Автор книги: Дипак Чопра
Жанр: Философия, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]
Понятие вечной инфляции связано с другим понятием, которое теперь вошло в моду, – «Мультиверс». В этой схеме наша Вселенная – не единственная, а лишь одна из многих, многих вселенных – пузырьков в жемчужной ванне, число которых может быть почти бесконечным (об этом мы поговорим позже). Поскольку теория Большого взрыва принята очень широко, возможность вечной инфляции имеет некоторую фору по сравнению со стационарной моделью. Как только дверь откроется, возникнет столько пригодных для жизни вселенных, сколько вы захотите. В так называемом космическом казино природа играет со вселенными, и есть шанс, что она попадет в итоге в нашу. В конце концов, кости здесь можно кидать бесконечно. Космическое казино даже допускает бесконечные изменения в правилах (то есть законах природы), регулирующих работу космоса. Гравитацию, скорость света, квант сами по себе можно встряхнуть как вам угодно, так что теория годится.
Но представьте, что вы едете в машине с другом и он ваш штурман. Вы находитесь в незнакомой стране, поэтому спрашиваете друга, как поворачивать на следующем перекрестке. Он отвечает: «На следующем перекрестке можно повернуть бесконечным множеством способов, но не беспокойтесь, они приводят к бесконечно другим перекресткам, где мы можем также повернуть бесконечное число раз. В конце концов, мы доберемся до Канзас-Сити». Физика говорит об этом так, когда имеет дело с Мультиверсом, вечной инфляцией и космическим казино. Самая абсурдная часть, кроме того факта, что нет данных или экспериментов, чтобы подтвердить соответствие любой из теорий реальности, заключается в том, что, когда перед нашими носами машут картой с бесконечным множеством вариантов, утверждается, что это лучшая карта, которую когда-либо рисовали.
Стандартный взгляд космологов состоит в том, что некоторые комбинации различных моделей, возможно включая квазистационарное состояние, все еще могут быть жизнеспособными. Но независимо от того, сколько вселенных «разрешено», теория все же ставит вопрос: что существовало до начала творческого процесса? «До» остается бесполезным словом, но все же утверждать, что все есть, было и всегда будет таким же, кажется интуитивным, как фокус со шляпой.
Есть и другие способы избежать вопроса о начале.
До того как установилась модель «Большого взрыва с космической инфляцией», многие космологи предпочли рассматривать циклы расширения и сжатия, ведущие от начала до конца и обратно. В восточных духовных традициях циклические вселенные были приняты как общая концепция, взятая из жизненных циклов созданных существ, умирающих и обновляющихся. Аналогии – это не то же самое, что научные доказательства, но мы должны помнить и о них. В человеческой Вселенной процессы, управляющие жизнью, какой мы ее знаем, должны быть связаны с механикой творения в космическом масштабе.
Вариант циклической Вселенной исключил бы Большой взрыв, явившийся из небытия, но в то же время принял бы во внимание существующую Вселенную, описываемую общей теорией относительности. В частности, Роджер Пенроуз предложил серию вселенных, простирающихся в бесконечное время.
Текущее состояние возникло из предыдущей Вселенной, переработав в ней все, что наиболее важно, текущие физические законы и физические константы в природе. Один Большой взрыв приводит к другому, цикл их бесконечен, и поэтому состояние до создания – только конец предыдущей Вселенной. Последовательность творения сохраняет определенный вид памяти от одного цикла к другому. В интригующей идее Пенроуза энтропия (то есть беспорядок), обнаруженная во Вселенной, играет фундаментальную роль. В физике есть закон (второй закон термодинамики), который утверждает, что беспорядок во Вселенной со временем возрастает. Слова звучат абстрактно, но именно этот закон управлял тем, как холодная сверхпрогрессивная вселенная замерзала, тем, как умирают звезды, тем, почему превращается в дым и пепел бревно в камине. Энтропия увеличивается – в масштабах как больших, так и малых.
Во Вселенной есть и островки отрицательной энтропии. На самом деле один из них – вы сами. До тех пор, пока вы продолжаете потреблять пищу, воздух и воду, ваше тело – такой островок. Он превращает сырьевую энергию в упорядоченные процессы в триллионах клеток, обновляя и пополняя их. Земля стала островом отрицательной энтропии, по крайней мере на поверхности, когда миллиарды лет назад возник фотосинтез. Растения преобразуют солнечный свет в упорядоченные процессы так же, как ваше тело преобразует то, чем питается. Важно то, что теряющий энергию превращается в потребителя энергии. Беспорядок заставляет энергию рассеиваться в тепло, подобное теплу, выделяемому костром. Для борьбы с этой энтропией живые существа потребляют дополнительную энергию, необходимую для противодействия утрате. Упавшее дерево в лесу потеряло способность получать энергию от солнца, и поэтому вступили в действие распад и разложение.
Пенроуз не стал возражать против второго закона – он признал, что весь космос становится все холоднее, все шире и все беспорядочнее. Его возражение специально предназначалось для инфляционных теорий космоса. Если беспорядок увеличивается с течением времени, указывал он, тогда должно быть верно и обратное. Если вы вернетесь во времени, любая система покажется более упорядоченной. Например, если вы измените время, то дым и пепел, отданные костром, снова сделаются куском дерева, а гнилое дерево вернется к тому, чтобы быть живым и расти. Поэтому ранняя Вселенная должна быть самым упорядоченным состоянием всего. Но это не так: планковская эпоха была временем чистого хаоса. Так откуда же взялась «особость» (термин Пенроуза) Вселенной, то, что позволило развивать жизнь на Земле? Ничто в ранней Вселенной, начиная с ее первого момента, кажется, не подготовило путь к эволюции галактик, так что жизнь на Земле – заранее в благоприятных условиях.
Возражение Пенроуза в отношении инфляционных теорий встретило бы понимание у младшего научного сотрудника, но поставило бы в тупик самых разумных космологов. Он делает второе утверждение, которое тоньше первого, но не менее разрушительно. Допустим, мы принимаем, что жизнь на Земле настолько уникальна, чтобы ранняя Вселенная должна была проложить путь при особых условиях. Давайте даже примем, что существовали особые условия, возникающие, когда космос был перегрет и бесконечно мал. А что же остальная огромная Вселенная? Жизнь эволюционировала на нашей планете независимо от того, что происходило в миллиардах других галактик – нам они не нужны. Итак, как же Вселенная могла бы быть создана, чтобы помочь нашей эволюции, в то время как все остальное не выглядит особенным вообще? Скорее, Пенроуз заявляет, что условия для жизни на Земле появились позже. Возможно, это была случайность. Таково менее недоказуемое утверждение – то, что должна выбрать наука при прочих равных.
Недавно астрономы несколько подорвали возражение Пенроуза, открыв тысячи звезд с планетными системами. Некоторых из этих звезд, как Солнца, достаточно, чтобы они могли способствовать жизни на планетах, подобных Земле. Всех очень взволновали новости о том, что мы, вероятно, не одни во Вселенной. Испортить ученым хорошее настроение можно, указав, что «вероятно» на самом деле не объясняет, как жизнь развилась из безжизненных химикатов. Очень большой шанс – миллионы и миллионы к одному – что даже множества солнц в далеких галактиках недостаточно, чтобы найти магический ключ к жизни. Такое возражение не может быть опровергнуто, но и доказано быть не может. Тем не менее, как только вы начинаете говорить о шансах и вероятностях, вы предполагаете, что жизнь развивалась беспорядочно. «Особость» нанесла серьезный удар.
Изобретательная теория информацииА может, и нет. Когда теория оказывается столь же успешной, сколь теория Большого взрыва, объясняет, как эволюционировала Вселенная, возражать сложно. Можно просто указать на погрешности, которые могут быть исправлены. Это бы свалило смертоносным ударом всю структуру, столь тщательно создаваемую с 1970-х годов. Но аргумент Пенроуза о втором законе термодинамики настолько прост, что он может опрокинуть весь карточный домик. Проблема инфляции состоит в том, что она не возникла сама по себе, как естественная эволюция в научных теориях: она была «собрана», чтобы объяснить некоторые загадочные загадки более старой космологии Большого взрыва. Главная цель – избавить раннюю Вселенную от ее кажущегося хаоса. Нужен источник упорядоченности, более сложный, чем бинго-машина, бросающая случайные числа.
Известный американский космолог Ли Смолин предложил некоторые интригующие идеи относительно геометрии планковской эпохи, которые могут избавить ее от чистого хаоса. Даже если в это время на физическом уровне был только хаос, возможно, источником упорядоченности было что-то нематериальное. Пенроуз и Смолин назначают информацию ключевым ингредиентом. Термодинамика фактически связывает информацию с энтропией, противопоставляя ее энтропии или «негэнтропии». Возможно, предыдущее состояние было богато информацией, неуязвимой ко второму закону, применяемому в момент Большого взрыва.
Аналогично, информация, которую вы носите в своем уме, может пережить все виды физических угроз. Одна из частей этой информации – ваше имя. Как только вы узнали свое имя, не имело значения, отправились ли вы в тропические джунгли или на Южный полюс. Тепло и холод не заставляют ваше имя замораживаться или кипеть. Ваше имя останется неизменным, если вы спуститесь на дно Долины Смерти или подниметесь на гору Эверест. Только немощи старости, нападающие на мозг, лишают нас этой интимной информации. То же самое можно сказать и о гораздо более сложных вещах, поскольку объем памяти человеческого разума невероятно огромен. С медицинской точки зрения удивительно, что кто-то может выходить из глубокой комы годами и восстанавливать если не все свои воспоминания, то большую их часть.
Выживаемость информации заставляет «циклическую Вселенную» казаться реальной возможностью. Если предыдущая Вселенная дала рождение нашей, то переход к константам и законам природы мог бы быть информационным, поскольку должна быть задействована некоторая фундаментальная математика. Это более приемлемо, чем называть математику физическим свойством. В модели Смолина прохождение космической дубинки происходит, когда новые «эоны» возникают из особенностей черной дыры. Эон был бы космической единицей времени; сингулярность же – маленькое пятнышко, оставшееся, когда все было втянуто в черную дыру.
Теоретически такое пятнышко единично, потому что оно не отбрасывает все то, что создает различия – пространство, время, материю и энергию. (Нет никаких убедительных доказательств тому, что сингулярности существуют на самом деле, даже если они математически правдоподобны.) Дело в том, что Вселенная в конечном счете схлопывается в единую точку, в сингулярность, где исчезнут материя, энергия, силы природы и пространство-время. И это только для того, чтобы возродиться через новую сингулярность. Другими словами, Большому взрыву предшествует Большой хруст. Однако мы недостаточно знаем о черных дырах, чтобы сказать, как информация может пережить их, когда ничего не делает.
«Особость» остается теоретическим конструктом.
В его нынешнем виде, утверждающем, что информация не была уничтожена в раннем космическом котле, это похоже на еще один фокус со шляпой. Так или иначе, все происходящее внутри черной дыры так же недостижимо, как планковская эра в начале Вселенной. Наше зрение блокирует такая же железная стена.
Звук лопнувшей суперструныСредний человек в ужасе от высшей математики, но она помогает понять, что вся та реальность, которая выражается в математике формулами, существует и в области понятий. Если вы понимаете концепцию, вы часто движетесь прямо в сердце того, что пытается сказать математика. Математика – действительно сжатый универсальный язык, который позволяет описывать так называемые физические процессы или, как мы увидим позже, наши взаимодействия с природой. Конечно, никакая высшая математика не может оправдать ложную идею. В дебатах между моделями, которые включают Большой взрыв, и теми, которые обходятся без этого понятия, плюсы и минусы взвесить нелегко. Если математика – единственное, на что все еще может опираться космология, почему бы не возложить на математику всю нагрузку? Возможно, единственный безопасный способ описания состояния до создания – описать его как реальность, где нас может вести только чистая математика. Или пойти дальше: возможно, такое состояние образовано числами и ничем более. Предположение звучит странно, но многие теории готовы обратиться к нему.
Ведущим примером является теория струн, которая позже трансформировалась в теорию суперструн, поскольку ее амбиции расширились. Теория струн возникла, чтобы решить загадку того, как элементарные частицы, такие как фотоны, кварки и электроны, могут вести себя как частицы и волны одновременно. Как мы увидим позже, многие физики назвали эту проблему центральной для квантовой механики. Частица похожа на теннисный мяч, пролетающий над сеткой.
Волна похожа на закрученный воздух, который она оставляет на своем пути. Они не похожи друг на друга. Однако если теннисный мяч и закрученный воздух могут быть сведены к одному общему признаку, это может решить проблему.
Теория струн говорит, что такой общий признак – вибрации. Представьте себе скрипку, вибрирующую для создания музыкальных нот. Звучание ноты определяется тем, где скрипач прикладывает палец к струне. Подобным же образом теория струн рассматривает волны как вибрацию невидимой струны, причем частицы являются специфическими «нотами», которые появляются в пространстве-времени. Аналогия с музыкой сильна, поскольку субатомные «гармонии» (вибрации, которые резонируют друг с другом), как полагают, определяют, как относятся друг к другу кварки, бозоны, такие как фотоны и гравитоны, и другие конкретные частицы, и создают сложные структуры, точно так же, как двенадцать нот западной музыкальной гаммы превратились в тысячи симфоний, сонат и тому подобных произведений. Нет конца комбинациям, создаваемым двенадцатью нотами; так и несколько вибрирующих струн могут быть основой для смутного распространения субатомных частиц, обнаруженных в ускорителях высокоскоростных частиц.
Скептики отмечают, что струны, вибрирующие ниже уровня наблюдаемой реальности, могут быть плодами воображения. Но для математиков теория струн имела большую привлекательность, потому что она относится к чистой математике. Передовая модель, известная как теория суперструн, увеличила сложность необходимых уравнений. Сначала было пять моделей суперструн, которые выглядели по-разному, но в середине 1990-х годов им было показано, что они имеют тонкое комплексное сходство. То, что стало вершиной математического моделирования, оказалось М-теорией, где М может означать, по словам чудаковатого создателя теории Эдварда Виттена, и волшебство (magic), и тайну (mystery), и мембрану.
«Волшебство» и «тайна» относятся к тому факту, что М-теория не имеет в основе ни одного эксперимента или наблюдения. Она вытаскивает математического кролика из шляпы, гармонизируя предыдущие теории струнного типа, которые сами по себе не были основаны на экспериментах или наблюдениях. Тот факт, что М-теория так хорошо работает – на бумаге, – кажется магическим и таинственным. Конечная уловка состоит в том, чтобы показать, что Вселенная действительно работает так, как она работает на бумаге, и никто ее не оттолкнет. Третье значение – «мембрана» – технический термин физиков для описания того, как некоторые квантовые объекты распространяются через пространство, например листы или вибрирующие мембраны, а мембраны суть обобщения струн в более высоких измерениях. Здесь мы балансируем на краю очень сложных уравнений, которые можно понять только через высшую математику. Но концептуальную основу дать все же можно.
Куда все ушло?Как реальность стала настолько загадочной, что ее понадобилось сводить к цифрам? Никто не виноват, что Вселенная исчезла у нас под носом. Физика – это физичность, но, как мы видели, в квантовой революции физичность исчезла. Мы говорим о простой, базовой физичности, о том, что пять чувств позволяют нам переживать, когда кто-то пинает камень и ему тяжело. Тонкая физичность оставалась в форме субатомных частиц и волн, предметов изучения квантовой физики. Но два связанных препятствия не могли быть преодолены.
Первое препятствие, о котором мы говорили ранее, связано с несовместимостью больших и малых объектов. Общая теория относительности Эйнштейна великолепно работает с крупными объектами, такими как планеты, звезды и галактики и сама Вселенная. Благодаря своему пониманию гравитации и искривленности космического времени, относительность принимается как обеспечивающая глубочайшее понимание чего-либо макроскопического и крупного масштаба самой Вселенной. С другой стороны, квантовая механика (КМ) столь же успешно описывает мельчайшие объекты в природе, особенно субатомные частицы. Но общая теория относительности и КМ не зацеплялись с тех пор, как были сформулированы. Каждая из теорий делает точные прогнозы внутри своей собственной области; можно провести эксперименты или наблюдения. Но найти связь между самыми большими и самыми маленькими объектами во Вселенной – чрезвычайно сложно.
Второе препятствие возникает из дилеммы, заключенной в первом. Как только было установлено, что в природе есть четыре фундаментальные силы, то есть гравитация, электромагнитная сила, сильное и слабое ядерное взаимодействие, – появилась и возможность объединить их в одну теорию. К концу 1970-х годов с открытием кварков возникла стандартная модель, которая объединила квантовый мир на трех фронтах. Сила, ответственная за свет, магнетизм и электричество (электромагнетизм), была объединена с двумя силами, которые удерживают атомы вместе (сильное и слабое ядерные взаимодействия). Мир крошечных предметов сдался математическому соответствию. Этот шаг был известен как Великое объединение, и с учетом того, сколько блестящих умов внесло свой вклад в это, объединив три фундаментальные силы, объединение и вправду можно назвать великим. Оставалась только гравитация, чтобы завершить эту «теорию почти всего» и приблизиться к святому Граалю – к Теории Всего. По аналогии, представьте себе, что кто-то собирает мозаику из статуи Свободы. Все части находятся на месте, но факела нет. Этот кусочек отсутствует в коробке, и вот начинаются поиски.
«Не волнуйся, – говорят нам, – это всего лишь кусочек. Как только мы найдем его, вся картина будет полной. Мы почти пришли».
Тем не менее, независимо от того, как трудно каждому искать, недостающий кусок найден быть не может. А когда возвращаешься к загадке, определенной картины статуи Свободы, к сожалению, уже нет: вместо нее – расплывчатые очертания, окруженные густым туманом.
Теперь вы видите, почему современная физика делится на два лагеря. Один считает, что картина Вселенной почти завершена: нет только одной части, которая, если все время искать, непременно найдется. Другой лагерь считает, что нехватка фрагмента делает всю картину неопределенной и сомнительной. Мы могли бы также назвать эти лагеря «количественным» (его идея – «нужно построить самый большой ускоритель, создать более мощные телескопы, делать больше вычислений, тратить больше денег…») и «качественным» (идея – «начать следует с новой модели Вселенной»). «Количественный» лагерь считает, что опирается на практику и прагматизм. Мантра «количественных» – «Заткнитесь и считайте!»: по их мнению, любое дополнительное теоретизирование – всего лишь ненужные предположения.
Чтобы в конце концов победить, «количественным» придется докопаться до самых упрямых частиц из самой глубокой квантовой ткани. Только тогда их расчеты будут оправданны. Пока что прогнозы оптимистичны, особенно после того, как в 2012 году была открыта одна из самых важных этих частиц – бозон Хиггса. Мы упоминали, что квантовый вакуум кишит субатомными частицами. Некоторые из них настолько неуловимы, что их выявление требует огромных технических мощностей, то есть все более крупных и дорогих ускорителей. Если бомбардировать атом сверхвысокой энергией, квантовый вакуум иногда «выталкивает» новый тип частицы. Это тонкая, кропотливая работа, но обнаруженные частицы доказывают, что существующие теории действительно верны. Существование бозона Хиггса было предсказано; таким образом, его открытие, будучи подтверждено, показывает, что стандартная модель соответствует реальности. Функция бозона Хиггса состоит в том, чтобы придать массу другим флуктуациям в квантовом поле. Технический момент, на котором не стоило бы останавливаться, не будь эта функция основой существования всех созданных физических объектов.
СМИ зациклились на определении «частица Бога», которое смущает почти всех физиков. Для них открытие бозона Хиггса было триумфом: оно заполнило пробел на месте одной из последних оставшихся фундаментальных частиц, факел статуи Свободы нашелся, теоретическая картина почти завершена. Поиск последней недостающей части занял пять десятилетий – начиная с того дня, когда британский физик Питер Хиггс и его коллеги первыми предложили существование так называемого поля Хиггса.
Новое открытие вписывается в привычные образцы. История современной физики – торжественный парад доказанных результатов вперемешку с теоретическими выкладками. Бозон Хиггса может быть важным звеном в понимании того, как связаны четыре фундаментальные силы, но на этом парад может и кончиться: включение гравитации в систему может быть невозможным, если мы все еще говорим о подтверждении. Гравитон, теоретическая частица, которая выскакивает из поля тяготения при его возбуждении, далека от того, чтоб ее наблюдать или хотя бы иметь такую возможность. Одно из препятствий – чисто техническое. Ускорение и энергия, необходимые, чтобы приблизить нас к истокам физической реальности, огромны. По некоторым оценкам, ускоритель, способный выполнить эту работу, должен быть больше, чем окружность Земли.
На этом препятствии история не заканчивается.
Помочь обойти практические трудности может математика. Нет таких весов, на которых можно взвесить голубого кита, но его вес можно определить с помощью вычислений – на основании его размера, плотности его веса, а также в сравнении с малыми китами и дельфинами: их взвесить можно. Но здесь «количественный» лагерь тонет в математическом болоте, ведь теория струн, теория суперструн и М-теория добавляют ко всем сложностям еще несколько слоев, и ни один из них не поддается проверке в реальной жизни.
Странно, но провал этой попытки увернуться от базовых трудностей может поставить весь космос под вопрос. Однако реальностей не две, реальность – одна. Самое большое должно быть как-то связано с самым малым. То, что эти связи невидимы, не останавливает математику. Тревожит – и более чем тревожит – то, что в математике оказывается столько сложностей, неясностей и залатанных лакун. Это значит, что, удаляясь от реальности, можно заблудиться в таких играх ума, где не поможет даже математика. Если, конечно, не признавать того, что ее необоснованность, как говорят физики, указывает на ментальную природу Вселенной, из которой родом и математика в том числе.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?