Текст книги "Секреты сканирования на ПК"
Автор книги: Б. Леонтьев
Жанр: Программы, Компьютеры
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 10 страниц)
Глава 4.
Цветопередача
Известно, что цвет – это длина электромагнитной волны, регистрируемой нашим глазом. В дальнейшем придётся отталкиваться от такого объективного определения, хотя на самом деле воспринимаемый нами цвет есть понятие глубоко субъективное и зависящее от множества принципиально неучитываемых параметров – от меню за последние пару дней до просто настроения. Но измерением цвета по длине волны занимаются разве что физики, а для практических нужд используется тот факт, что глаз выделяет из света три компоненты, которые условно соотносят к красному, синему и зелёному. Смешивая лучи этих цветов в разных пропорциях можно получить любой видимый глазом цвет. Это и есть основа цветовой системы RGB, в которой и работают практически все мониторы, что прекрасно видно, если рассмотреть точки экрана под лупой.
Однако уже на этом шаге не всё так просто. Для понятий «красный», «синий» и «зелёный» определены точные длины волн – но на самом деле колбочки сетчатки чувствуют совсем не их!
Ещё в 1931 году CIE (Commission Internationale de l'Eclairage) были замерены реакции глаза на свет различной длины волны, и оказалось, что кривые отзыва очень далеки от логически удобоваримых.
Их, не мудрствуя лукаво, назвали X, Y и Z и решили принять их за основу измерения цвета, а чтобы немного удобнее ориентироваться в получаемом цвете разработали модель xyY – где Y есть уже параметр яркости, а х и у получаются из X, Y и Z: x=X/(X+Y+Z), y=Y/(X+Y+Z). Иногда вводят и z=Z/(X+Y+Z), но, очевидно, z=l-x-y. В координатах ху обычно отображают локус набор всех цветов, воспринимаемых глазом.
Однако такая система чересчур неравномерна – например, изменив один параметр на единицу, мы можем почти не заметить разницы в цвете, а изменив на ту же единицу другой – получить нечто совсем новое. Степень нелинейности достигает при этом 1:80.
Чтобы хоть как-то компенсировать это, начали придумывать новые системы, производные от XYZ: YUV, Lab, Luv и прочие. YUV, Luv и иже с ними используются, как правило, в телевизионном деле, а вот Lab используется в компьютерной вёрстке всё чаще.
Но главная беда всех производных систем цветопередачи – они относительны. В них передаётся информация о том, как цвета разных точек изображения соотносятся друг с другом – но не как они должны выглядеть! Если вы читаете текст с монитора и видите его на белом фоне, который передаётся на монитор как максимум красного, синего и зелёного, это вовсе не значит, что этот белый фон имеет такой же цвет, как и у другого пользователя. Достаточно просто тронуть регулировки яркости и контрастности – или изменить внешнее освещение– чтобы увидеть, как изменяется цвет.
Сказанное выше касается излучаемого света, или аддитивного цвета – то есть когда при складывании каналов мы увеличиваем яркость. А любая распечатка передаёт цвет отражением части спектра падающего на него света, так называемым субстрактивным цветом – при добавлении красителей мы уменьшаем яркость. И здесь снова проявляется проблема внешнего освещения: ярким солнечным днём на улице и поздним вечером за тусклой лампочкой одна и та же распечатка будет смотреться совсем по-разному.
Но это, всё-таки, проблемы, от компьютерной темы отдалённые; а как быть нам, обладателям мегабайт и гигагерцев? Что сделано в этой области для нас, домашних пользователей?
Идея контроля цвета в компьютерных системах достаточно проста: выбирается некое подмножество цветов, а каждому устройству приписывается профиль – правило пересчёта из цветового пространства данного устройства в это подмножество. Стандарт на профили устройств был разработан в 1993 году (хотя работы ведутся до сих пор) международным консорциумом по цвету, ICC. Рабочее подмножество описывается в координатах XYZ, а в файле профиля указывается тип устройства (сканер, монитор, принтер), цветовой охват и таблицы для пересчёта из пространства устройства в XYZ или Lab.
Причём, поскольку пересчитывать можно по-разному, хранятся четыре варианта таблиц: absolute colorimetric – когда считается, что белый цвет одинаков, relative colorimetric – когда осуществляется пересчёт и белого цвета, perceptual – когда искажаются цвета не только вне цветового охвата, но и близкие к его краям: это обеспечивает лучшее восприятие цвета глазом, и, наконец, saturation – искажение цветов ради получения наиболее насыщенных оттенков, что важно для рисунков и бизнес-графики.
Заниматься сквозным контролем цвета всех изображений, проходящих через компьютер, призвана Color Management System – система управлений цветом, которых, на самом деле, существует достаточно много – Kodak, Agfa, Apple с разной степенью агрессивности продвигают именно свои системы. Одна из них, от Microsoft, встроена непосредственно в Windows; собственно, она не сильно отличается от других, но профессиональные программы – такие как Adobe PhotoShop и иже с ним – позволяют пользоваться любой другой системой, а так же создавать свои собственные профили. В качестве же универсального цветового пространства Microsoft совместно с Hewlett-Packard продвигают стандарт sRGB «урезаныный» вариант, посильный для middle-end-техники.
Казалось бы, какие могут быть проблемы, когда за дело берутся такие гиганты рынка? Увы, как ни странно, особого облегчения CMS не приносит. Во-первых, все цветовые преобразования являются необратимыми. Простейший пример – нарисуйте в PhotoShop несколько прямоугольничков разного цвета, для примера, в RGB. Запишите их цвета и переведите картинку в любой другой режим – Lab, CMYK… a потом – обратно. Смею вас уверить, что не изменится только белый (потому что преобразования абсолютные), и, в лучшем случае, некоторые серые оттенки. А ведь файл в CMS претерпевает по меньшей мере два преобразования – на входе со сканера или камеры и на выходе – при печати.
Во-вторых, никуда не исчезла проблема белого цвета. До тех пор, пока лист бумаги не будет выглядеть так же, как и белый экран монитора – похожесть цветов может быть только относительной. В третьих, два принтера одной модели – или даже один и тот же принтер, но в разных условиях – может выдать очень малопохожие распечатки для одних и тех же файлов. И это уже не вдаваясь в такие подробности, как недостаточность таблиц профилей – зачастую в них идут восьмибитные данные…
Кстати, тех, кто активно печатает дома с прицелом на некоторую профессиональность и подготавливает файлы в CMYK ожидает сюрприз от Microsoft: подсистема печати Windows понимает только RGB! И если вы оправляете на печать из того же PhotoShop CMYK-картинку, то сначала сам PhotoShop переведёт её в RGB, а уже потом драйвер принтера пересчитает обратно в CMYK. Именно поэтому если вы хотите получить на принтере чистый мажентовый цвет, надо использовать не CMYK (0,100,0,0) a RGB (255,0,255). Единственным спасением для CMYK в Windows является использование postscript-принтера, чем и пользуются профессиональные дизайнеры и цветоделители.
Так как же быть? Совет стар и прост: расслабится. У вас есть фотография, вы сканируете её, печатаете на цветном струйнике и получается похоже. Более или менее. Если вам так уж интересно выбрать оптимальный вариант – распечатайте её в четырёх-пяти экземплярах, с различными установками цветопередачи. Но не стоит рассчитывать, что найденное сочетание установок даст столь же хорошую распечатку у вашего друга… или даже на следующей фотографии.
Глава 5.
Использование цифровых камер
Постоянный обмен информацией, короткое время производства, экономия финансов, польза для окружающей среды – вот только несколько причин, которые объясняют гигантский рост интереса к цифровым фотоаппаратам. Если вы когда-либо вообще занимались фотографией, то есть, получением изображения посредством фиксирования его на фотопленке, потом ожидали, когда они будут изготовлены, затем устанавливали их в свой сканер, а потом нетерпеливо покусывали губы в ожидании результата оцифровывания ваших фотографий, то вы, бесспорно способны по достоинству оценить устройство, которое моментально преобразует изображение в цифровую форму и «запоминает» его для последующего использования.
В цифровых фотоаппаратах не применяется пленка, то есть, не теряется время на обработку и не используются фотореактивы для вывода изображения на печать. Если вы фотографируете на природе и видите, что ваше изображение получается плохого качества, то просто нажимаете кнопку удаления. Большинство цифровых фотоаппаратов, используемых в студийной работе, имеют функцию предварительного просмотра кадра непосредственно на экране компьютера. Это дает возможность изменять освещение или перегруппировывать композиционные элементы до тех пор, пока вы не добьетесь желаемого результата.
А на самом деле, кому необходимы цифровые фотокамеры? Навряд ли можно предположить, что заурядному российскому туристу, отправляющемуся греть свои кости на пляжах Турции или Греции, нужно что-то подобное. Дабы запечатлеть себя, родимого, на фоне экзотического сарая, вполне хватит и 50-долларовой «мыльницы». Да и компьютеры есть далеко не в каждой семье… Так что прогнозировать массовое распространение цифровой фототехники в нашей стране едва ли можно.
А вот профессионалы, которые так или иначе сталкиваются с проблемой ввода фотографий в компьютер, всецело могут оценить новшества по достоинству, особенно камеры высокого (1024x768) разрешения. Если фотограф допускает промах, и снимки оказываются некачественными, то наступают проблемы. В подобной ситуации возможность мгновенного контроля качества изображения бесценна. Да и потребность приглашать квалифицированного фотографа (90% работы которого – это проявка пленок и печать фотоснимков) отпадает сама собой: с цифровой съемкой классно справляются дизайнеры, которым, вдобавок, открываются новые возможности творчества.
Что касается качества изображения, изготовленного при помощи таких камер, то оно всецело приемлемо для цветной полиграфии. Мы выводим на пленки оригинал-макет с разрешением 250 dpi. Цифровые фотокамеры 1024x768 позволяют с таким разрешением публиковать снимки размером 10,4x7,8 см.
Камеры 640x480 выдают картинку полиграфического качества меньшего размера – 6,5x4,8 см (но и они в некоторых случаях вполне достаточны). Безусловно, для того чтобы сделать художественный снимок на целую полосу, необходимы серьезные пленочные профессиональные аппараты и услуги соответствующих специалистов – никто и не собирается опровергать необходимость их существования. Но для среднестатистической рутинной съемки непросто придумать что-нибудь лучше «цифровиков».
Между прочим, на Западе цифровые фотокамеры уже завоевали популярность среди журналистов-репортеров. Причем благодаря Internet. Это на самом деле удобно: сделал снимок, «загнал» его в ноутбук и через Сеть передал куда нужно… От момента съемки до момента получения снимка в редакции проходит от силы полчаса. Там, где необходима оперативность, на самом деле лучше использовать цифровые камеры.
Еще одна область приложения цифрового фото – Web-дизайн. В силу того что практически все цифровые камеры используют Motion JPEG-компрессию и «родной» для них формат.jpg весьма распространен в Internet, то проблема быстрого периодического обновления снимков на Web-сайте решается при помощи цифровой камеры очень легко. К тому же в Internet редко требуются снимки с разрешением больше 320x240, иначе посетители вашей странички будут целый час дожидаться вывода изображения на экран. Кстати, многие фирмы, торгующие такими фотоаппаратами, позиционируют их именно как устройства для владельцев Web-сайтов.
В бизнес-секторе цифровые камеры уже пользуются популярностью для быстрого составления фотокаталогов продукции, рекламных проспектов Сердцем любого цифрового фотоаппарата является светочувствительная матрица CCD (Charge Coupled Device, то есть ПЗС – прибор с зарядовой связью). Как правило в камерах используется 1/3-дюймовая CCD, состоящая из элементов, преобразующих световые волны в электрические импульсы (Аналогово-цифровой преобразователь заменяет электрические заряды цифровой информацией). Количество таких элементов колеблется от 350000 в камерах с разрешением 640x480 до 810000 и более в камерах 1024x768. Сами матрицы не являются новейшим изобретением– родившись как оборудование для физических экспериментов (в частности в физике высоких энергий), они уже давно используются в видеокамерах.
Как и в обычных фотоаппаратах, качество кадра «цифровиков» во многом определяется качеством объектива. В среднем, камеры любительского уровня (и высокого, и низкого разрешения) укомплектовываются объективами с фокусным расстоянием около 5 мм. (Это примерно соответствует фокусному расстоянию 35-миллиметровых объективов обычных пленочных камер) и фиксированной диафрагмой (aperture). Некоторые модели располагают объективами с переменным фокусным расстоянием (zoom), но они дороже стоят. Как правило, скорость спуска затвора (выдержка) регулируется автоматически. В общем, любительские цифровые камеры мало отличаются своими объективами от пленочных собратьев, именуемых в народе «мыльницами».
Естественно, на более серьезные, полупрофессиональные аппараты ставят уже вполне приличную оптику с возможностью отключения автоматики и ручной регулировки резкости, диафрагмы и выдержки. Сами понимаете, что с помощью автоматических цифровых фотоаппаратов непрофессионального уровня, оборудованных стандартными короткофокусными объективами с фиксированной диафрагмой, достаточно сложно получить одинаково приличные кадры в меняющихся условиях съемки. Лучше всего эти камеры работают при ярком солнечном освещении, как и обычные «мыльницы».
У большинства современных цифровых камер есть небольшие (около 2 дюймов по диагонали) жидкокристаллические дисплеи. Они выполняют две основные функции: просмотр содержимого памяти и дублирование оптического видоискателя. Кстати, наводить камеру на объект гораздо удобнее именно при помощи дисплея. Правда, последний требует достаточно много энергии, и батарейки (или аккумуляторы) быстро садятся. Практически все камеры с дисплеями имеют и довольно развитые экранные меню, при помощи которых осуществляется выбор опций работы с изображением.
Отснятые снимки хранятся во флэш-памяти камеры. Наиболее заманчивыми, с точки зрения пользователя, являются аппараты со сменными Smart Media-картами памяти. Объем этих карт от 2,4 до 8 Мбайт (все одинакового размера), и в один спичечный коробок их влезает штук десять. В среднем на 2 Мбайт Smart Media-карту помещается 4-10 кадров с разрешением 1024x768 или 20-40 кадров с разрешением 640x480 (цифры колеблются в зависимости от степени используемой в камере компрессии). Фирма Kodak выпускает свой стандарт флэш-карт, которые называются Kodak Picture Card. Они несколько больше по размеру, чем Smart Media, и бывают емкостью 2 и 4 Мбайт. Кодаковские карты несколько прочнее и надежнее, чем обычные, однако другие производители этот стандарт игнорируют.
Большинство камер использует последовательный (СОМ) порт компьютера для передачи изображений. Процесс этот, несмотря на низкую пропускную способность порта, не занимает много времени. Ко многим камерам, помимо коммуникационных пакетов, прилагаются и TWAIN-драйверы, которые позволяют работать с фотоаппаратами из любых графических пакетов, разрешающих работу со сканерами.
Для многих фотографов и пользователей графических программ самым легким способом оценить цифровой фотоаппарат является анализ его оптической системы, так как многие цифровые фотоаппараты используют в качестве оптической основы профессиональные 35-миллиметровые фотоаппараты. Наиболее запутанным вопросом при пользовании цифровым фотоаппаратом является выяснение того, как такие цифровые технические характеристики, как глубина цвета и разрешение, влияют на качество изображения.
Понятие о глубине цвета
Как и в планшетном сканере динамический диапазон полутонов, захватываемых фотоаппаратом, от самого яркого до самого темного элемента, в первую очередь определяется глубиной цвета. Невысокие по цене цифровые фотоаппараты, такие как Apple QuickTake 150, Kodak DC-40 и Model 4 от компании Dycam, способны захватывать 24 бита цвета (8 бит данных для каждого цвета RGB-диапазона). Камеры классом повыше, типа Kodak DCS 460, захватывают 36 бит, что дает более точную детализацию изображения с меньшим шумом. На самом верху классификации находится Leaf Digital Camera Black, которая производит снимки с глубиной цвета 14 бит на каждый RGB-цвет.
Понятие о разрешении
Разрешение в цифровом фотоаппарате базируется на количестве горизонтальных и вертикальных элементов изображения, которое он может захватить. Как и в сканере, эти элементы изображения называются пикселами. Чем больше количество пикселов по горизонтали и вертикали, тем выше разрешение фотоаппарата и, следовательно, более четким получается изображение и более мягкими цветовые переходы.
Как вы вправе ожидать, более дорогие аппараты, как правило, предполагают наилучшее разрешение. Например, Kodak DCS 460 обладает разрешением 2000x3000 пикселов. Аппарат фирмы Apple QuickTake 150, который стоит гораздо меньше, имеет самое большое разрешение – 640 на 480 пикселов. DC 40 от Kodak с разрешением 756x504 пиксела может похвастаться самым высоким разрешением среди фотоаппаратов стоимостью ниже 1000$.
К сожалению, многие люди – даже знакомые с цифровой графикой, находят для себя сложным разобраться в том, каким образом размеры в пикселах превращаются в качество изображения. Для понимания этого сначала вам необходимо уяснить, что размеры в пикселах, как правило, основываются на разрешении 72 ppi (пиксела на дюйм). Вам также необходимо понимать, что уменьшение размера цифрового изображения увеличивает количество пикселов на дюйм. Таким образом, проблема разрешения, как правило, сводится к следующему вопросу: каков самый большой размер, до которого вы можете уменьшить изображение без опасности потерять его высокое качество на выходе?
Для достижения наилучших результатов при выводе изображения на печать, разрешение должно быть в 1,5-2 раза больше экранной частоты (измеряется в строчках на дюйм), используемой при выводе изображения.
Как только вы разберетесь в том, как глубина цвета и разрешение цифрового фотоаппарата влияют на качество вывода, то будете точно знать, нужен ли он вам. Перед тем, как вы начнете пользоваться цифровым фотоаппаратом, вы так же должны знать, что не все модели (даже не все дорогие модели) захватывают каждый нюанс цвета в изображении, особенно если условия освещения удовлетворительные. Это вовсе не означает, что цифровые фотоаппараты производят изображения плохого качества, которые нельзя использовать, а только говорит о том, что вам, возможно, понадобится прибегнуть к услугам таких программ редактирования изображений, как Adobe Photoshop, HSC Live
Picture, Fauve Xres, Micrografx Picture Publisher или Corel PhotoPaint, или коррекционного программного обеспечения, поставляемого вместе с вашим фотоаппаратом для расширения динамического диапазона изображения, установки четкости цветокоррекции.
Глава 6.
Лазерные принтеры и сканеры
Проблема работы принтера HP 5 L – захват нескольких листов
В большинстве копировальных аппаратов и лазерных принтеров малой линейки механизм разделения листов при подаче бумаги реализован с помощью так называемой «тормозной площадки». На лотке непосредственно под роликом захвата бумаги наклеена полоска материала, обладающим повышенным коэффициентом трения с бумагой – «тормозная площадка». Ролик, вращаясь, начинает подавать из пачки несколько листов (как правило, не более десяти). Нижний лист, выйдя из пачки и попадая на тормозную площадку, тормозится ею.
Следующий лист немного сдвигается вперед, скользя по приторможенному листу, и также останавливается тормозной площадкой. Наконец, последний, верхний лист попадает на тормозную площадку. Однако, благодаря тому, что сцепление бумаги с роликом подачи выше, чем с тормозной площадкой, он не останавливается, а продолжает поступать в тракт подачи.
В этом способе подачи возможны следующие неисправности:
• в результате износа и засаливания тормозной площадки уменьшается ее сцепление с бумагой, вследствие чего в тракт подачи бумаги попадают несколько неразделенных листов. Устранение: очистка и обезжиривание тормозной площадки (временный эффект) или замена тормозной площадки.
• В результате засаливания ролика захвата уменьшается его сцепление с бумагой, вследствие чего возникают пропуски в подаче бумаги. Устранение: очистка и обезжиривание ролика захвата неспиртосодержащими растворами.
Спиртовые растворы не рекомендуются из-за их свойства дубить резиновое покрытие ролика.
• В результате износа ролика захвата уменьшается его диаметр, что приводит к увеличению зазора между роликом и тормозной площадкой. В этом случае возможны как пропуски подачи из– за уменьшения сцепления бумаги и ролика, так и подача нескольких листов – давление ролика на бумагу мало и сцепления нижних листов с тормозной площадкой меньше, чем между самими листами.
Устранение: замена ролика захвата бумаги; увеличение диаметра ролика (к примеру, подмоткой изоленты под резиновое покрытие ролика; смещение ролика ближе к тормозной площадке (если позволяет конструкция аппарата/блока).
Mita CC – 10 – значение кода U
Не вставлен картридж (или плохой контакт в его разъеме).
Ricoh M-50 – Коды ошибок
• El: Exposure – Exposure sensor or Lamp stabilizer failure
• E2: Slider – Home position switch or Slider drive failure
• E3: Development – No Developer Unit Installed or Toner end sensor short
• E5: Fusing – Thermistor failure or Fusing Lamp cirquit open
• E6: Functional Drive – Pulse generator/Main Motor/AC power supply failure
• E7: Master Unit – Master Unit don't turn/No Master Unit installed/Master sensor failure
Сканирование фотографий
Все, написанное ниже, касается лишь сканирования, предназначенного не для профессиональной полиграфии, а для дальнейшей «жизни» картинок в электронной форме – пересылке друзьям, использования в качестве заставок, сохранения своего фотоальбома на диске, с возможностью в дальнейшем печати на лазерном принтере лишь снимков относительно небольшого формата.
Приступая к сканированию, вы должны четко представлять себе, что должно получиться «на выходе». Полное безумие – сканировать фотографии с разрешением 2400, если потом они будут лишь рассматриваться на мониторе в режиме 600 х 800… Предположим, вы сканируете фотографии небольшого, «открыточного» формата и не собираетесь слишком сильно кадрировать их при обработке. Это наиболее распространенный случай в практике. Тут может быть два варианта.
Первый – полученное изображение будет предназначено в основном для рассматривания на экране в масштабе 1:1, и второй вариант – если на снимке имеются мелкие сюжетно важные детали, требующие некоторого увеличения изображения при рассматривании. Ну, к примеру, это может быть групповой снимок из 50 человек и очень хочется, чтобы ваше лицо на нем возможно было разглядеть подробно.
Теперь необходимо в уме сделать небольшие вычисления и в дальнейшей работе вообще забыть понятие «разрешение», а пользоваться лишь пиксельным размером изображений. Пусть, к примеру, исходный снимок имеет длинный размер 15 см, расположен «альбомно», и вы не собираетесь его существенно кадрировать. А при дальнейшем использовании он не потребует увеличения при рассматривании. В этом случае, выбрав исходный пиксельный размер по длинной стороне 1600, вдвое больше, чем будет окончательное изображение, с удивлением обнаруживаем, что разрешение 300 при сканировании оказывается более, чем достаточным! Для снимков, имеющих «книжную» ориентацию, исходное разрешение может быть и еще меньше, так как их длинная сторона, расположенная вертикально, в конце концов должна будет уложиться в 600 пикселей.
Конечно, если изображение потом предполагается рассматривать с увеличением, или вы собираетесь сильно кадрировать снимок, исходный пиксельный размер должен быть адекватно увеличен.
Следует учесть одно малозаметное обстоятельство – опыт показывает, что если вы используете высококачественный сканер, то можете смело сканировать даже в масштабе 1:1, то есть, примерно 800 по горизонтальной стороне или 600 по вертикальной. В случае, если же сканер похуже – выберите несколько больший пиксельный размер, но в любом случае двукратного запаса вам хватит. Очень важным моментом перед началом сканирования является также согласование, или точнее – привязка, характеристик вашего монитора с тем, на котором происходит работа при сканировании. В случае, если этот момент упустить, то придя домой, или перенеся файлы на свой компьютер, вы с нехорошим удивлением можете заметить, что результат получился весьма далекий от ожидаемого…
Для того, чтобы избежать такой неприятности, заранее на своем компьютере выберите наиболее «правильную» картинку с богатой гаммой цветов, и посмотрите ее на том мониторе и в том графическом редакторе, из под которого будете сканировать. Потратьте немного времени и настройте редактор так, чтобы эта ваша «эталонная» картинка выглядела великолепно! А в дальнейшем внимательно контролируйте неизменность настроек. Особенно – после перерывов, так как не вы один работаете на этом сканере.
Сканировать необходимо, конечно на максимальном количестве цветов, которое обеспечивает сканер. Затрубив исходную цветность, вы не слишком много сэкономите на размерах файлов, в отличие от выбора исходного разрешения, а при дальнейшей работе, особенно при ошибках в подборе режима по яркости – контрастности – цветности, запас цветов может сильно выручить. В случае, если даже у вас очень много снимков, все же не советую экономить время и закладывать их сразу по нескольку.
Даже выглядящие совершенно одинаковыми на бумаге, они получаются существенно разными после сканирования… И вы будете вынуждены при дальнейшей обработке потратить гораздо больше времени на цветокоррекцию, чем сэкономили на сканировании. В крайнем случае – подбирайте снимки совершенно близкие по характеристикам, если уж никак не обойтись без группового сканирования.
И совершенно ни к чему хорошему не приведет, к примеру, одновременное сканирование старых снимков на «Фотоцвете» с современными фотоматериалами, не говоря уже о комбинации цветных с черно-белыми. Некоторые снимки с сомнительной цветопередачей сканируйте сразу в нескольких режимах, сохраняя файлы под подобными именами – чтобы облегчить себе потом дальнейшую работу. Опыт показывает, что легче исправить более темное изображение, чем излишне светлое.
В случае, если снимков много, то периодически удаляйте со стекла сканера неизбежно накапливающиеся пылинки. Это сделать быстрее, чем ретушировать их в дальнейшем. Для чистки стекла возможно использовать то же самое аэрозольное средство, что используется для экранов мониторов. Естественно, используемая при этом мягкая ткань или специальная чистящая бумага должны быть совершенно чистыми! Ну и, конечно, еще только подбирая фотографии для сканирования, не поленитесь их обеспылить. Это возможно сделать и пылесосом с мягкой чистой кистью.
Со сканированием разобрались. Теперь несколько рекомендаций по обработке полученных изображений. Для конкретности все дальнейшее – на примере русифицированного Adobe PhotoShop.
При обработке изображений важно придерживаться некоторой определенной последовательности операций, от перестановки их местами «сумма» может измениться.
Первое, что необходимо сделать, это так же, как и в начале сканирования, согласовать характеристики отображения Adobe PhotoShop и той программы просмотра картинок, которая вами используется. Например, ACDSee.
Точно так же, как и в первом случае, откройте в
Adobe PhotoShop вашу любимую картинку и добейтесь «Настройками монитора» идентичности изображений. А заодно в качестве единицы измерения установите пиксели.
Открываем файл для редактирования, просто перетащив его значок мышкой из браузера ACDSee на поле окна Adobe PhotoShop. (Окно ACDSee пусть у вас будет всегда открытым – в нем гораздо удобнее сравнивать получаемые промежуточные и окончательные результаты и выбирать наилучший).
Первое, что нужно сделать, открыв файл для редактирования, – увеличить пиксельный размер, примерно втрое от того, что вам понадобится в окончательном варианте, то есть, 2400 х 1800. Такое увеличение совершенно необходимо для работы не только по ретуши и исправлению мелких деталей, повороту, наклону, выделению контуров, но, как ни странно, даже и для коррекции цветопередачи. При увеличении размера обязательно сбросьте флажок «Пропорции», введя второе число вручную, иначе можете получить грубопикселизованное изображение. В данной операции возможно также и несколько исказить пропорции, руководствуясь художественным замыслом или другими соображениями.
Следующий этап – при необходимости поверните изображение на некоторый угол, если фотоаппарат при съемке оказался нежелательно наклонен, естественно, также необходимо повернуть картинку на 90 или 180 градусов, если фотография была заложена в сканер неверно.
Вот только теперь необходимо откадрировать картинку, выделив прямоугольную область с заданным (8 х 6) или произвольным соотношением сторон и выбрав «Кадрировать» в пункте меню «Редактирование». При этом руководствуйтесь теми представлениями о грамотной композиции кадра, что вы имеете, видите ежедневно по телевизору.
Сохраните полученное изображение на диске под другим именем. И в дальнейшем не забывайте сохранять промежуточные результаты под разными, но близкими именами для удобства сравнительного контроля картинок. Все промежуточные файлы при работе сохраняйте только с максимальным качеством, если, конечно вы сохраняете их в формате JPG. Сохранение с пониженным качеством для уменьшения размера файла вы еще успеете сделать в самом конце работы, проконтролировав результат и выбрав компромисс между качеством и длиной файла. Не забывайте при работе закрывать открытые файлы! Иначе очень скоро система услужливо объявит вам о нехватке памяти.
Теперь займемся цветокоррекцией. В Adobe PhotoShop для этого имеется несколько инструментов различной «мощности». Самый мощный, это конечно «Выборочная коррекция цвета». С ее помощью возможно даже черно-белый зимний пейзаж раскрасить во вполне правдоподобные цвета! Однако для качественных цветных снимков он пригоден лишь в крайних случаях… Достаточно универсальным является «Цветовой баланс» – с его помощью поддаются исправлению даже очень сильно искаженные по цветопередаче снимки. Нужно только немного терпения. Переходя неоднократно от коррекции в светах к теням и средним тонам достаточное количество раз, получаем требуемый результат. Здесь одна практическая рекомендация – если снимок заведомо слишком контрастен, то первым делом сразу добавьте все три цвета в тенях почти до конца шкалы, а в светах – поставьте их в противоположное положение – почти до минимума. И после этого начинайте работать со средними тонами. При малоконтрастных снимках действуйте противоположным способом. При первых шагах по подгонке цвета не бойтесь перемещать регуляторы цвета большими движениями, так как если с самого начала двигать их очень осторожно, глаза быстро утомятся, перестанут различать оттенки и вы окажетесь в недоумении. А вот при приближении к окончательному результату, напротив, приходится двигать регулировки уже «по миллиметрам», особенно это касается обычно пурпурного цвета.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.