Электронная библиотека » Дэвид Барри » » онлайн чтение - страница 5


  • Текст добавлен: 20 января 2021, 02:18


Автор книги: Дэвид Барри


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 21 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
6
Счисление пути

Теперь кажется удивительным, что столь многие мореплаватели когда-то были готовы, рискуя жизнью, пересекать океаны, имея в своем распоряжении столь безнадежно несовершенные навигационные приборы. Представьте себе, что вы отправляетесь в путешествие, которое может продлиться несколько месяцев, без сколько-нибудь надежных средств определения своего местоположения. А поскольку способов хранения свежих продуктов еще не существовало, а запасы питьевой воды можно было пополнять только за счет дождя, такое предприятие было еще более рискованным, чем оно стало бы в наши дни. Несовершенство методов навигации стоило жизни бесчисленным морякам, хотя причиной их гибели чаще бывали не кораблекрушения, а цинга, жажда и голод. К тому же, как ясно показывает пример пестрогрудого лесного певуна, человек – не единственное животное, которое сталкивается с такими проблемами.

В далеком прошлом навигация в открытом море была делом настолько опасным, что мореплаватели, видимо, старались по возможности придерживаться уже знакомых маршрутов – хотя это, разумеется, не означает, что они ходили исключительно вдоль берегов. Если они хотя бы приблизительно знали, какое расстояние им нужно пройти и в каком направлении, и могли оценить с разумной точностью свою скорость и курс, они могли с достаточной уверенностью рассчитывать, что доберутся до цели. У мореплавателей Северного полушария было удобное средство определения широты по высоте Полярной звезды над горизонтом, а начиная приблизительно с 1500 года, благодаря тщательным наблюдениям астрономов, также появилась возможность измерения широты по высоте солнца в полдень.

Если широта пункта назначения была известна, мореплаватели могли рассчитывать, что – рано или поздно – достигнут его, следуя вдоль соответствующей параллели. Но, как только земля скрывалась из виду, они теряли способность точного определения своего местоположения, так как у них не было средств определения долготы. Это означало, что они никогда не знали с уверенностью, когда именно дойдут до цели, – что было весьма опасно, особенно в бурную погоду или в условиях плохой видимости.

Невозможность определения долготы означала также невозможность составления точных карт. Например, разброс оценок ширины Тихого океана составлял тысячи километров, а Соломоновы острова, которые испанцы обнаружили в середине XVI века, были затем «потеряны» еще на двести лет. Даже карты знакомых европейских вод часто бывали чудовищно неточными. «Проблема определения долготы» была разрешена только в середине XVIII века, хотя на протяжении двух столетий до этого различные европейские правительства обещали за ее решение огромные награды; мореплаватели же получили эту новую методику в свое распоряжение и научились пользоваться ею и того позже[87]87
  Подробное обсуждение этой темы см. в моей книге: Sextant: A Voyage Guided by the Stars and the Men Who Mapped the World’s Oceans (William Collins, 2014). P. 61–90.


[Закрыть]
.

Как же первые мореплаватели ориентировались в открытом море?

Помимо астрономических наблюдений в их распоряжении были три простых прибора: магнитный компас (который, по-видимому, вошел в употребление в Европе где-то в XII веке), лаг и лот.

Компас, разумеется, давал возможность держаться прямого курса, хотя даже это было далеко не так просто, как кажется, потому что этот прибор был подвержен потенциально опасному эффекту, который называют «девиацией». Речь идет об отклонении стрелки магнитного компаса, которое вызывают имеющиеся на борту судна железные предметы, влияющие на компас. Еще более сбивало с толку то обстоятельство, что девиация зависит от направления, в котором движется судно.

Эта странная проблема была понята – и действенные средства борьбы с девиацией разработаны – только в XIX веке. Долгое время ушло и на осознание того факта, что истинный север существенно отличается от севера магнитного, причем разница между ними изменяется не только в зависимости от местоположения, но и с течением времени.

Лаг, которым пользовались мореплаватели в старину, – это просто деревянная дощечка, прикрепленная к концу длинной веревки, на которой через регулярные интервалы завязаны узлы. Лаг бросали за борт корабля и смотрели, насколько он сместится к корме в течение фиксированного временного интервала, который измеряли при помощи песочных часов. Число узлов, которые уходили за борт за это время, позволяло оценить скорость судна относительно воды. Один узел считали по определению равным одной морской миле (1,852 километра) в час. Эта система была весьма действенной, хотя калибровка лага часто бывала делом непростым.

Лот был прибором еще менее сложным – если такое вообще возможно. Он попросту представлял собой длинную веревку, на конце которой имелась коническая свинцовая гиря; ее бросали за борт, чтобы измерить глубину воды. Полость, предусмотренную на нижней стороне гири, иногда заполняли жиром, что позволяло получить образец материала морского дна (грунта), чтобы узнать, состоит ли оно, например, из песка, гравия или ила. На картах прибрежных вод указывали характер дна, и эта информация в сочетании с данными о глубине моря могла помочь в определении местоположения судна.

Но, разумеется, обычный лот становился бесполезен в открытом море, где глубина воды часто достигает нескольких тысяч метров. Там штурманы прошлого могли оценивать свое местоположение только одним простым способом: они отслеживали, как долго судно шло в том или ином направлении. Скажем, если вы шли западным курсом в течение десяти часов со скоростью пять узлов, можно считать, что вы оказались на пятьдесят миль западнее, чем были за десять часов до того. Или надеяться на это.

Отмечая все изменения скорости и направления движения судна (обычно на простой доске с отверстиями для колышков, так как писать большинство моряков не умело), теоретически можно было определить положение судна относительно исходного пункта его маршрута – даже после нескольких изменений курса и скорости. Этот процесс называют «счислением пути», а по-английски – dead reckoning[88]88
  Дословно – «мертвое счисление».


[Закрыть]
(DR)[89]89
  Научное название этого метода – «интегрирование пути».


[Закрыть]
. Часто говорят, что аббревиатура DR означает deduced reckoning («дедуктивное счисление»), но термин этот существует по меньшей мере с XVII века, и происхождение его покрыто мраком. Я предпочитаю думать, что его изобрел какой-нибудь мореплаватель Елизаветинской эпохи, склонный к черному юмору.

Недостаток счисления пути состоит в том, что метод этот ненадежный. Точнее говоря, очень ненадежный.

При его применении может возникать множество ошибок, которые чрезвычайно трудно отслеживать и исправлять. Во-первых, приходится иметь дело с океанскими течениями, которые даже в глубоководных районах океана могут быть очень сильными. Обнаружить их невозможно, если нет никаких средств обеспечить неподвижность судна. Лаг может показывать, что корабль делает пять узлов, а компас – что он идет западным курсом; однако, если весь океан при этом движется, на самом деле судно может перемещаться в другом направлении и с другой скоростью. Кроме того, парусное судно, если только оно не идет прямо по ветру (когда ветер дует точно в его корму), имеет тенденцию «уваливаться под ветер». Другими словами, судно не только идет вперед, но и смещается – дрейфует – вбок. Хотя величину такого «сноса» можно оценить, сравнив направление кильватерной струи с установленным курсом судна, такая оценка весьма далека от истинно научной точности.

А еще нужно учесть работу рулевого. Некоторым рулевым удается точно удерживать судно на курсе, другие бывают менее надежны. В конце вахты штурманы могут заверить, что корабль стабильно шел с определенной скоростью на запад, но на самом деле он вполне мог следовать гораздо более беспорядочным курсом, и скорость его также могла колебаться. И конечно же, всегда приходится считаться с погодой. Когда судно попадает в шторм, отслеживать какие-либо параметры становится невозможно, а при полном штиле оно попросту дрейфует по воле невидимых течений. В таких условиях счисление пути становится абсолютно неприменимым.

Яркую иллюстрацию ненадежности счисления пути дала знаменитая экспедиция, которую возглавил в 40-х годах XVIII века коммодор Королевского военно-морского флота Великобритании Джордж Ансон. С трудом обогнув в ужасных погодных условиях мыс Горн, Ансон решил, что его маленькая, потрепанная непогодой флотилия достаточно углубилась в Тихий океан, чтобы можно было безопасно повернуть на север и пойти вдоль западного побережья Южной Америки. Однако его ожидал весьма неприятный сюрприз.

Глубокой ночью, когда Ансон считал, что они находятся в открытом море, вдали от земли, передовой корабль дал предупредительный пушечный выстрел: флотилия шла прямо на скалы архипелага Огненная Земля, навстречу верной гибели. Крушения удалось избежать, но лишь в последний момент. Ошибка счисления пути составила около 500 морских миль (926 километров). Впоследствии Ансону не удалось с первого раза найти острова Хуан-Фернандес, и эта задержка стоила жизни нескольким десяткам моряков, умерших от цинги.

Марк Твен ходит кругами

В 1950-х годах, в связи с созданием атомных подводных лодок, способных оставаться в подводном положении месяцами подряд, возникла навигационная задача совершенно нового рода. Хотя к тому времени навигация по небесным телам давно была доведена до совершенства, а также существовали различные способы определения местоположения по радиосигналам, все эти средства нельзя было использовать на судах, патрулирующих на больших глубинах под поверхностью моря[90]90
  На самом деле наблюдения за солнцем и звездами можно производить через перископ, но, поскольку это может выдать местоположение атомной подлодки врагу, остро требовались какие-то альтернативные методы навигации.


[Закрыть]
.

Эта задача была решена при помощи навигационной системы, регистрирующей ускорение в трех измерениях – другими словами, изменения скорости и ориентации судна, – при помощи набора гироскопов. Интегрируя данные, поступающие от этих инерциальных датчиков, бортовой компьютер может отслеживать все маневры, которые совершает подводная лодка, и точно определять ее положение на любой момент. При этом, однако, необходимо учитывать вращение самой Земли, а кроме того, данные системы нужно время от времени обновлять, потому что в противном случае они постепенно «дрейфуют». Этот метод, который называют инерциальной навигацией, широко применяется в ракетах, авиалайнерах и даже космических кораблях.

Интересно отметить, что человек, как и многие другие позвоночные, использует похожий механизм под названием вестибулярный аппарат. Внутреннее ухо, подобно гироскопам на борту подводной лодки, способно регистрировать ускорение, хотя работает оно по другому принципу. Внутри полукружных каналов внутреннего уха имеются мелкие камешки, называемые отолитами; они оказывают давление на чувствительные волоски, которые посылают сигналы в мозг, а тот обрабатывает эти сигналы и получает информацию о направлении и скорости движения организма. Но это еще не все. Одновременно с этим поступают ценные сигналы обратной связи от суставов и мышц. Например, подсчитав число сделанных шагов, можно оценить пройденное расстояние, а по ощущению наклона почвы и усилиям, затрачиваемым на перемещение, можно судить о том, идем ли мы вверх или вниз по склону.

В принципе объединение информации об этих элементах «собственного движения»[91]91
  В науке ее называют идиотетической информацией.


[Закрыть]
позволяет организму отслеживать свое собственное местоположение. Однако на практике, как ни печально, эта система работает не слишком хорошо, что иллюстрирует следующая история.


После метели мир кажется совершенно иным. Многие из ориентиров, которые обычно использует путешественник, оказываются скрыты, и без хорошего знания местности – или навыков охотника-иннуита – легко попасть в беду.

Именно это и случилось со знаменитым американским писателем Марком Твеном (1835–1910) и его попутчиками в середине XIX века, когда они направлялись в город Карсон-Сити в Неваде.

Твен описывает в автобиографической книге «Налегке», как он и его спутники, в число которых входили прусский всезнайка Оллендорф и некий персонаж по имени Баллу, чуть было не замерзли насмерть. Дорогу скрывал толстый слой снега, а поскольку видимость была плохой, сориентироваться при выборе пути по дальнему горному хребту путешественники тоже не могли.

Дело явно принимало рискованный оборот, но Оллендорф сказал, что его чутье вернее всякого компаса и что он берется вывести нас к Карсон-Сити «как по струнке», самым прямым путем. Он уверял, что, случись ему отклониться хотя бы на пядь в ту или другую сторону, чутье станет язвить его, как нечистая совесть. Он поехал вперед, и мы, успокоенные его словами, бодро пустились вслед за ним. Сначала мы двигались довольно осторожно, но через полчаса мы увидели ямки от копыт в снегу, и торжествующий Оллендорф закричал:

– Говорил я вам, что мне можно верить, как компасу. Вот чьи-то свежие следы, и мы без всяких хлопот найдем по ним дорогу. Поедем побыстрей, догоним этих путников!

Твен и его товарищи пустили своих коней рысью и, видя, что следы, оставленные их предшественниками, становятся все более четкими, заключили, что постепенно догоняют их. Час спустя следы становились «все глубже и свежей», причем, к некоторому их удивлению, казалось, что всадников, едущих где-то впереди, становится все больше.

Зачем такое множество путников скачет по снежной пустыне, да еще в самую вьюгу? Наконец мы решили, что это эскадрон из форта, и пришпорили коней, чтобы поскорей догнать его. Но следов становилось все больше и больше, – эскадрон каким-то чудом превратился в полк! По мнению Баллу, верховых уже было никак не меньше пятисот! Вдруг он осадил лошадь и сказал:

– Да это наши следы, ребята! Вот уже добрых два часа, как мы кружим на одном месте в этой проклятой пустыне. Ну и ну! Просто гидравлика какая-то![92]92
  Twain, M. (1872). Roughing It. Hartford, Conn; American Publishing Company. Ch. 31.


[Закрыть]
[93]93
  Цит. по изд.: Твен М. Налегке / Пер. с англ. В. Топер и Т. Литвиновой // Собр. соч.: В 12 т. М.: Гос. изд-во худ. лит., 1959. Т. 2. С. 170.


[Закрыть]

В литературе и фольклоре полно подобных историй, и они подтверждаются научными исследованиями, хотя причины их вызвали немало споров.

В 1920-х годах ученый по имени А. А. Шеффер считал, что у человека есть странная, врожденная «тенденция к движению по спирали», которая автоматически включается, когда мы не видим, куда идем. Именно она, утверждал он, заставляет нас «ходить кругами»[94]94
  Dudchenko, P. A., Why People Get Lost (Oxford University Press, 2010). P. 67 ff.


[Закрыть]
. Другие, однако, представляли доводы в пользу того, что вклад в сбои нашей навигационной системы могут вносить разная длина ног, изменения осанки, отвлекающие факторы или ошибки постановки ног (и это лишь несколько примеров).

Гораздо позднее Ян Соуман провел эксперимент[95]95
  Souman, J. L., Frissen, I., Sreenivasa, M. N., & Ernst, M. O. (2009). ‘Walking straight into circles’, Current Biology, 19 (18). P. 1538–1542.


[Закрыть]
, в котором он предлагал своим подопытным перейти с завязанными глазами через большое плоское летное поле. Никаких звуков, которые помогали бы им ориентироваться, не было, и исследователь обнаружил, что испытуемые были не в состоянии идти по прямой – даже на короткие расстояния. Они следовали по извилистым и, по-видимому, случайным траекториям и часто ходили по кругу; среднее максимальное расстояние, которое им удавалось пройти, составляло в целом около 100 метров.

Насколько Соуман мог сказать, в этих ошибках не было никакой систематичности; не было и никаких признаков того, что в деле замешаны какие-либо физические факторы – например, неравная длина или сила ног. Еще до этого другой исследователь проверял, как долго люди могут держать курс на цель после того, как эту цель внезапно спрячут. Оказалось, что эта способность сохраняется всего лишь в течение приблизительно восьми секунд[96]96
  Thomson, J. A. (1983). ‘Is continuous visual monitoring necessary in visually guided locomotion?’, Journal of Experimental Psychology: Human Perception and Performance, 9 (3). P. 427.


[Закрыть]
.

Даже при наличии некоторой визуальной информации мы довольно плохо умеем придерживаться прямого курса – если только при этом не светит солнце или луна. Соуман изучал пешее передвижение людей с незавязанными глазами в двух радикально разных местностях, ни в одной из которых не было большого количества пригодных к использованию ориентиров – в лесу в Германии и в тунисской пустыне. Результаты этого исследования были интересны своим разнообразием.

При наличии облачности всем испытуемым было очень трудно идти прямо, но, когда выходило солнце, они показывали гораздо лучшие результаты и часто сохраняли одно и то же направление на поразительно больших расстояниях, даже в загроможденных и запутанных лесных зарослях. Один испытуемый, шедший ночью по тунисской пустыне, также справлялся со своей задачей весьма неплохо, пока ему была видна луна. Но, когда она скрылась за облаками, он несколько раз резко повернул и в конце концов двинулся в обратном направлении – туда, откуда и шел.

Эти результаты заставляют предположить, что люди по большей части могут ориентироваться по солнечному и лунному свету с некими быстрыми и приблизительными поправками на время. Однако наша неспособность придерживаться постоянного курса, опираясь только на внутренние сигналы, информацию о собственном перемещении, далеко не случайна. В этом процессе неизбежно возникают систематические ошибки, и они имеют тенденцию накапливаться. Поэтому направление в конце концов не может не исказиться. Отсюда следует, что животное (любого вида), стремящееся двигаться прямо к цели, непременно должно сверяться по внешним ориентирам, будь то видимые элементы ландшафта или нечто играющее роль компаса. В противном случае его путь рано или поздно примет форму, приближающуюся к спиральной[97]97
  Cheung, A., Zhang, S., Stricker, C., & Srinivasan, M. V. (2008). ‘Animal navigation: general properties of directed walks’, Biological Cybernetics, 99 (3). P. 197–217.


[Закрыть]
.

Так что, возможно, Шеффер и был прав: может быть, у нас действительно есть врожденная склонность к движению по спирали.

* * *

В 2009 году при помощи трекера был зарегистрирован безостановочный перелет наземной птицы, которую называют малым веретенником[98]98
  Limosa lapponica.


[Закрыть]
, через весь Тихий океан от Аляски до Новой Зеландии. На преодоление расстояния 11 680 километров ей потребовалось всего лишь чуть более восьми суток[99]99
  Gill, R. E., Tibbitts, T. L., Douglas, D. C., Handel, C. M., Mulcahy, D. M., Gottschalck, J. C., … & Piersma, T. (2009). ‘Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier?’, Proceedings of the Royal Society of London B: Biological Sciences, 276 (1656). P. 447–457.


[Закрыть]
. Еще несколько птиц проделали перелеты, лишь немногим более короткие, так что этот случай явно не был редким исключением из правила. Для птицы, которой для создания подъемной силы необходимо махать крыльями, – в отличие от птиц, парящих и планирующих, как странствующие альбатросы, – путешествие такой длины кажется почти невероятным. Еще большее впечатление оно производит с учетом того, что веретенник не садится на воду, так как, намокнув, он не сможет снова подняться в воздух.

Такие необычайно длинные перелеты требуют от веретенников огромных физических усилий, и они вынуждены увеличивать уровень метаболизма в состоянии покоя в 8–10 раз, только чтобы оставаться в воздухе. Такие усилия им приходится прилагать на протяжении всего путешествия. Чтобы накопить необходимые для этого запасы энергии, перед отлетом птицы набирают огромное количество жира, а их жизненно важные органы сжимаются, чтобы свести взлетную массу к минимуму. К тому моменту, как они долетают до Новой Зеландии – скорее мертвыми, чем живыми, – они теряют треть массы своего тела[100]100
  Piersma, T., & Gill Jr, R. E. (1998). ‘Guts don’t fly: small digestive organs in obese bar-tailed godwits’, The Auk. P. 196–203.


[Закрыть]
. Однако этим птицам также приходится находить дорогу на протяжении тысяч километров открытого моря, да еще и справляться по дороге с воздействием неблагоприятной погоды. Как им это удается, по-прежнему неясно, хотя интересно отметить, что они точно подбирают время отлета с Аляски так, чтобы воспользоваться помощью попутных ветров[101]101
  Battley, P. F., Warnock, N., Tibbitts, T. L., Gill, R. E., Piersma, T., Hassell, C. J., … & Melville, D. S. (2012). ‘Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica’, Journal of Avian Biology, 43 (1). P. 21–32.


[Закрыть]
.

Но почему веретенники предпочитают летать прямо через открытый океан, когда они могли бы следовать вдоль берегов Азиатского континента? По-видимому, этот выбор определяют несколько факторов. Судя по всему, прямой маршрут позволяет птицам не только сэкономить ценное время, но и снизить суммарные затраты энергии. Кроме того, полет над морем помогает им избежать встречи с хищниками, например сапсанами[102]102
  Falco peregrinus.


[Закрыть]
, и уменьшает опасность подхватить паразитов или заболевания. Однако при обратном перелете на север соотношение преимуществ и недостатков, видимо, меняется на обратное: в эту сторону они пролетают бо́льшую часть пути вдоль берега.

Любые перемены сезонных ветров над Тихим океаном, вызванные изменениями климата, приведут к нарушению трансокеанской миграции малого веретенника. Угрожает ей и быстрое исчезновение водно-болотистых территорий в Китае, на которых эти птицы останавливаются для пополнения сил по пути на север.

7
Скаковая лошадь мира насекомых

Несмотря на все недостатки счисления пути, это единственный практически применимый способ, позволяющий путешественнику отслеживать свое местоположение, – если у него нет каких-либо независимых средств определения своих точных координат, например возможности использовать внешние ориентиры или аппаратуру спутниковой навигации. К тому же на очень коротких расстояниях, пока не накопятся разнообразные ошибки, счисление пути может работать весьма эффективно. Поэтому вопрос о том, способны ли другие животные использовать счисление пути, не лишен смысла. Тот факт, что живущие в пустыне муравьи[103]103
  Речь идет о муравьях-бегунках, или фаэтончиках, рода Cataglyphis.


[Закрыть]
могут проходить в своих экспедициях за пищей сложными, извилистыми маршрутами, а потом возвращаться домой прямым курсом, позволяет считать их возможными кандидатами на эту роль. Чтобы узнать побольше о навигационных способностях муравья, я поехал в Цюрих, к величайшему в мире специалисту в этой области – Рюдигеру Венеру.

Упорное стремление Венера понять ориентационное поведение муравьев поистине впечатляет. Подобно фон Фришу, он провел сотни полевых экспериментов, но в дополнение к этому он обращается для исследования многочисленных и разнообразных навигационных механизмов, которые позволяют пустынным муравьям выживать в чрезвычайно жестокой окружающей среде, к достижениям нейробиологии, анатомии, молекулярной биологии и даже робототехники. Хотя в научном мире много говорят о междисциплинарных исследованиях, мало кто из исследователей преследует этот идеал так же настойчиво и успешно, как Венер.

Хотя мой поезд должен был прийти поздно ночью, Венер настоял, что встретит меня на центральном вокзале Цюриха. Его высокая фигура в очках была безошибочным ориентиром посреди огромной, почти пустынной платформы. На следующее утро, позавтракав в университетской столовой, мы отправились к нему домой и провели весь день в его кабинете, из которого открывается вид на озеро и возвышающиеся на западе горы, за разговорами о его работе. Книги, стоящие по стенам его кабинета, по большей части научные издания, но среди них было множество пьес и романов, а также работ по философии и истории искусств. Наша беседа продолжалась без перерывов за обедом и за ужином, и, хотя вечером я вернулся в свою гостиницу совершенно изможденным, в голове моей роились мысли и мне было трудно заснуть.

То, о чем рассказывал мне Венер, вызывало острое чувство собственной неполноценности: маленькие насекомые оказались способны на чудеса навигации, которые человеку удаются только при помощи приборов. Но на меня помимо моей воли произвело глубокое впечатление не только это, но и изобретательность и упорство ученых, сделавших все эти открытия.

Венер родился в 1940 году в Баварии, но его первое воспоминание – как его выкапывают из-под развалин в Дрездене после британской бомбардировки и последовавшего за нею огненного смерча, которые почти полностью стерли этот город с лица земли. Когда он учился в начальной школе, он жил за городом, в доме, окруженном большим садом. Именно в этой «очаровательной буколической обстановке» у него впервые проявился интерес к естественной истории.

Затем его семья перебралась в Западную Германию, и там он проводил свободное время вместе со школьными друзьями, изучая певчих птиц, – «мы определяли величину кладки, время гнездования, пищевое поведение, а также время прилета и отлета перелетных видов». Хотя его отец был филологом, а один из дедов – профессором лингвистики, Венера уже в юности чрезвычайно привлекали естественные науки, и в 1960 году он поступил во Франкфуртский университет. Там он слушал лекции по зоологии, ботанике и химии, и область его интересов «все более смещалась от полевых исследований к лабораторным, от естественной истории к физиологии, в особенности биохимии и нейрофизиологии». Однако в то время он и представить себе не мог, что главным предметом его работы станут насекомые.

