Электронная библиотека » Денис Юшин » » онлайн чтение - страница 5


  • Текст добавлен: 16 января 2023, 15:31


Автор книги: Денис Юшин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Как нам использовать полученные знания?

ЛИГО – абсолютно новый инструмент для обзора Вселенной, которого у нас раньше не было. Он позволяет нам услышать Вселенную ещё на гораздо более тонком уровне, чем раньше. Услышать невидимое, но существующее. А во Вселенной очень много того, чего мы не можем увидеть. Например, мы можем узнать, почему сверхмассивные звёзды взрываются в сверхновые. И только здесь информации для новых открытий хватит на десятилетия.

На данный момент основная проблема заключается в том, что самые интересные процессы происходят в центре этих звёзд. Мы никогда не сможем их увидеть. А между тем гравитационные волны проходят эти звёзды насквозь, изменяя свою структуру подобно звуковой дорожке, записывая всё, через что она проходит.

Мы никогда не увидим первые моменты существования Вселенной после Большого взрыва, так как он был невидим из-за собственного свечения. Между тем гравитационные волны дают нам возможность увидеть всё с самого начала. Во Вселенной есть вещи, которые мы не можем себе даже представить. Даже в описанном случае ЛИГО открыл то, чего никто не ожидал.

Мэт Эванс, физик из МТИ, один из сотрудников ЛИГО, проводит очень интересную аналогию:

«Тип звёзд, которые образуют чёрные дыры, – это динозавры Вселенной. Это очень древние массивные объекты, казалось бы, недоступных времён, а чёрные дыры – это словно кости динозавра, с которыми мы творим эту археологию. Это позволяет нам взглянуть с совершенно иной стороны на то, как устроена Вселенная, как появляются звёзды и как, наконец, из всего этого хаоса появились мы».

Можно описать это открытие более кратко, как Алан Адамс, профессор физики, в одном из своих выступлений:

«Если вы посмотрите в ночное небо, то увидите звёзды. Посмотрев дальше, увидите ещё больше звёзд. Дальше вам откроются галактики. Ещё дальше – больше галактик. Глядя дальше и дальше, долгое время вы ничего не сможете увидеть. Но, в конце концов, заметите слабое послесвечение. Это послесвечение Большого взрыва. Мы с захватывающей точностью отметили это послесвечение на карте Вселенной. И нас вот что шокировало – послесвечение практически полностью однородно.

14 млрд лет в каждую сторону мы имеем практически одну и ту же температуру. Мы находимся как бы в пузырьке. И это захватывает! Но недавно учёные открыли кое-что куда круче. Представьте, что вы молотом ударили в колокол, – он зазвенел. Звон будет угасать, пока не угаснет совсем. То же происходит со Вселенной. Она была сжата в одну точку, пока по ней не «ударили». При этом звоном является структура пространства-времени, а молотом – квантовая механика.



Этим звоном и являются гравитационные волны, которые были открыты. Это открытие в очередной раз подтверждает теорию о постоянно расширяющейся Вселенной, включая идею о «пузырьке». Но по-настоящему безумная идея состоит в том, что наш «пузырёк» не единственный. Он – один из бесконечного числа «пузырьков», находящихся в бурлящем котле Вселенной. Пока мы только предполагаем, но, работая и занимаясь наукой, мы когда-нибудь сможем с уверенностью сказать, что наша Вселенная примерно так и выглядит. Это просто потрясающе!»

Нам сейчас необходимо быть до предела дерзкими. Благодаря ЛИГО мы теперь знаем, как строить точнейшие детекторы, которые позволяют нам слушать шёпот космоса. Мы должны и дальше мечтать о постройке ещё более совершенных обсерваторий – на Земле и в космосе. Мы должны задаться целью услышать Большой взрыв.

Представляете, насколько сложно было сделать это открытие? Только вдумайтесь: речь идёт об измерении крайне быстрых и кратковременных колебаний расстояния между неподвижными объектами детектора, вызванных искажениями самой ткани пространства и имеющих амплитуду меньше, чем размер атомного ядра!

Главное, что следует усвоить с самого начала: факт существования гравитационных волн с момента их описания никем никто из специалистов не ставился под сомнение. При этом каждый скажет, что было бы крайне интересно, если бы их вдруг не обнаружили, что это означало бы: либо теория относительности неверна, либо мы абсолютно неправильно понимаем природу Вселенной.

Но их гравитационные волны все-таки обнаружили!

Что принесло открытие гравитационных волн?

Фиксация гравитационных волн подтвердила огромное количество разнообразных представлений, главенствующих в физике и астрономии. Теория относительности в очередной раз подтвердилась!

Подтвердилось существование чёрных дыр (фото было получено позже).

Подтвердились представления об эволюции и конечной стадии двойных звёздных систем.

В общей сложности нашли своё подтверждение все (!) предсказания в физике, астрономии и астрофизике, сделанные в течение последних, на минуточку, 100 лет.

Таким образом, для всех, кто хоть немного связан с наукой или увлечён ею, становится очевидным, что она (наука) движется в правильном направлении, строго следуя логике, наблюдениям и экспериментам. Вселенная познаваема! Это крайне важно знать в наше время, когда невежество и мистицизм вновь набирают обороты.

Что даст это открытие в будущем?

Сделать такой прогноз очень непросто. Точно можно сказать одно: в астрономии освоение каждого нового диапазона излучения всегда приводило к открытию новых объектов и явлений. Именно поэтому при открытии нового излучения астрономы всегда говорят о новом окне во Вселенную.

Так, от визуальных наблюдений мы постепенно переходили к рентгеновскому, инфракрасному и радиодиапазонам. Затем в качестве нового способа познания появились космические лучи. Нейтрино стали последним способом получения информации о Вселенной. Появился даже подраздел «нейтринная астрономия». Теперь же астрономия станет гравитационно-волновой.

В конце концов, Генрих Герц после обнаружения электромагнитных волн посчитал их бессмысленными. А мы сегодня пользуемся телефонами, смотрим телевизор и используем навигаторы, чтобы не заблудиться в незнакомом городе. Как знать, вполне вероятно, что именно гравитационные волны станут началом реального освоения человечеством Вселенной.

Есть и ещё одна очень интересная аналогия. В коллайдерах мы сталкиваем элементарные частицы, чтобы понять не только их устройство, но и, собственно, устройство Вселенной. Теперь же, только представьте, мы имеем возможность наблюдать, к примеру, столкновения нейтронных звёзд, чтобы понять, как устроены уже они. Так мы познаём, опять же, Вселенную, но в принципиально других масштабах.

Гравитационные волны помогут сформировать карту ближайшей Вселенной и обнаружить тёмную материю

Галактики-спутники Млечного Пути представляют огромный интерес для космологии, фундаментальной физики и астрофизики. Однако из-за крайне низкой светимости их невероятно сложно обнаружить. Собственно, из достоверно подтверждённых галактик есть лишь 15. Хотя некоторые исследования показывают, что на самом деле галактик может насчитываться от нескольких сотен до более тысячи (Michael T. Busha, 2010). К примеру, яркость нашей галактики не даёт нам нормально увидеть галактику Андромеды, хотя её угловые размеры в 6 раз больше Луны.


Пользователь Reddit наглядно продемонстрировал, какая красота скрывается за светом наших звёзд


Всё это невероятно затрудняет изучение Вселенной. Гравитационно-волновая астрономия, как мы уже говорили, сможет дать невероятный прорыв в этом направлении. Между тем к настоящему времени ещё не разработаны инструменты для её реализации. LIGO и VIRGO – это детекторы гравитационных волн, доказавшие их существование. Эти детекторы используют сейчас для обнаружения только высокочастотных гравитационных волн. Одним из инструментов, способных фиксировать среднечастотные ГВ, должна стать Laser Interferometer Space Antenna (Лазерная интерферометрическая космическая антенна), запуск которой запланирован на 2034 год. Правда, существует вероятность, что он будет перенесён на 2029 год. Собственно говоря, в декабре 2015 года был запущен спутник LISA Pathfinder, предназначенный для отработки некоторых решений для оборудования LISA и показавший реализуемость проекта LISA.

Так для чего всё это нужно?

Гравитационно-волновая астрономия позволит заглянуть за пределы той физики, в границы которой мы упёрлись из-за недостаточной чувствительности создаваемых сегодня приборов. Так, к примеру, мы фиксируем гравитационные взаимодействия между нашей Галактикой и её спутниками (Alis J. Deason, 2020), но не видим абсолютное большинство из них (Elinore Roebber, 2020). Это мешает нам составлять более точные модели для изучения всё той же гравитации или тёмных материи и энергии.



Кроме того, учёные предполагают, что крайне низкая светимость галактик-спутников объясняется тем, что они состоят в основном из самых старых и бедных металлами звёзд, что даст нам возможность изучать ранние этапы эволюции Вселенной.

В конце концов, мы сможем составить более подробную карту собственной Галактики. Ведь сейчас мы имеем лишь приближённую модель.

Кому полезно открытие гравитационных волн, кроме физиков?

Подведём своего рода итог, чтобы принять факт существования гравитационных волн как данность. При этом обозначим вероятное практическое применение и направления дальнейшего развития этой потрясающей, опередившей своё время работы по их обнаружению.

Суть гравитационных волн простыми словами

11 февраля 2016 года на пресс-конференции в Вашингтоне группа учёных обсерватории LIGO объявила о том, что смогла зафиксировать гравитационные волны, испущенные при столкновении двух чёрных дыр 1,3 млрд лет назад.

После этого оборудование LIGO, Virgo и других обсерваторий непрерывно совершенствовалось. В итоге гравитационные волны от слияния чёрных дыр регистрировались уже целых четыре раза.

16 октября 2017 года весь мир узнал ещё об одном выдающемся открытии астрономов LIGO, Virgo и ещё 70 обсерваторий, которые достигли таких мощностей, что смогли зафиксировать гравитационные волны от слияния двух нейтронных звёзд.


Фотография источника гравитационных волн – NGC 4993 (в центре различима вспышка). Фото с сайта nplus1.ru


Отличительной особенностью данного открытия стало то, что это событие было зафиксировано и в оптическом диапазоне. То есть учёные буквально его увидели!

Никто не сомневался, что открытие гравитационных волн будет удостоено Нобелевской премии по физике. Так и произошло. Премию вручили Райнеру Вайсу, Барри Баришу и Кипу Торну.

При этом учёные совершенно не торопятся говорить о практическом применении гравитационных волн. Сначала необходимо проанализировать результаты, сделать соответствующие выводы и только после этого двигаться дальше.

Но каждый раз, когда приходится отвечать на подобные вопросы, специалисты напоминают, что ещё совсем недавно человечество точно так же не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Чем они могут быть полезны?

Во-первых, фиксация гравитационных волн в очередной раз подтвердила общую теорию относительности, в рамках которой они были описаны в 1916 году. ОТО была одним из самых глубоких научных и философских осознаний ХХ века и сейчас составляет основу самых интеллектуальных исследований в реальности.

То, что человек смог разработать такой труд, имея лишь личное стремление к познанию окружающего мира, – факт просто невероятный. В астрономии применения общей теории относительности ясны: от гравитационной линзы до измерения расширения Вселенной. Бóльшая часть современных технологий использует уроки теории относительности в тех областях, которые считаются простыми. Например, спутники глобальной навигации не будут достаточно точными, если не применять простую корректировку замедления времени, предсказанного теорией относительности.

При этом следует понимать, что, когда Альберт Эйнштейн представил свою теорию в 1916 году, её применение было, мягко говоря, сомнительным. Эйнштейн просто описывал Вселенную такой, какой он её видел. И вот сейчас доказан очередной её «фантастический» постулат. Конечно, это вызывает бурю негодования у тех, кому физика побоку (хотя именно такие и жалуются на неточность навигации, например, в навигаторе смартфона). Спрашивать у астрофизиков о том, как могут быть использованы гравитационные волны, себе дороже.

Но я вам по секрету всё же отвечу. После того как физики собрали данные от пар чёрных дыр, которые будут играть роль маяков, разбросанных по Вселенной, они смогут измерить скорость расширения Вселенной или количество тёмной энергии с чрезвычайной точностью. Намного точнее, чем они могут сделать это сегодня.

– Ну хорошо им! – скажут многие.

А каково их практическое применение?

Существует исключительно умозрительная интерпретация. Например, открытие рентгеновских лучей. Вильгельм Рентген в 1895 году обнаружил лучи, впоследствии названные его именем, во время опытов с электронно-лучевыми трубками. Лишь в 1901 году он получил за их открытие первую Нобелевскую премию по физике. И это при том, что сам он занимался их исследованием не более года. Основную же часть работы сделали его последователи. В итоге эти электромагнитные волны стали ключевым компонентом в повседневной медицине.

Аналогично первым экспериментальным получением радиоволн в 1887 году Генрих Герц подтвердил известные электромагнитные уравнения Джеймса Клерка Максвелла. Только спустя большой промежуток времени, в 90-х годах ХХ века, Гульельмо Маркони создал радиопередатчик и радиоприемник, доказав их практическое применение. За это он тоже получил Нобелевскую премию по физике в 1909 году. Уравнения Шрёдингера, описывающие сложный мир квантовой динамики, начинают находить применение только сейчас, в разработке сверхбыстрых квантовых вычислений, оставаясь во многом непознанными.

Все научные открытия полезны, и многие, в конечном счёте, имеют повседневное применение, которое мы со временем воспринимаем как должное.

В настоящее время практическое применение гравитационных волн пока ограничивается астрофизикой и космологией. Без сомнения, учёные и инженеры найдут другое применение этим волнам, помимо зондирования космического пространства. Как минимум, обнаружению этих волн поспособствовало развитие технологий в оптической технике для LIGO. Теперь нам доступна «тёмная сторона Вселенной», которая находится за пределами электромагнитного излучения.

Безусловно, обнаружение гравитационных волн – триумф человечества, который поможет изучить нашу Вселенную для будущих поколений. Это определенно золотой век для науки, в котором исторические открытия стали обычным делом.

А что, если пофантазировать?

Давайте попробуем заглянуть лет на 15–20 в будущее, когда себя проявят ныне живущие Теслы, Эйнштейны и Рентгены. Так как мы говорим о волнах, то в первую очередь на ум приходят телефонная, радио– и мобильная связь, интернет-сети.

Я имею в виду, что на основе открытия гравитационных волн могут быть созданы принципиально новые каналы беспроводной передачи данных. Действующие на любые расстояния, не требующие ретрансляторов, характеризующиеся высоким качеством связи. Это значительно удешевит стоимость новых приборов, упростит и ускорит развитие новых технологий.

Поисково-спасательная отрасль

Уж если учёные собираются заглянуть в недра нейтронных звёзд при помощи гравитационных волн, то почему бы на их основе не создать принципиально новые устройства, способные прогнозировать землетрясения или, например, для обнаружения людей под завалами.

Поиск полезных ископаемых

Из сказанного вытекает и возможность создавать устройства, предназначенные для обнаружения залежей полезных ископаемых, определения их промышленных запасов, оптимальных точек бурения (для нефти, газа и газового конденсата) и многое другое.

Дефектоскопия

Неразрушающий контроль сейчас является основным направлением в исследовании свойств материалов. Дистанционный контроль усталости металлов и композитов в критических режимах перед разрушением; управление и контроль за процессами синтеза материалов при помощи новейших технологий.

Медицина и биология

На основе гравитационных волн могут быть созданы принципиально новые и абсолютно безопасные медицинские приборы, а также оборудование для диагностики состояния биологических систем и в лечебных целях. Безопасные, потому что гравитационные волны непрерывно проходят сквозь нас, никак не влияя на наше самочувствие.

Астрофизика

Уже сейчас можно смело говорить о том, что речь может идти о новом этапе в изучении и освоении космоса. Гравитационные волны теоретически дают нам возможность, например, «увидеть, услышав» первые моменты существования Вселенной после Большого взрыва.

Изучение гравитационных волн от взаимодействия нейтронных звёзд – ещё один шаг на пути к пониманию величайшей загадки.

Сможет ли LIGO обнаружить кротовые норы?

Этот вопрос следует вынести отдельно. Мы фактически прикованы к своей планете и с огромным трудом делаем первые шаги в освоении Солнечной системы. Но что дальше?

Когда шумиха после обнаружения гравитационных волн от слияния чёрных дыр, а затем и от нейтронных звёзд слегка поутихла, LIGO перешла к очередному обновлению детекторов, а физики свою работу продолжили. Тем более что данных им теперь хватит на годы вперёд.

В одной из работ учёные предположили, что гравитационные волны могут возникать в результате «схлопывания» кротовых нор. Они даже смоделировали процесс, показав, каким должен быть сигнал от подобного явления (Pablo Bueno, 2018).

Кротовые норы, как объясняют в своей работе Пабло Буэно с коллегами, по сравнению с чёрными дырами будут обладать характерной отличительной особенностью – отсутствием горизонта событий, что поменяет поведение порождённых кротовыми норами гравитационных волн.

«Особое “дрожание”, которое возникает на последних стадиях слияния чёрных дыр, постепенно исчезает, если у порождённого ими объекта есть горизонт событий. В том случае если его не существует, как у кротовых нор, то эти колебания не исчезают полностью. Они вызывают своеобразное эхо, серию всплесков, похожих на то, как если бы мы крикнули в колодец», – рассказал ведущий автор работы Пабло Буэно.



Согласно созданной модели, первичный всплеск гравитационных волн, порождённых слиянием чёрных дыр и кротовых нор, будет практически полностью совпадать. Различия же проявятся только на финальной стадии явления. Специалисты называют это явление «дрожанием» («ringdown»).

Дело в том, что при слиянии чёрных дыр это гравитационное «эхо» достаточно быстро исчезает из-за наличия горизонта событий. Между тем в кротовых норах «эхо» должно продолжать периодически испускать всплески гравитационных волн со строго определенным спектром и силой. Из-за этого оно будет существовать в десятки раз дольше, чем первичная вспышка колебаний пространства-времени. Правда, будет заметно слабее по силе.

Авторы исследования попытались найти подобное «эхо» в данных, собранных LIGO. Они создали компьютерную модель похожего слияния, но никаких следов пока не обнаружили. Вероятнее всего, просто не хватает чувствительности, которая может быть достигнута после одного из обновлений. Так или иначе, в этой области нас ждёт очень много совершенно невероятных открытий.

Раздел 4
Чёрные дыры

Что такое чёрная дыра?

Сама концепция существования ЧД появилась достаточно давно. Она была реальна ещё в рамках ньютоновской теории тяготения, когда достаточно представить себе объект настолько массивный, что вторая космическая скорость будет для него равна скорости света.

Расцвела эта гипотеза тогда, когда потребовалось объяснение невероятной светимости квазаров. Тут-то и появилась теория дисковой аккреции Шакуры – Сюняева. В рамках этой теории данное излучение исходило из очень быстро вращающихся аккреционных дисков, образующихся вокруг огромных масс.

Таким образом, чтобы объяснить энергию, испускаемую квазарами, надо было предположить, что их массы настолько велики, что они могут быть только чёрными дырами (ЧД). Сразу после этого предположения оказалось, что с помощью ЧД удобно описывать и тесные двойные системы, и активные галактические ядра, и много чего ещё.

Тем не менее мы говорим о чисто теоретической идее, пусть и отлично укладывавшейся в наблюдения.

Как увидеть чёрную дыру?

На данный момент таких технологий у нас нет. Но мы можем постараться увидеть тень ЧД, основная проблема в наблюдении которой – её крайне малый угловой размер. В связи с этим исследователям нужно было достичь очень высокого углового разрешения.

Представители проекта Event Horizon Telescope приводят такой пример: разрешения, достигнутого в проекте, достаточно, чтобы читать газету в Нью-Йорке, находясь в уличном кафе в Париже («enough to read a newspaper in New York from a sidewalk café in Paris»).

Казалось бы, в силу большого расстояния тени ЧД должны быть очень малы. Ведь в обычной жизни мы привыкли к тому, что, чем дальше находится объект, тем меньше его угловой размер для нас.


© EHT


Однако на космологических расстояниях расширение Вселенной приводит к тому, что наблюдаемый угловой размер объекта начинает не уменьшаться, а увеличиваться с ростом красного смещения. Это, в свою очередь, приводит к тому, что тени от очень далёких ЧД могут иметь достаточно большие угловые размеры, чтобы их можно было наблюдать с помощью телескопов следующих поколений. Например, с помощью телескопов имени Джеймса Уэбба (который недавно был запущен) и «Миллиметрон» (запуск которого намечен на начало 2030-х годов).

Впервые задача получить изображение тени чёрной дыры была поставлена в 2017 году. Для этого сформировали консорциум под названием «Телескоп горизонта событий». Это была коллаборация из восьми крупнейших субмиллиметровых антенн, расположенных по всему земному шару. Вместе они работают как гигантский интерферометр с диаметром, равным примерно диаметру Земли.

Теоретическое разрешение «Телескопа горизонта событий» составляет несколько десятков угловых микросекунд, то есть несколько стотысячных долей угловой секунды. Чтобы понять, насколько это маленькая величина, возьмите пончик и положите его на поверхность Луны. Так вот, размер пончика на расстоянии Луны – это тот размер, который имеют тени зафиксированных ЧД. Задача буквально на грани фантастики.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации