятся приблизительно 9 часов и 4 минуты.
В прошлом считалось, что Церера принадлежит к одному из семейств астероидов – семейству Гефьён. На это указывало сходство её орбиты с орбитами членов этого семейства. Но спектральные характеристики Цереры и этих астероидов оказались различными и, по-видимому, сходство орбит – лишь случайность. Кроме того, была высказана гипотеза о существовании семейства Цереры, включающего 7 астероидов.
Орбита Цереры
На изображении представлена орбита Цереры (выделена синим цветом) и орбиты некоторых других планет (выделены белым и серым цветом). Более тёмным цветом выделена область орбиты ниже эклиптики, а оранжевым плюсом по центру обозначено Солнце. На диаграмме сверху слева показано расположение орбиты Цереры между орбитами Марса и Юпитера. На диаграмме сверху справа видно расположение перигелия (q) и афелия (Q) Цереры и Марса. Перигелий Марса находится на противоположной стороне от Солнца по сравнению с перигелием Цереры и перигелиями нескольких из больших астероидов, таких как (2) Паллада и (10) Гигея. На нижней диаграмме показан наклон орбиты Цереры относительно орбит Марса и Юпитера.
В 2011 году сотрудники Парижской обсерватории, после компьютерного моделирования с учётом поведения 8 планет Солнечной системы, а также Плутона, Цереры, Луны, Паллады, Весты, Ириды и Бамберги, обнаружили у Цереры и Весты нестабильность орбит и возможность их столкновения с вероятностью 0,2% в течение одного миллиарда лет.
Жак Ласкар (Jacques Laskar) в журнале «Astronomy & Astrophysics» пишет, что «возможно столкновение Цереры и Весты, с вероятностью 0,2% на миллиард лет» и «даже если космические миссии позволят провести очень точные измерения положений Цереры и Весты, их движения будут непредсказуемы уже через 400 тысяч лет». Данное исследование значительно снижает возможность прогнозирования изменения земной орбиты.
Физические характеристики
Размеры Цереры по сравнению с некоторыми спутниками планет.
Церера – самый крупный известный объект в поясе астероидов, располагающемся в пространстве между Марсом и Юпитером. Её масса была определена на основе анализа влияния на меньшие астероиды. Полученные результаты у разных исследователей немного отличаются. Принимая во внимание три наиболее точных значения, измеренных к 2008 году, считается, что масса Цереры равна 9,4·1020 кг, что составляет почти треть всей массы пояса астероидов (3,0 ± 0,2·1021 кг), но в то же время более чем в 6000 раз уступает массе Земли и составляет около 1,3% от массы Луны. Значительность массы Цереры привела к тому, что под действием собственной гравитации это небесное тело, как и многие другие планетоиды, приобрело форму, близкую к сферической, с размерами 975×909 км.
Строение Цереры
Строение Цереры: 1 – тонкий слой реголита; 2 – ледяная мантия; 3 – каменное ядро
В отличие от большинства астероидов, на Церере после приобретения сферической формы началась гравитационная дифференциация недр – более тяжёлые породы переместились в центральную часть, более лёгкие сформировали поверхностный слой. Таким образом сформировалось каменное ядро и криомантия из водяного льда. Судя по низкой плотности Цереры (2,16 г/см³), толщина её мантии достигает 100 км (23—28% массы и 50% объёма карликовой планеты), и кроме того она содержит значительное количество льда: 200 миллионов кубических километров, что превосходит количество пресной воды на Земле. Эти данные подтверждаются наблюдениями, сделанными обсерваторией Кека в 2002 году и эволюционным моделированием. Кроме того, некоторые характеристики поверхности и геологической истории (например, большое расстояние Цереры от Солнца, благодаря чему солнечное излучение ослаблено настолько, чтобы позволить некоторым компонентам с низкой температурой замерзания сохраниться в её составе в процессе формирования), указывают на наличие летучих веществ в недрах Цереры.
На начальном этапе существования ядро Цереры могло разогреваться за счёт радиоактивного распада и, возможно, какая-то часть ледяной мантии находилась в жидком состоянии. По всей видимости, значительная часть поверхности и сейчас покрыта льдом или некой разновидностью ледяного реголита. По аналогии с ледяными спутниками Юпитера и Сатурна можно предположить, что под действием УФ излучения Солнца часть воды диссоциирует и образует сверхразреженную «атмосферу» Цереры. Также остаётся открытым вопрос о наличии на Церере сейчас или в прошлом криовулканизма: самая большая гора, гора Ахуна, по результатам обработки данных зонда Dawn (2016 г.) является ледяным криовулканом, а значит, карликовая планета была геологически активна по крайней мере в течение последнего миллиарда лет, а возможно, активна и сейчас..
Команда миссии Dawn обнаружила и прямые свидетельства наличия водного льда в приповерхностном слое – на это указали данные инфракрасных исследований кратера Оксо (Oxo). В 2016 году была теоретически установлена возможность стабильного существования льда в приполярных кратерах, дно которых никогда не освещается Солнцем («холодных ловушках»). Этот вывод подтвердился наблюдениями инфракрасного спектрометра аппарата Dawn. В северной полярной области Цереры найдено 634 таких кратера, в 10 из них обнаружены залежи яркого материала, и для одного из этих ярких пятен спектроскопически подтверждено, что оно образовано льдом. Более того, по результатам анализа данных другого инструмента зонда Dawn, детектора нейтронов и гамма-излучения GRaND, лёд присутствует в приповерхностном слое (глубиной менее 1 метра) карликовой планеты повсеместно, а не только в отдельных кратерах; наибольшее же его количество наблюдается в приполярных широтах – до 30%. Этот вывод сделан на основании измерения содержания водорода; также были измерены концентрации калия, железа и углерода. Судя по этим данным, верхний слой коры Цереры представляет собой глинистый материал с порами, заполненными льдом (порядка 10% по весу). Последующий анализ изображений геологических структур даёт оценку содержания воды до 50%. Всё это свидетельствует в пользу теории о ранней дифференциации карликовой планеты на тяжёлое каменное ядро и более лёгкие вещества у поверхности, в том числе водяной лёд, который и сохранился на протяжении всего этого времени.
Спутников у Цереры не обнаружено. По крайней мере пока, наблюдения «Хаббла» исключают существование спутников размерами более 10—20 км.
Поверхность
Яркое пятно на снимках Цереры, сделанных космическим телескопом «Хаббл» в 2003—2004 гг. с разрешением 30 км/пиксель
На земном небосклоне Церера предстаёт слабой звёздочкой всего лишь 7-й величины. Её видимый диск очень мал, и первые детали на нём удалось разглядеть только в конце XX века с помощью орбитального телескопа «Хаббл». На поверхности Цереры различимы несколько светлых и тёмных структур, предположительно кратеров. По слежению за ними удалось точно установить период вращения Цереры (9,07 часа) и наклон оси вращения к плоскости орбиты (менее 4°). Самая яркая структура (см. рисунок справа) в честь первооткрывателя Цереры получила условное название «Пьяцци». Возможно, это кратер, обнаживший ледяную мантию или даже криовулкан. Наблюдения в ИК диапазоне показали, что средняя температура поверхности составляет 167 К (—106° C), в перигелии она может достигать 240 К (—33° C). Радиотелескопом в Аресибо несколько раз проводилось исследование Цереры в диапазоне радиоволн. По характеру их отражения было установлено, что поверхность Цереры довольно гладкая – видимо, за счёт высокой эластичности ледяной мантии.
Наиболее яркое пятно на Церере, запечатленное станцией «Dawn» с расстояния в 46 000 км 19 февраля 2015 года. Оказалось, что это пятно состоит из двух частей, находящихся в кратере Оккатор
Группа ярких пятен внутри кратера Оккатор на детальном снимке, полученном станцией «Dawn» в августе 2015 г. На более ранних снимках низкого разрешения они сливаются в одно крупное пятно
В спектрах, полученных в 2015 году станцией «Dawn», вода отсутствует, однако видна полоса гидроксила OH и несколько более слабая полоса аммония – скорее всего, это аммонизированная глина, в которой вода связана химически, в форме гидроксила. Присутствие аммиака пока не имеет объяснения, его снеговая линия лежит далеко за пределами орбиты Цереры.
Также на основании данных, полученных КА Dawn, о частотном распределении кратеров по размерам на поверхности Цереры, было сделано заключение, что малое по сравнению с ожидаемым число крупных кратеров свидетельствует о том, что поверхность подвергается постепенным изменениям.
Гора Ахуна: фотография зонда Dawn
Проанализировав снимки основной камеры Dawn, геологи из США, Италии, Франции и Германии обнаружили на поверхности Цереры следы активности, связанной с большим содержанием воды в верхних слоях породы. Выявлено три типа потоков материи. Первый в основном встречается на высоких широтах – он напоминает земные ледники – это пласты земли, смещающиеся и обрушивающие края кратеров. Второй тип смещений, также преобладающий вблизи полюсов, – аналог оползней. Третий обычно ассоциирован с крупными кратерами и обладает структурой, напоминающей селевые потоки; ученые сравнивают его со специфическими кратерами, где происходят жидкие выбросы, – такие часто встречаются на Марсе, а на Земле примером является Нёрдлингенский Рис. Все эти смещения встречаются на поверхности планетоида очень часто – их можно обнаружить рядом с 20—30 процентами всех кратеров диаметром более 10 километров.
Дальнейшие исследования
До 2015 года единственным способом изучения Цереры оставались телескопические наблюдения. Регулярно проводились кампании по наблюдению покрытий звёзд Церерой, по возмущениям в движении соседних астероидов и Марса уточнялась её масса.
В январе 2014 года было сообщено об обнаружении вокруг Цереры с помощью инфракрасного телескопа «Гершель» облаков водяного пара. Таким образом, Церера стала четвёртым телом Солнечной системы, на котором зафиксирована водная активность (после Земли, Энцелада и, возможно, Европы).
18 и 25 февраля 2015 года НАСА были опубликованы детальные снимки карликовой планеты, на которых видны два ярких белых пятна, природа которых сначала была не ясна. В декабре 2015 года был опубликован вывод, что они состоят из гидратированного сульфата магния, но впоследствии другая группа астрономов, работавшая с более точным спектрографом, на основании анализа спектра пришла к заключению, что это карбонат натрия (сода).
Данные КА Dawn позволили уточнить (в сторону уменьшения) массу и размер Цереры. Экваториальный диаметр Цереры составляет 963 км, а полярный – 891 км. Масса Цереры составляет 9,39·1020 кг.» 8
Названия 17 кратеров на карте высот поверхности Цереры (красные тона – высокие участки, синие – низкие)
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?