Ученые – по меньшей мере лучшие из них – тратят на взращивание молодых талантов не меньше времени, чем на свои собственные исследования. Фон Фриш, несомненно, привлек к себе и воспитал множество превосходных учеников, которые занимались затем уже своими собственными важными исследованиями. Одним из тех, кто продолжил работу на основе результатов, полученных фон Фришем, был Мартин Линдауэр, а он, в свою очередь, взял под свое крыло молодого Рюдигера Венера.

В 1963 году Мартин Линдауэр стал директором франкфуртского Института зоологии, и его работа по изучению сенсорных способностей медоносных пчел привлекла внимание Венера. Его приводила в восторг перспектива проведения строгих научных экспериментов на свободно перемещающихся животных. Начиная с этого момента Венер стремился разобраться во всех механизмах, порождающих поведение, – цепочке причинно-следственных связей между органами чувств и теми клетками мозга, которые непосредственно обеспечивают двигательную активность. Под руководством Линдауэра Венер написал диссертацию, в которой исследовал, как медоносные пчелы различают разные геометрические формы, а затем стал работать в Цюрихском университете, в котором и остается до сих пор[104]104
  See Wehner, R. (2013). ‘Life as a cataglyphologist – and beyond’, Annual Review of Entomology, 58. P. 1–18.


[Закрыть]
.

В тот день в начале лета, пока мы сидели вместе, глядя на спокойные воды озера, Венер рассказал мне, как через несколько месяцев после защиты диссертации Линдауэр отвез его на встречу с фон Фришем в его знаменитом австрийском имении Бруннвинкль. Это было по большей части символическое мероприятие, и, слушая рассказ Венера, я вспомнил о церемонии «рукоположения», которой отмечается передача апостольской благодати священнослужителям христианской церкви.

Хотя старый мастер был поразительно изобретательным экспериментатором, с современными статистическими методами он ощущал себя совершенно не в своей тарелке. В конце разговора фон Фриш с непроницаемо серьезным лицом спросил молодого ученого: «А что, доктор Венер, сколько, по-вашему, ног у насекомого?»

Это был, мягко говоря, неожиданный вопрос. Венер, которого он застал совершенно врасплох, неуверенно сказал, что, по мнению большинства, ног у насекомого шесть. На что фон Фриш ответил с улыбкой: «В наши дни я не был бы так уверен. Я бы сказал 5,9 плюс-минус 0,2!» Хотя эта беседа проходила в то самое время, когда его работы подвергались столь острой критике в США, фон Фриш, по-видимому, не утратил своего едкого юмора.

В начале работы в постдокторантуре Венер собирался пойти по стопам фон Фриша и изучать медоносных пчел, но, как это часто бывает, направление его научной карьеры изменилось благодаря случайности. Он планировал провести некие эксперименты весной, когда в Европе пчелы еще не летают, и отправился в израильский город Рамлу, где и установил свою аппаратуру посреди апельсиновой рощи. Место оказалось неудачным. Деревья были густо покрыты цветами, и пчелы, естественно, предпочитали этот готовый источник природного нектара и не обращали никакого внимания на сахарный сироп, который предлагал им Венер.

Он удрученно размышлял, как бы ему приманить пчел, как вдруг его внимание привлекли какие-то длинноногие муравьи. Глядя, как они бегают вокруг, он все больше и больше заинтересовывался их поведением и начал ставить кое-какие предварительные опыты, чтобы исследовать их навигационные способности. Результаты выглядели многообещающе, хотя в то время Венер еще ничего не знал о тех животных, которых он начал изучать. Он не знал даже их научного названия – Cataglyphis.

Хотя в тот момент он еще этого не понимал, он нашел идеальный объект для своих исследований.

Вернувшись в Цюрих, Венер объявил, что параллельно с уже начатой работой над медоносными пчелами он хочет изучать Cataglyphis. Все его научные руководители советовали не тратить время на исследование такого «странного организма». Венер выслушал их советы, но не последовал им. Это решение впоследствии оказалось верным, но для его воплощения в жизнь ему нужно было получить финансирование. Кроме того, Венеру нужно было найти место, где живут муравьи-бегунки, но менее удаленное, чем Израиль. Он раскрыл географический атлас, и ближайшим из удобных с практической точки зрения мест оказался Тунис – тот самый Тунис, в котором за шестьдесят лет до того жил и работал Санчи, хотя в то время Венер ничего о нем не знал.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации