Текст книги "Кратчайшая история Вселенной. От Большого взрыва до наших дней (в сверхдоступном изложении)"
Автор книги: Дэвид Бейкер
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 12 страниц) [доступный отрывок для чтения: 3 страниц]
3
Происхождение планеты Земля
В процессе формирования Солнце поглощает 99 % материи в Солнечной системе Оставшийся 1 % материи образует вокруг Солнца кольцо пыли шириной более светового года • На каждой орбите пыль концентрируется в планеты, астероиды и кометы • На одной из орбит в результате серии столкновений формируется Земля • Земля остывает
Наша Галактика, Млечный Путь, началась со скопления первых гигантских звезд примерно 13,5 миллиарда лет назад. Вскоре она стала закручиваться и приобрела форму плоского диска с выпуклостью в центре. По мере того как соседние галактики втягивались в его гравитационное притяжение, Млечный Путь слился с ними и увеличился в размерах. 10 миллиардов лет назад произошло последнее галактическое слияние. Сегодня наша галактика имеет размер 100 000 световых лет в ширину и содержит от 200 до 400 миллиардов звезд.
Первое поколение звезд полностью разрушилось всего через несколько миллионов лет после образования Млечного Пути. Гравитация снова собрала вместе водород, гелий и тяжелые элементы, созданные в огромных сверхновых, и образовались совершенно новые звезды. Второе поколение звезд продолжало светить в течение миллиардов лет.
Затем, 4,567 миллиарда лет назад, одна из таких звезд, расположенная на расстоянии в один световой год от места, где сейчас находится наша Солнечная система, на спиральном рукаве Млечного Пути, взорвалась еще одной сверхновой звездой. Этот взрыв засеял пространство девяносто двумя природными химическими элементами, от водорода до урана. Выброс энергии сверхновой звезды запустил в близлежащем облаке горячего газа начало процесса формирования звезды третьего поколения. Впервые вспыхнул огонь нашего Солнца. Вследствие огромного гравитационного притяжения Солнца большинство материи в Солнечной системе было захвачено Солнцем. Оставшийся 1 % вещества сформировал вокруг Солнца диск из крошечных частиц пыли, и продукты этого процесса растянулись во всех направлениях на световой год.
Солнечная система
©Mikkel Juul Jensen / Science Photo Library
Пыль ранней Солнечной системы содержала все девяносто два элемента, которые в вакууме космоса быстро начали превращаться в шестьдесят различных химических веществ. Первые термоядерные реакции Солнца выбросили подавляющую часть газообразных водорода и гелия в пространство Солнечной системы, именно поэтому находящиеся ближе к Солнцу внутренние планеты (Меркурий, Венера, Земля, Марс) являются планетами твердого типа, а внешние планеты (Юпитер, Сатурн, Уран, Нептун) – газовые гиганты.
Солнечная система
Пыль вокруг Солнца образовала плоский диск и начала закручиваться вокруг него, подобно тому, как рукава Млечного Пути вращаются вокруг выпуклого центра галактики. Так возникла орбита Земли вокруг Солнца. Когда пылинки начали вращаться, они образовали орбитальные «дорожки», на которых постепенно начали слипаться из-за статического электричества. На каждой орбитальной дорожке, где сейчас есть планета, пыль быстро скатывалась до размеров камня, затем валуна, а потом горы.
За 15 000 лет Солнечную систему наполнили миллионы объектов размером более 10 километров в диаметре. Постепенно столкновения стали гораздо менее мягкими, и при них выделялось тепло, склеивавшее столкнувшиеся объекты. Примерно через 10 миллионов лет в Солнечной системе имелось около тридцати протопланет, каждая из которых была размером примерно с Луну или Марс. Исключением являлся пояс астероидов, где гравитационное притяжение близлежащего Юпитера не позволяло многочисленным астероидам сталкиваться и объединяться, в результате чего пояс стал «неудавшейся планетой». Несколько миллионов лет спустя протопланеты тоже сокрушительно врезались друг в друга, образовав всего восемь планет, каждую на своей орбитальной дорожке:
1. Меркурий находится в трех световых минутах от Солнца, его размер составляет 5 % от размера Земли. Он страдает от экстремальных температур: от –170 °C ночью до +427 °C днем.
2. Венера находится в шести световых минутах от Солнца и размерами очень похожа на Землю. На ней могла бы зародиться жизнь, если бы не ужасающе плотная атмосфера из углекислого газа, которая задерживает большое количество тепла от Солнца и делает температуру поверхности достаточно горячей, чтобы расплавить свинец.
3. Земля находится в восьми световых минутах от Солнца. С точки зрения расстояния она находится в обитаемой зоне от Солнца. Естественно, мы знаем, что условия на Земле были подходящими для жизни. Мы вскоре вернемся к нашей планете.
4. Марс находится на расстоянии 12,5 световых минут от Солнца, его размер – 10 % от размера Земли. По этой причине он не в состоянии удерживать атмосферу значительной толщины – всего лишь примерно 1 % от земной. Соответственно Марс не может поддерживать воду в жидком состоянии. Подавляющая часть воды на Марсе – замерзшая, что уменьшает вероятность жизни на этой планете.
5. За поясом астероидов, в 43 световых минутах от Солнца, находится Юпитер. Планета на 99 % состоит из водорода и гелия. Диаметр Юпитера в одиннадцать раз превышает земной, а по массе он больше примерно в 320 раз. На Юпитере царят жестокие погодные условия, которые уничтожили бы все, мало-мальски напоминающее жизнь. Под столь плотными облаками поверхность скорее всего состоит в основном из обилия твердого водорода, то есть газообразного водорода, настолько сжатого, что переходит в твердое состояние. Условия на спутниках Юпитера, например на Европе, теоретически подходят для жизни, но есть ли она там, остается загадкой.
6. Сатурн находится в 78 световых минутах от Солнца, он в девять раз больше Земли по размеру и в девяносто пять раз по массе. Как и Юпитер, Сатурн тоже малоперспективен для жизни. Однако Сатурну удалось захватить шестьдесят два спутника и кольцо изо льда и камней, которое является его отличительной чертой (у Юпитера тоже есть кольцо, но оно гораздо меньше). Наиболее вероятным вариантом для появления жизни является спутник Сатурна Титан, но жизнь там развивалась бы совсем не так, как на Земле. Там настолько низкие температуры, что вода всегда находится в твердом замерзшем состоянии, а газ метан – в жидкой форме. Соответственно, если жизнь развивалась в метановых океанах, она должна иметь совершенно иной вид дыхания, чем жизнь, появившаяся в океанах Земли.
7. Уран находится в 2,5 световых часа от Солнца, он в четыре раза больше Земли и является самой холодной планетой в Солнечной системе. Скорость ветра там ужасающая, а атмосфера и огромное давление во многом напоминают другие газовые гиганты, что делает в высшей степени маловероятным дальнейшее развитие усложнения структур.
8. Нептун находится в четырех световых часах от Солнца и является самой далекой планетой Солнечной системы. Он расположен настолько далеко, что для того, чтобы совершить один оборот вокруг Солнца, ему требуется 165 земных лет. Как и Уран, Нептун очень холодный. Его атмосфера состоит из водорода и гелия, а ядро в основном составляют лед и камень.
9. Плутон считался планетой с момента его открытия в 1930 году как самого далекого планетоподобного объекта, который мы тогда смогли увидеть в телескоп примерно в 5,5 световых часа от Солнца. Однако Плутон не очистил свою орбиту от других объектов, как это сделали описанные выше восемь планет, и спустя десятилетия там были обнаружены другие карликовые планеты. Некоторые из них больше Плутона, например карликовая планета Эрис. Соответственно, в 2005 году Плутон, к сожалению, был лишен статуса планеты. Тот факт, что он носит одно имя с мультяшной собакой, не имел отношения к лишению статуса.
10. Пояс Койпера начинается в пяти световых часах от Солнца и простирается в виде кольца из планетарной крошки на расстояние до семи световых часов. В нем находятся карликовые планеты, такие как Плутон, Эрис, Харон, Альбион, Хаумеа и Макемаке. Пояс Койпера также содержит ряд астероидов и простые замороженные глыбы из воды, аммиака и метана. Общая масса пояса Койпера вряд ли намного превышает 10 % от массы Земли. Следовательно, там было недостаточно материала для возникновения большой планеты.
Облако Оорта начинается примерно в 27 световых часах от Солнца. Это означает, что свету требуется более суток, чтобы добраться до него, но оно все еще удерживается гравитацией Солнца. Облако Оорта состоит из ледяных планетезималей[4]4
Планетезималь – небесное тело, которое образуется на орбите вокруг протозвезды в результате приращения более мелких объектов из частиц пыли протопланетного диска.
[Закрыть] и комет. Оно простирается на целый световой год от Солнца. Возможно, оно тянется даже на три световых года от Солнца, почти до сопредельной звезды Проксима Центавра, которая находится на расстоянии 4,2 световых года. Эта ледяная сфера представляет собой самую окраину нашей Солнечной системы и границу между нами и остальной частью галактики.
За пределами нашей Солнечной системы в Млечный Путь входит от 200 до 400 миллиардов звезд. Многие из этих звездных систем тоже содержат планеты. Мы обнаружили тысячи экзопланет (планет, находящихся вне нашей Солнечной системы) в близлежащих солнечных системах, изучив лишь около 0,0000000000000000009 % от общего числа звезд в нашей галактике. В общей сложности в нашей галактике должны существовать триллионы планет. По оценкам ученых, 300 миллионов планет в галактике Млечный Путь могут быть пригодны для жизни так же, как Земля. Другими словами, есть прекрасные шансы на то, что жизнь возникла где-то еще, и мы не одиноки во Вселенной. Особенно если учесть, что во Вселенной существует от 400 миллиардов до нескольких триллионов галактик.
Земля
По мере того как тридцать протопланет ранней Солнечной системы продолжали крушить друг друга в апокалиптических столкновениях, образовавшиеся планеты становились все больше и больше. Около 4,5 миллиарда лет назад на орбитальном пути, где сейчас находится Земля, было две планеты. Я думаю, вы догадываетесь, чем это закончилось…
Одна планета размером с Землю и другая планета величиной с Марс, которую мы называем Тейя, столкнулись друг с другом. Планета размером с Землю поглотила подавляющую часть обломков и преобразовалась. 1,2 % вещества оказалось на орбите Земли в качестве обломков после столкновения. В конце концов осколки собрались вместе, чтобы стать Луной.
Земля в то время оставалась чрезвычайно горячей, так как пожары от столкновений планет продолжали пылать. Кроме того, Землю постоянно бомбардировали астероиды, и каждое новое столкновение было разрушительным, как ядерная война. Поскольку Земля продолжала поглощать окружающую материю на своей орбите, давление от веса всего этого «мусора» создавало тепло в ядре Земли. Короче говоря, Земля 4,5 миллиарда лет назад была расплавленной и мягкой – как студенистый шар пудинга, горящий и пузырящийся при температуре в тысячи градусов.
Такое состояние запустило процесс дифференциации, разделения на фракции. Земля представляла собой расплавленный шар из мягких, полужидких пород, поэтому материалы могли двигаться сквозь нее достаточно свободно. Многие из самых тяжелых элементов, таких как железо и золото, опустились сквозь обжигающую смесь в самый центр Земли. Железо образовало в ядре Земли шар диаметром 3400 километров, дающий нашей планете магнитное поле.
В остывающей земной коре застряли только незначительные остатки тяжелых элементов. Вот почему люди так редко находят что-то, подобное золоту. Однако если бы каким-то образом удалось добраться до расплавленных недр мантии и ядра Земли, то там нашлось бы достаточно золота, чтобы покрыть им всю поверхность Земли, позолотив континенты от моря до моря.
Столкновение Земли и Тейи
©Mark Garlick / Science Photo Library
Легкие элементы всплывали на поверхность. Появилась корка из кремния (основного компонента химического состава Земли), а также алюминия, натрия и магния. Самые легкие из всех элементов, такие как углерод, кислород и водород, исторглись в виде газов и образовали изначальную атмосферу Земли.
Однако остывание земной коры часто прерывалось падениями астероидов в течение поздней тяжелой бомбардировки. Как только поверхность расплава начинала отвердевать, новые удары разрушали тонкий слой и снова разогревали Землю. Лишь около 4 миллиардов лет назад бомбардировки прекратились, и кора смогла полностью затвердеть.
Уже в этом аду огненной лавы на нашей планете началось усложнение. Когда Тейя врезалась в Землю, стало возможным образование около 250 химических соединений. К моменту завершения процесса дифференциации существовало уже более 1500 различных химических веществ.
Снятие мерок у матушки-Земли
Даже сегодня земная кора тонкая и хрупкая по сравнению с остальными частями структуры Земли. Это может удивлять, если вспомнить, какими массивными кажутся человеку скалистые горы и темные каменные проходы шахт. Однако совершенно уместно назвать кору «слоем жира, который застывает на поверхности бульона в кастрюле». Толщина земной коры, содержащей множество легких элементов Земли и лишь незначительное количество более тяжелых, составляет всего около 35 километров, а в некоторых местах на дне океанов и вовсе составляет примерно 7 километров.
Под корой находится верхняя мантия. Там настолько большое давление, что температура поднимается выше 1000 °C, создавая ужасающую раскаленную лаву, которую вулканы время от времени извергают на поверхность. Верхняя мантия уходит примерно на 650 километров в глубину океаном расплавленной магматической породы. Под ним располагается нижняя мантия. Она находится на глубине 2900 километров и настолько раскалена, что горные породы полностью переходят в жидкое состояние.
Под нижней мантией располагается ядро. Внешнее ядро на глубине около 5200 километров состоит в основном из жидкого железа и никеля. Далее лежит внутреннее ядро. Оно располагается на глубине 6370 километров до самой середины этого ада и испытывает настолько сильное давление, что чрезвычайно горячее расплавленное ядро тем не менее ведет себя так, как если бы оно было твердым. В ядре Земли температура достигает 6700 °C.
Земная кора, мантия и ядро
©Gary Hincks / Science Photo Library
Ад на Земле
Земля в период 4,5–4 миллиарда лет назад относится к гадейскому эону[5]5
Эон (от греч. aion – эпоха) – этап развития Земли, принципиально отличающийся от смежных этапов. Термин ввел американский геолог Джеймс Дуйат Дана в 1875 году. Название «гадейский» восходит к греческому слову Hades – ад.
[Закрыть], названному так из-за адских условий на Земле в то время. Температура на поверхности Земли оставалась выше 100 °C, что препятствовало образованию жидкой воды, а в некоторых местах температура достигала даже 1500 °C, и Землю покрывали океаны лавы.
Там, где все же образовывалась суша, она была тонкой, как бумага, и из трещин вырывались струи пара – легкие газы, исторгавшиеся Землей в процессе дифференциации. Такую же работу выполняли и вулканы. Они поднимались из Земли, извергая лаву, дым и пепел. По мере того как лава высыхала до состояния корки и нарастала, некоторые вулканы становились выше Эвереста.
Само небо имело ужасающий красный цвет, потому что в атмосфере преобладал углекислый газ (около 80 %). Пройдет еще много времени, прежде чем Земля приобретет кислородную атмосферу, пока же кислород оставался на ничтожно малом уровне. Кроме того, поскольку Солнце было молодым и еще не горело так ярко, небо оставалось не только красным, но и удручающе темным. Если бы с неба смотрело око Саурона, как во «Властелине колец», оно бы выглядело совершенно уместным.
Когда Тейя врезалась в Землю примерно 4,5 миллиарда лет назад, значительная часть коры разрушилась и вылетела в космос вместе с огромным количеством лавы. Нельзя недооценивать катастрофический характер столкновения с Землей планеты размером с Марс. Если бы такое произошло сегодня, удар уничтожил бы все живое и, наверное, даже испарил все океаны. Столкновение Земли с Тейей было примерно в 450 раз сильнее, чем удар метеорита, уничтоживший динозавров 66 миллионов лет назад.
Когда Луна постепенно сформировалась и появилась в небе, она находилась гораздо ближе к Земле, чем сейчас (Луна отдаляется примерно на 4 сантиметра в год): проходя над нами, она почти заслоняла небо. Соответственно, вызываемая Луной приливная сила была значительно больше. Мощные волны высотой в тысячи метров прокатывались по Земле каждые двенадцать–пятнадцать часов. Вот только эти волны были не из воды – они состояли из расплавленной лавы.
Но это еще цветочки. В течение 500 миллионов лет Земля подвергалась ударам астероидов в ходе великой бомбардировки, и особенно сурово – около 4,1 миллиарда лет назад во время поздней тяжелой бомбардировки. Именно тогда миллионы астероидов падали на Землю, разрушая ее и без того тонкую и хрупкую кору. По мере того как Земля собирала оставшийся космический мусор в своем регионе Солнечной системы, ей то и дело доставались катастрофические удары. Одни из них по мощности равнялись ядерному взрыву; другие – катастрофе мелового периода, в результате которой вымерли динозавры; а какие-то оказались буквально в 100 раз сильнее – все зависело от масштабов упавшего астероида. К тому же, в отличие от глобальной катастрофы мелового периода, случившейся однажды 66 миллионов лет назад, тогда столкновения происходили постоянно.
Совершенно очевидно, что никакая форма жизни не могла выдержать таких жестких условий. В тот момент ни в одном уголке нашей Солнечной системы не было места для чего-то столь сложного, как жизнь. Нужны были определенные изменения, чтобы жизнь, микроскопическая и хрупкая, имела хоть малейший шанс зародиться в земном аду.
Первые океаны
Вопреки постоянным разрушениям, похоже, что примерно 500 миллионов лет ада оказалось вполне достаточно. Дифференциация вытеснила водород и кислород в атмосферу в процессе под названием «дегазация». Бомбардировка миллионами астероидов принесла из космоса тонны льда. Он быстро растаял и тоже поднялся в атмосферу. Со временем поверхностная кора остыла и превратилась в черно-серый вулканический ландшафт, уже без океанов лавы. Температура поверхности снизилась до 100 °C и продолжала падать. Неожиданно у скопившегося в атмосфере водяного пара не осталось иного выбора, как сконденсироваться и выпасть на Землю.
Далее последовало нечто, напоминающее библейский потоп. Однако дождь шел не сорок дней и сорок ночей – ливни по всей планете не прерывались миллионы лет. Впадины и низины земной коры начали заполняться водой. Примерно 4 миллиарда лет назад Земля уже была покрыта океанами. Только самые высокие участки, наши континенты, смогли удержать голову над водой. При этом даже они были усеяны озерами и исполосованы реками. Четыре миллиарда лет назад гадейский эон завершился, пришла пора архейского эона.
Отметим некоторые особенности архейского мира. Во-первых, недавно сформировавшаяся мантия Земли была еще гораздо горячее, чем сейчас, и излучала много геотермальной энергии, полезной для первых форм жизни. Это компенсировало тот факт, что энергия Солнца (солнечная тепловая энергия) была еще довольно слабой, поэтому не могла служить источником энергии для зарождения жизни. Однако даже в том случае, если бы первые организмы возникли на поверхности, солнечная радиация, изливавшаяся на поверхность Земли, у которой еще не было озонового слоя, уничтожила бы все живое. Таким образом, до поры до времени лучшим вариантом для жизни являлись глубины океанов, где было тепло и куда не проникала радиация.
Во-вторых, в архейскую эпоху Земля имела гигантскую Луну, вызывавшую мощнейшие приливы и отливы. Правда, волны теперь состояли не из лавы, но на поверхности Земли по-прежнему возвышалось множество вулканов. Они продолжали извергаться, а из газов выбрасывали в основном углекислый, и он оставался доминирующим компонентом атмосферы. Дополнительно следует отметить, что суша была вся покрыта камнями. Никакой растительности, лугов и лесов, еще не существовало. Земля больше напоминала лунную поверхность. Просто «добавь воды».
Так подходила к концу безжизненная фаза развития нашей планеты. Земля архейского эона лежала бездушной и безмолвной, если не считать шума волн, бьющихся о скалистые берега. Так могло бы продолжаться вечно. Если бы не одно крайне маловероятное событие, в нашей истории можно было бы ставить точку. Однако в поисках следующей фазы сложности нам нужно заглянуть на дно океанов. Именно там мы найдем первые микроскопические семена нашего генеалогического древа.
Часть II
Фаза появления жизни на Земле
3,8 миллиарда – 315 000 лет назад
4
Жизнь и эволюция
Дифференциация и удары астероидов создают океаны В океанах формируются цепочки органических химических веществ • Органические вещества самовоспроизводятся и развиваются • Некоторые живые организмы становятся фотосинтезирующими • Фотосинтетики портят атмосферу и отравляют множество других форм ранней жизни • Развиваются эукариоты • Появляется первый многоклеточный организм
В спокойных теплых глубинах морей Земли архейского эона, 3,8 миллиарда лет назад, зародилась жизнь. Эту дату мы определяем по химическим признакам, оставленным в породах архея ранней микроскопической жизнью. На момент 3,5 миллиарда лет назад мы уже находим настоящие ископаемые «следы» этих крошечных микроорганизмов. Однако даже такая простая примитивная жизнь превосходила по сложности все, что существовало раньше.
4 миллиарда лет назад температура поверхности Земли опустилась ниже точки кипения воды, и миллионы лет непрерывных ливней создали первые океаны. Водные пространства были совершенно необходимы для жизни, поскольку живое не смогло бы возникнуть, будучи замурованным в твердой породе, где невозможно передвигаться, или под смертоносными потоками радиации на поверхности, или в клубящихся газовых облаках. Жидкая вода была идеальной средой, позволявшей органическим веществам двигаться и соединяться в похожую на бульон густую смесь. Ранняя жизнь была очень хрупкой. Чудо, что она вообще возникла. Самым безопасным местом для нее было дно океанов.
Откуда же формы жизни получали потоки энергии, с помощью которых создавалась новая сложность? Наиболее вероятный ответ: из подводных вулканов или гейзеров, выкачивающих геотермальную энергию из трещин в земной коре. Микроорганизмы обитали на краях вулканов, наслаждаясь теплом.
Итак, у нас есть бульон, у нас есть плита. Теперь нам просто нужны компоненты. Океаны архейского эона изобиловали разнообразными органическими химическими веществами, всплывавшими на поверхность в результате дифференциации. Неудивительно, что большинство органических веществ, например углерод (он составляет основу всей жизни на Земле), относятся к числу самых легких в периодической таблице химических элементов. Углерод к тому же самый адаптивный. Он образует необходимое звено в цепи примерно 90 % всех химических соединений, известных на сегодняшний день.
Помимо углерода, важную роль для самовоспроизводящейся жизни играют водород, кислород, азот и фосфор. На краях подводных источников 3,8 миллиарда лет назад эти элементы объединились в сложные органические вещества – аминокислоты и нуклеобазы, длинные цепи строительных блоков.
Аминокислоты имеют ключевое значение для поддержания жизни. Вы можете найти их в своей еде. Они представляют собой соединения атомов углерода, водорода, кислорода и азота, закрученные в цепочку примерно из девяти атомов. Аминокислоты – это строительные блоки белков. Каждый белок – сложная молекулярная цепочка, состоящая в среднем из двадцати аминокислот, хотя в некоторых белках их значительно больше. Белок выполняет различные команды живой клетки: сжигает энергию для поддержания ее сложности, размножения, роста различных особенностей, адаптации к окружающей среде, а также для простого движения веществ в клетке.
Нуклеобазы в свою очередь являются строительными блоками нуклеиновой кислоты (основной компонент ДНК и РНК). Ключевые вещества – аденин (C10H12O5N5P), гуанин (C10H12O6N5P), цитозин (C6H12O6N3P) и тимин (C10H13O7N2P). Как видите, мы прошли долгий путь усложнения с тех пор, как появились первые атомы водорода (H) на заре существования Вселенной.
Дезоксирибонуклеиновая кислота: самая потрясающая кислота из всех
ДНК присутствует во всех живых клетках и является базой данных, которая сообщает белкам, какими чертами должны обладать эти клетки и как им следует себя вести. Это «программное обеспечение» живого компьютера; жесткий диск, содержащий программные инструкции для видеоигры. ДНК обеспечивает живым организмам должный облик и модель поведения: от клыков до веснушек, от рычания до смеха.
Прокариотическая клетка
©CNX Openstax via Wikimedia Commons
Дезоксирибонуклеиновая кислота состоит из образованных миллиардами атомов двух цепочек, закрученных друг вокруг друга в двойную спираль. Каждую цепочку формируют многочисленные нуклеотиды, состоящие в свою очередь из упомянутых ранее нуклеобаз, которые вполне могли образоваться в океанах Земли архейского эона. Аденин, гуанин, цитозин и тимин – нуклеобазы, несущие генетическую информацию. Они подобны двоичному коду, которым на компьютерном жестком диске записана программа.
Теперь переходим к «комплектующим» нашего живого компьютера – рибонуклеиновой кислоте, или РНК. Состоящая из одной цепочки, а не из двух, РНК получает от ДНК инструкции и доставляет их в отдельные части живой клетки, которые производят белки (эти фабрики белков называются рибосомами). Чтобы сделать это, РНК распаковывает ДНК и считывает инструкции, тот самый «двоичный код». Затем РНК отдает белкам соответствующие указания, и белки начинают строить организм. По сути, РНК и белки – это устройство ввода информации и процессор нашего живого компьютера.
3,8 миллиарда лет назад этот хорошо структурированный живой кислотный осадок начал осуществлять весьма сложные, но на первый взгляд случайные химические реакции. Однако как он развился?
Источник эволюции
Как мы прошли путь от основных органических химических веществ к таким сложным структурам, как ДНК и РНК, остается загадкой. Тем не менее как только эти структуры появились, химические реакции в них происходили не один раз.
ДНК самовоспроизводится, или копирует себя, чтобы продолжать давать инструкции остальным частям живой клетки. Сделав свое дело, ДНК разделяется на две части. Чаще всего процесс копирования проходит идеально. Но иногда происходит ошибка копирования, или мутация, которая слегка изменяет инструкции ДНК. Мутация случается примерно один раз на миллиард копий. Мутировавшая ДНК создает несколько иной организм.
Если бы ДНК всегда копировала себя безупречно, без единого сбоя, жизнь осталась бы точно такой же, какой она была 3,8 миллиарда лет назад на краях подводных вулканов, не было бы никакого развития. Мутации порождают исторические перемены в биологии.
Некоторые мутации убийственны для организма, другие никак не влияют на его выживание, а третьи приносят пользу. Последние способны копировать себя снова и снова, и цикл продолжается. Мутации, которые лучше других работают в конкретной среде, продолжают существовать. В противном случае мутации (и организмы, имеющие их) вымирают.
Именно в этом и состоит эволюция: естественный отбор генов на основе их полезности для развития, а не выбор отдельной особи или целого вида. По мере изменения окружающей среды меняются и гены, срабатывающие наилучшим образом.
Таким образом, в этом живом бульоне присутствуют все ключевые характеристики живого организма: он использует потоки энергии из геотермальных источников и окружающие аминокислоты (происходит обмен веществ – то есть он питается); он воспроизводит себя путем копирования (размножается); и он постепенно изменяет собственные особенности на основе полезных мутаций (адаптируется). Эти три характеристики: метаболизм, размножение и адаптация – наилучшим образом определяют, что такое жизнь и чем она отличается от неживого космоса.
Начавшийся 3,8 миллиарда лет назад на краю подводных вулканов процесс самовоспроизведения и эволюции превратил живой бульон во множество странных новых форм, которые в конечном итоге заселили всю планету Земля. Каждая бактерия, каждое растение, каждое животное и каждый современный человек сформированы из того комочка глины возрастом 3,8 миллиарда лет. В конце своей книги «О происхождении видов» Дарвин написал: «Из такого простого начала возникло и продолжает возникать бесконечное число самых прекрасных и самых изумительных форм»[6]6
Перевод К. Тимирязева.
[Закрыть].
Первые фотосинтетики
Первые организмы, появившиеся на дне океанов, получали геотермальную энергию от подводных вулканов и поедали химические вещества вокруг себя. Конечно же они были простейшими. Это были прокариоты – микроскопические одноклеточные организмы без ядра. Их ДНК свободно плавала по клетке, что увеличивало риск ее повреждения. Прокариоты не вступали в половые контакты (вот ужас!), а клонировали себя посредством деления. Каждая клетка делилась и копировала себя каждые несколько минут, некоторые виды могли клонироваться за считаные секунды.
Архейские океаны заполнились этими крошечными организмами. Тогда на дне океана образовался недостаток питательных веществ, не говоря уже о нехватке «недвижимости» на краях подводных вулканов. Для некоторых прокариотов возник эволюционный стимул двигаться к поверхности океанов. Однако для этого им пришлось отказаться от геотермальной энергии и эволюционировать, чтобы научиться пользоваться энергией Солнца.
3,4 миллиарда лет назад обитавшие у поверхности океанов прокариоты использовали для питания воду, солнечный свет и углекислый газ, точно так же, как современные растения. Эти прокариоты стали первыми фотосинтетиками. Они ели водород из воды и углерод из воздуха, поддерживая процесс солнечной энергией. Оставшийся от углекислого газа кислород выбрасывался как ненужный.
На все эти небольшие изменения микроорганизмов ушло 400 миллионов лет. Это более 5 миллионов средних человеческих жизней. Такой же период времени отделяет нас от первой «рыбы», которая выползла из океана на сушу…
Некоторые фотосинтетики начали формировать большие колонии: целые холмы микроорганизмов высотой 50–100 сантиметров, называемые строматолитами[7]7
От греч. «каменная прослойка».
[Закрыть]. Ископаемые останки этих колоний можно найти сегодня в заливе Шарк в Западной Австралии. Им примерно 3 миллиарда лет.
Кислородная катастрофа
Даже на этой ранней стадии живые существа имели склонность портить окружающую среду. Я уже упоминал, что первые фотосинтезирующие организмы выбрасывали кислород за ненадобностью (O2 оставался после поедания углекислого газа). По сути, это были вредные «отходы», в которых фотосинтетики не нуждались. Так происходило потому, что кислород химически очень активен, в том смысле, что он вызывает бурные химические реакции. В значительных количествах O2 мог убить прокариотов. К счастью, 3,4 миллиарда лет назад количество кислорода в атмосфере было практически ничтожным.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?